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Abstract. 
First, we introduce two new reformulation convexification based hierarchies called RTC and RSC for which the rank  continuous relaxations are denoted by  and , respectively. These two hierarchies are obtained using two different convexification schemes: term convexification in the case of the RTC hierarchy and standard convexification in the case of the RSC hierarchy. Secondly, we compare the strength of these two hierarchies. We will prove that (i) the hierarchy RTC is equivalent to the RLT hierarchy of Sherali-Adams, (ii) the hierarchy RTC dominates the hierarchy RSC, and (iii) the hierarchy RSC is dominated by the Lift-and-Project hierarchy. Thirdly, for every rank , we will prove that  and  where the sets  and  are convex, while  and  are two nonconvex sets with empty interior (all these sets depend on the convexification step). The first inclusions allow, in some cases, an explicit characterization (in the space of the original variables) of the RLT relaxations. Finally, we will discuss weak version of both RTC and RSC hierarchies and we will emphasize some connections between them.



1. Introduction
Let  and  be two integers. Let  and  be the two sets  and , respectively. Let  be a subset of  representing the set of feasible solutions of a mixed integer linear program. The integer  indicates the number of binary variables. We will assume that the set  is bounded and has the following nonlinear description:
In descriptions (1)–(4) above the set  contains the indices of the  binary variables describing ; for each index  belonging to  the vectors  and  belong to , where  is a positive integer indicating the number of constraints in (1). The th component of the two vectors  and  will be denoted by  and , respectively. Finally,  defined by the constraints (1), (2), and (3) will denote the continuous (or linear) relaxation of the mixed integer set .
In the sequel, two linear descriptions are said to be equivalent if they define the same polyhedron. A linear description  dominates another linear description  if the polyhedron defined by  is included in the polyhedron defined by .
Optimizing even a linear function over the mixed integer set  is an NP-hard problem in general (see [1–4]). A way of building strengthened linear relaxations is to use an approach combining reformulation, linearization, and projection such as those proposed in [5–10]. In such approach, one first reformulates the constraints defining the set of feasible solutions by introducing nonlinearities. Then, the resulting nonlinear system is linearized and projected back onto the original space.
Two important properties characterize the reformulation-linearization approach (also known as Lift-and-Project methods (do not confuse this with the Lift-and-Project hierarchy introduced by Balas et al., see [5])). First, the approach leads to a whole hierarchy (see [10, 11]) of relaxations which lie between the continuous relaxation  and the convex hull of the mixed integer set . And for a given hierarchy, a relaxation of higher rank (see [10, 11]) is always stronger than a relaxation of lower rank. Secondly, optimizing a linear function over any relaxation of the hierarchy can be done in a polynomial time.
Many hierarchies were introduced. To mention a few,   hierarchy (Balas et al., see [5]),   hierarchy (Lovász and Schrijver, see [7]),  hierarchy (Sherali and Admas, see [9, 10]),   hierarchy (Lasserre, see [6]),   hierarchy (Bienstock and Zuckerberg, see [12]), and  hierarchy (Minoux and Ouzia, see [8, 13]). For more details, a set-theoretical interpretation of the reformulation-linearization approaches has been proposed in [14] and a theoretical comparative study between the ,  ,  and    relaxations can be found in [15].
The convexification technique is also widely used to solve nonlinear and nonconvex optimization problems (see [16] and the references therein). Roughly speaking, this technique consists in approximating a nonconvex optimization problem by a convex problem (or a family of convex problems). This can be done by approximating the nonconvex objective function by a convex function and/or by approximating the nonconvex set of feasible solutions by a convex one (see [17–24] and the references therein). In this paper, new hierarchies of continuous relaxations using a reformulation, convexification, and linearization approach will be defined. Theses hierarchies are obtained using two different convexification schemes.
The paper is organized as follows. In the second section, first, we will recall the definition of a reformulation-linearization hierarchies and then give the definition of the Sherali-Adams hierarchy. In the third section, we will define two reformulation-convexification hierarchies:  and  hierarchies. We will study the main properties of these new hierarchies. In the fourth section, we will study the connections between , , and   hierarchies. In the fifth section, we will introduce a weak version of the hierarchies  and  and emphasize some connections between them. In the last section we make some concluding remarks.
2. The Reformulation-Linearization Hierarchies
First, we will introduce the general concept of reformulation-linearization hierarchies. Then, we recall the definition of the well-known Sherali-Adams hierarchy (for more details see [9, 10, 25]).
Let  be a positive integer. For a finite nonempty set  let  be the set of all subsets of  with cardinality , whereas  is the set of all subset of  with cardinality at most . Sometimes we will need to indicate the cardinality of the sets under consideration, so we will use the notation  to indicate (do not confuse this with the Cartesian product of sets) that the set  has cardinality .
Let  be a set of  elements belonging to the set of binary indices  and let  be a subset from . We call -factor associated with the sets  and , denoted by , the degree  polynomial defined as follows: with the convention that .
Example 1. In the case where  and  we have the following  nontrivial -factors: , , , , , , , , , , , and .
A rank  reformulation-linearization relaxation (of the mixed integer set  described by (1)–(4)) is defined in three steps. First, the problem is reformulated as a 0-1 polynomial (semialgebraic (a -dimensional semialgebraic set is a solution set of a finite system of polynomial equalities and inequalities; for more details see [26, 27])) mixed integer system by multiplying constraints (1)–(3) with all possible -factors (that is multiplying by  for all subsets  of  and all ). Then, the nonlinear terms are linearized by replacing them with new variables giving rise to a higher dimensional linear system. The third step consists in projecting back the resulting polyhedron onto the original -space. As observed in [8] the linearization step can be performed in various ways, leading to various hierarchies of relaxations.
The solution set in  associated with the nonlinear (semialgebraic) description resulting from the reformulation step will be denoted by  and it is defined as follows:where, for each subset  of ,  is the solution set defined by the following nonlinear system:
Starting from this semialgebraic reformulation, various linear relaxations can be constructed depending on the type of linearization considered (for more details see [8, 13]).
2.1. The Sherali-Adams Hierarchy
The description of the rank  Sherali-Adams relaxation for the mixed integer set  defined by (1)–(4), denoted by , is a reformulation-linearization relaxation of rank  where the nonlinear terms appearing in (7) are linearized by introducing a new set of variables  and  defined bywhere it is assumed that  and  for every index  (belonging to ) of a continuous variable.
Example 2. In the case where  and  we have the following linearization: 
The resulting higher dimensional linear description will be denoted by  and it is defined as follows:where, for each cardinality  subset  of , the linear description of the polyhedron  isand where, for every index  belonging to ,  and  denote the linearized forms of the polynomials  and , respectively; these are related to the  and  variables as follows:The above relations (12) are easily obtained by expanding the products involved in the definition of the -factors.
After linearizing the nonlinear terms in (7) using the  variables defined in (8) above, the  description turns out to involve a number of variables and constraints exponential in . The number of variables needed to linearize the nonlinear system (7) is  (notice that the variable  is not counted here since ). Also, it is seen that the number of constraints is .
The rank  Sherali-Adams relaxation  is obtained by projecting the polyhedron  onto the subspace  of the  variables.
3. Two New Reformulation-Convexification Hierarchies
We will consider two new reformulation-convexification hierarchies. The first one is called reformulation-term-convexification () hierarchy. It is obtained by convexifying the monomials (also called terms) resulting from the reformulation step. The second hierarchy is called reformulation-standard-convexification (). It is obtained by convexifying the nonlinear factors (a linear combination of monomial products) resulting from the reformulation step.
3.1. Reformulation-Term-Convexification Hierarchy
A rank  relaxation of the  hierarchy is obtained by applying local convexification to each constraint of the nonlinear system defining  as follows. For every subset  from  and every subset  from  with at most one element, let  be the following operator:with the convention that  and, for any real ,  is equal to .
The convexification scheme (13) assumes that the constraint to which it is applied is of the form ≤.
Let  be the following convex set:where, for each cardinality  subset  from , the convex set  corresponds to the solution set  defined by the nonlinear system deduced from (7) by convexification using scheme (13). The convex nonlinear description of the set , for a given , readswhere, for every index  belonging to  and any scalar ,  and  denote the convexified forms of the polynomials  and , respectively; these are defined using the  operator as follows: 
Since the set  is the intersection of convex sets (by construction), then we have the following result.
Theorem 3.  For every integer  belonging to , the set  as defined by (15) is a nonlinear convex relaxation of the mixed integer set .
For every integer , let  be the set (the lower-script  is used to recall that our set is related to the term convexification scheme):where, for subsets  and , 
Since every binary vector from  belongs to  then we deduce that  coincides with the hypercube .
Let  be the extended linear description obtained from the set  using the following steps. Let  and  be two sets of additional variables such that for every -element set , for every subset  from  and for every subset  from  with at most one element. First, in (15), the variable  will replace the nonlinear term:and the variable  will replaceThen, we impose the equality constraint:We will use the notation  or  instead of  when  is empty or when  coincides with the singleton , respectively.
Thus, we havewhere, for each subset  of , the polyhedron  readsand where, for every index  belonging to ,  and  denote the linearized forms of the convexified form of the polynomials  and , respectively; these are related to the  and  variables as follows:The linear description (23)–(31) and (32) are stated using only the variables . This is possible according to (21). As discussed in Section 5, discarding constraints (21) in the definition of the  hierarchy will lead to a weaker hierarchy.
For every integer  belonging to , let  be the projection onto the -space of the extended linear description . The polyhedron  will be called rank- reformulation-term-convexification relaxation of .
In the next theorem we will prove that the hierarchy  is equivalent to the hierarchy .
Theorem 4.  For every integer  belonging to , the two linear relaxations  and  are equivalent.
Proof. We will proceed by showing that the two extended linear descriptions  and  are the same up to variable renaming. Let  be an integer belonging to . As shown in [8], for every set  belonging to , the constraintsare implicit in the linear description of . We claim that the constraintsare also implicit in the linear description of . The argument is obvious for constraints (35). For constraints (36), let  be an index belonging to  and let  be a subset from , and the following constraint is valid for . Using  linearization, we get the constraint Combining this last constraint with constraint (34) we deduce that Now consider the following identifications: These identifications imply identifications between the  and  variables through (12) and (32). Thus, the two extended linear descriptions  and  are equivalent. This completes the proof.
Consequently, the rank- relaxation coincides with the convex hull of the mixed integer set . The  hierarchy is motivated by the next theorem where it is shown that the projection onto the -space of any  relaxation can be sandwiched between two convex sets. The following proposition will be useful.
Proposition 5.  Let  and  be two disjoint subsets from , such that  belongs to  for all  belonging to ; then 
Theorem 6.  For every integer  belonging to , one has 
Proof. First, to prove the left inclusion in (42) it is sufficient to prove that the set  is included in . Let  be a point belonging to the set . Let  be a vector such thatThus, by definition constraints (31) are fulfilled by the vector . Since  belongs to , then  satisfies constraints (23)–(26). By Proposition 5 the point  satisfies constraints (27)–(30). Since the vector  also belongs to the set , then the vector  also satisfies constraints (21). Consequently, the vector  belongs to . Thus,  belongs to .
Now, let us prove the right inclusion in (42). Let  be a point belonging to . There is a vector  such that  belongs to . Without loss of generality, any constraint defining  can be written as follows:where , and  are subsets of the power set of  (the superscript of a coefficient indicates its sign). Since the point  satisfies the following inequalities: then we deduceConsequently, the point  satisfies all constraints defining : that is, . This completes the proof.
Characterization (42) will allow us, in some cases (see Corollary 8), to give an explicit characterization of any  relaxation (characterization in the -space). Before answering this question we will recall, in the next proposition, the simple result stating that any fractional point belonging to the set  will belong to either a facet or an edge of the hypercube. This implies that the set  has empty interior.
Proposition 7.  For avery subset  from , such that  for all  belonging to the set , if then at least  variables are equal to .
As a consequence of Theorem 6 and Proposition 7 we have the following corollary.
Corollary 8.  For every integer  belonging to , if the set  has integer vertices then it coincides with the projection of  onto the -space.
Proof. Let  be an integer belonging to . On the one hand, the sets  and  are both subsets from the hypercube. On the other hand, if the set  has integer vertices then both sets  and  have the same vertices (vertices of ). Thus, the convex envelope of the set  coincides with the set , because  is convex. Consequently, using Theorems 4 and 6 we conclude that This completes the proof.
The following example shows that restricting the set  to have integer vertices in Corollary 8 is not a sufficient condition to characterize . Let us consider the following set:Its continuous relaxation  is the shaded region drawn in Figure 1. The set  associated with the set  is the shaded region drawn in Figure 2. A careful analysis of the set  shows that it features the following linear description: 




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
	


Figure 1: The set .






	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
			
				
		
		
	


Figure 2: The set .


The rank-1  relaxation has the same linear description as . But, as shown in Figure 2, the set  has a fractional vertex. Notice that set (49) coincides with the the rank-1   relaxation. As discussed in Section 5, this equality is not true in general. Finally, the set  (the shaded region in Figure 3) has integer vertices and it coincides with the rank- relaxation.




	
	
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
		
		
		
		
		
		
		
		
		
		
		
			
		
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
		
			
		
		
			
		
			
		
		
			
		
		
		
		
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
		
			
	


Figure 3: The set .


3.2. Reformulation-Standard-Convexification Hierarchy
Contrary to the  hierarchy, in the reformulation-standard-convexification hierarchy () we convexify each factor obtained after reformulation and not the monomials appearing in each such factors. The term standard extension was introduced by Crama (see [24]) in studying concave envelopes of pseudo-boolean functions.
Let  be the nonlinear convex set:where, for each cardinality  subset  of , the convex set  corresponds to the solution set of  defined by the nonlinear system deduced from (7) using the following convexification scheme: where  and  are two subsets such that , , and .
As for the  operator, depending on the type of the constraint ( or ), we use the  expression or the  expression in such a way that the resulting solution set will be convex.
The nonlinear description of the set , for a given  and a set , is thus defined as follows:where, for every index  belonging to  and any scalar ,  and  denote the convexified forms of the polynomials  and  using the operator , respectively.
Since the set  as defined in (51) is the intersection of convex sets then we have the following results.
Theorem 9.  For every integer  belonging to , the set  as defined by (51) is a nonlinear convex relaxation of the mixed integer set .
For every integer , let  be the set (the lower-script  is used to recall that our set is related to the standard convexification scheme) where for subsets  and  the set  is the subset from  defined by the following constraints: 
Since every binary vector from  belongs to  then the set  coincides with the hypercube . Notice that the set  is a subset from . As shown below, it is possible to represent  as a polyhedron in some appropriate extended space.
Let  denote the extended linear description of the set  obtained by using the following steps. First, let  and  be two sets of variables such that, for every -element set , for every subset  from , and for every subset  from  with at most one element,  replaces in (53) the nonlinear term:and the variable  replacesThen we impose the following equality:
In the sequel, instead of  or  we will use  or  when the set  coincides with the singleton  and  or  otherwise (recall that the set  has at most one element).
Thus, we obtain the extended linear description:where, for each subset  of , the polyhedron  reads
Notice that linear description (60)–(69) are stated using only the variables . This is possible according to (58). As discussed in the last section, discarding constraints (58) in the definition of the  hierarchy will lead to a weaker hierarchy.
For every integer  belonging to , let  be the projection onto the -space of the extended linear description . The continuous relaxation  will be called rank- reformulation-standard-convexification relaxation of the mixed integer set .
As for the  hierarchy, in the following theorem we will prove that any relaxation of the  hierarchy can also be sandwiched between two convex sets.
Theorem 10.  For every integer  belonging to , we have 
Proof. Let  be an integer belonging to . First, to prove the left inclusion in (70) it is sufficient to prove that the set  is a subset of . Let  be a point belonging to the set . Let  be a vector where the two vectors  and  are defined as follows: for every -element set , for every subset  from , and for every subset  from  with at most one element:By definition,  belongs to ; then  satisfies constraints (60)–(63). By Proposition 5 the point  also satisfies constraints (64)–(69). Since the vector  also belongs to the set , then the vector  also satisfies constraints (58). Thus, the vector  belongs to . Consequently,  belongs to . This completes the first part of the proof.
Now, let us show the right inclusion in (70). Let  be a point belonging to . There is a vector  such that  belongs to . Without loss of generality, each constraint in (60) and (61) can be rewritten as follows:Without loss of generality, we can assume that  is nonnegative (the argument we will use holds also in the case where  is nonpositive). The point  satisfies also the constraints: Thus, we have  This means that the point  satisfies constraints (53). Thus,  belongs to . This completes the proof.
4. Links between , , and  Extended Linear Descriptions
We will focus, in this section, on the connections between the extended linear descriptions of the , , and   relaxations. First, we will compare the strength of the  and  hierarchies. We will prove that for every rank  the relaxation  dominates the relaxation .
Let  be a set of indices and let  be an integer less than or equal to . Let  be the subset from  defined as follows:
The following lemmas will be useful to prove the next theorem.
Lemma 11.  Let  be  a subset of indices from . Let  be the set , where  does not belong to . Let us consider the variables  satisfying Then, we have the following equality: 
Proof. Let  be the set  and let  be the set , where  does not belong to . Let us consider the variables  satisfying (76)-(77). First, notice that the set is a partition of the power set of . Thus, Using (77) we obtain 
Lemma 12.  Let  be an integer belonging to . Let  be a -element subset from . Let us consider the nonnegative variables , where  is a subset from , satisfying If the variables  satisfy the following inequalities: then the variables  satisfy 
Proof. Let  be an integer belonging to . Let  be a finite set and let  be a -element subset from . It is a well-known fact that the linear transformation (82) is a bijection (see [10]) and its inverse is given byFirst, the variables  satisfy inequalities (85) because of (88) and (83) and the fact that the variables  are all nonnegative. Then, using Lemma 11, which is legitimate because the variables  are assumed nonnegative, we deduce the inequalities (86). Finally, notice that for every subset  from  we have Using inequalities (84) we deduce that which is equivalent toThus, for sets  and  the variable  satisfies inequalities (87) and this completes the proof.
Theorem 13.  For every integer  belonging to  we have 
Proof. Let  be an integer belonging to . We will prove that the extended linear description  is contained in . Let  be a point belonging to . Let us define the point  as follows:Since the point  satisfies constraints (23)–(25) and (32), then it also satisfies constraints (60)–(63). Particularly, the variables  are nonnegative. Using Lemma 12, where the variables  are replaced by the variables  and the variables  are replaced by the variables , we deduce that the point  satisfies constraints (66), (67), and (69). That is,We use the same arguments to prove that the point  satisfies constraints (64), (65), and (68): that is,Thus, by identifying  with  and  with  we conclude that the point  satisfies all constraints (60)–(63). This completes the proof.
Now, we will compare the strength of the two hierarchies  and . As shown in [8], the   hierarchy can be obtained from the semialgebraic set (6) using a suitable linearization (for more details, see [8]). Precisely, any rank- relaxation is a rank- reformulation-linearization relaxation where the linearization is performed using the following substitutions: for every subset  from , letThe linearized system we obtain readsLet   be the extended linear description (97). As before, let   be its projection onto the -space.
In the next theorem we will prove that the hierarchy   dominates the hierarchy .
Theorem 14.  For every integer  belonging to the set  we have 
Proof. Let  be an integer belonging to the set . Let  be a point belonging to  . There exists a variable  such that  belongs to  . Notice that, for every -element subset  in , every subset  from , and for every index  from  we have Constraints (97) and both relations (99) and (100) imply that the point  satisfies constraints (60)–(69). Thus, the point  belongs to . Consequently, the point  belongs to . This completes the proof.
As a byproduct of Theorem 14 we obtain an indirect proof of Theorem 13. Indeed, for any rank , we know from Theorem 4 that  is equivalent to . It is a well-known fact that  is included in   (see [8]). Thus, it follows using Theorem 14 that  is included in .
5. Weak  and Weak  Hierarchies
In this section, we will introduce a weak version of the  and  hierarchies. For both weak hierarchies the rank  extended linear description is obtained by reformulation, convexification using min and max and then linearizing using two distinct sets of variables.
More precisely, the rank  extended linear description of the weak- hierarchy, denoted by  , is defined as  except that we discard equality constraints (21) (see Section 3.1). Thus, both sets of variables  and  will appear in the description of  . Similarly, the rank  extended linear description of the weak- hierarchy, denoted by  , is defined as   except that we discard equality constraints (58) between the two sets of variables  and  (see Section 3.2).

To emphasize some connections (small instances are sufficient to reveal these connections. We wish to emphasize that this is not a computational investigation) between the weak hierarchies we will use the computational results shown in Table 1. The values computed are the minimum value of rank 1 ,  , , , and   relaxations for five instances of the multiple constraints knapsack problem. Each instance has  constraints and  variables. The instances have been generated using the Chu and Beasley procedure given in [28]. The constraint matrix coefficients are integers and randomly chosen in . The right-hand-side coefficient of the th constraint is set to . The th objective function coefficient is set to , where  is a real number randomly chosen from the interval .
Table 1: Optimal values of the different relaxations.
	

	Instance 	 Optimum values 
					
	

	inst-1 					
	inst-2 					
	inst-3 					
	inst-4 					
	inst-5 					
	



Although  is stronger than  the  and  hierarchies are not comparable in strength as shown by the instances inst-1 and inst-2. The  hierarchy may be stronger than   hierarchy as shown by the instances inst-2 and inst-4. Also, the computational results shown in the Table 1 are coherent with the theoretical results proved before: (i) the hierarchy  is stronger than both   and  hierarchies; (ii) the hierarchy   is stronger than hierarchy ; (iii) the hierarchies  and  are stronger than  and , respectively.
6. Conclusion
In this paper, we introduced two new hierarchies called  and  for which the rank  continuous relaxations were denoted by  and , respectively. These two hierarchies are obtained using a reformulation-convexification-linearization procedure. The hierarchy  is obtained using a term convexification scheme and the  hierarchy is obtained using a standard convexification scheme. Then we compared the strength of these two hierarchies. We proved that (i) the hierarchy  is equivalent to the  hierarchy of Sherali-Adams, (ii) the hierarchy  dominates the hierarchy , and (iii) the hierarchy  is dominated by the Lift-and-Project hierarchy. Next, for every rank , we proved that  and , where the sets  and  are convex, while  and  are two nonconvex sets with empty interior. The first inclusions allow, in some cases, an explicit characterization of  relaxations. That is a convex nonlinear description of any  relaxation in the -space. Finally, we discussed weak version of both  and  hierarchies and emphasized some connections between them using small numerical examples.
We conclude with some open questions. First, one may ask whether the hierarchy  is equivalent to the hierarchy  or not. Also, does the rank  relaxation coincide with the convex envelope of the set ? Finally, is it possible to obtain stronger hierarchies using the exposed reformulation-convexification-linearization approach? Extending this work to more general nonlinear optimization problems will be the subject of a future work.
Conflict of Interests
The author declares that there is no conflict of interests regarding the publication of this paper.
Acknowledgment
The author would like to thank the anonymous referees for their helpful comments.
References
	B. Korte and J. Vygen, Combinatorial Optimization: Theory and Algorithms, Algorithms and Combinatorics, Springer, 3rd edition, 2005.
	C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.
	A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. A of Algorithms and Combinatorics, Springer, Berlin, Germany, 2003.
	A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. 24 of Algorithms and Combinatorics, Springer, Berlin, Germany, 2003.
	E. Balas, S. Ceria, and G. Cornuéjols, “A lift-and-project cutting plane algorithm for mixed 0-1 programs,” Mathematical Programming, vol. 58, no. 1–3, pp. 295–324, 1993.
	J. B. Lasserre, “An explicit exact SDP relaxation for nonlinear 0-1 programs,” in Integer Programming and Combinatorial Optimization, Lectures Notes in Computer Science, pp. 293–303, Springer, Berlin, Germany, 2001.
	L. Lovász and A. Schrijver, “Cones of matrices and set-functions and 0-1 optimization,” SIAM Journal on Optimization, vol. 1, no. 2, pp. 166–190, 1991.
	M. Minoux and H. Ouzia, “DRL∗: a hierarchy of strong block-decomposable linear relaxations for 0-1 MIPs,” Discrete Applied Mathematics, vol. 158, no. 18, pp. 2031–2048, 2010.
	H. D. Sherali and W. P. Adams, “A hierarchy of relaxations between the continuous and convex hull representations for zero-one programming problems,” SIAM Journal on Discrete Mathematics, vol. 3, no. 3, pp. 411–430, 1990.
	H. D. Sherali and W. P. Adams, “A hierarchy of relaxations and convex hull characterizations for mixed-integer zero-one programming problems,” Discrete Applied Mathematics, vol. 52, no. 1, pp. 83–106, 1994.
	H. D. Sherali and W. P. Adams, A Reformulation-Linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31 of Nonconvex Optimization and Its Applications, Springer, New York, NY, USA, 1999.
	D. Bienstock and M. Zuckerberg, “Subset algebra lift operators for 0-1 integer programming,” SIAM Journal on Optimization, vol. 15, no. 1, pp. 63–95, 2005.
	H. Ouzia, Hiérarchies de relaxations semi-algébriques pour des programmes linéeaires mixtes 0-1: théorie et applications [Ph.D. thesis], Université Pierre et Marie Curie, Paris, France, 2008.
	M. Zuckerberg, A set theoretic approach to lifting procedures for 0-1 integer programming [Ph.D. thesis], Columbia University, New York, NY, USA, 2004.
	M. Laurent, “A comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre relaxations for 0-1 programming,” Mathematics of Operations Research, vol. 28, no. 3, pp. 470–496, 2003.
	M. Tawarmalani and N. V. Sahinidis, Convexification and Global Optimization in Continuous and Mixed-Integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, Nonconvex Optimization and its Applications, Springer-Verlag, New York, NY, USA, 2003.
	M. Tawarmalani and N. V. Sahinidis, “Convex extensions and envelopes of lower semi-continuous functions,” Mathematical Programming, Series B, vol. 93, no. 2, pp. 247–263, 2002.
	J. B. Lasserre and T. P. Thanh, “Convex underestimators of polynomials,” Journal of Global Optimization, vol. 56, no. 1, pp. 1–25, 2013.
	J. E. Falk and K. R. Hoffman, “A successive underestimation method for concave minimization problems,” Mathematics of Operations Research, vol. 1, no. 3, pp. 251–259, 1976.
	J. P. Aubin and I. Ekeland, “Estimates of the duality gap in nonconvex optimization,” Mathematics of Operations Research, vol. 1, no. 3, pp. 225–245, 1976.
	E. Balas and J. B. Mazzola, “Nonlinear 0-1 programming: I. Linearization techniques,” Mathematical Programming, vol. 30, no. 1, pp. 1–21, 1984.
	H. D. Sherali and A. Alameddine, “An explicit characterization of the convex envelope of a bivariate bilinear function over special polytopes,” Annals of Operations Research, vol. 25, no. 1, pp. 197–209, 1990.
	H. D. Sherali, “Convex envelopes of multilinear functions over a unit hypercube and over special discrete sets,” Acta Mathematica Vietnamica, vol. 22, no. 1, pp. 245–270, 1997.
	Y. Crama, “Concave extensions for nonlinear 0-1 maximization problems,” Mathematical Programming, vol. 61, no. 1, pp. 53–60, 1993.
	H. D. Sherali and W. P. Adams, “Reformulation-linearization techniques for discrete optimization problems,” in Handbook of Combinatorial Optimization, D. Z. Du and P. M. Pardalos, Eds., pp. 479–532, Springer, New York, NY, USA, 1999.
	D. Cox, J. Little, and D. O'Shea, Ideals, Varieties and Algorithms, Springer, 2nd edition, 1996.
	D. Cox, J. Little, and D. O'Shea, Using Algebraic Geometry, Springer, 2nd edition, 2004.
	P. C. Chu and J. E. Beasley, “A genetic algorithm for the multidimensional knapsack problem,” Journal of Heuristics, vol. 4, no. 1, pp. 63–86, 1998.


EPUB/Navigation/nav.xhtml


		

			

		  1. Introduction

		  2. The Reformulation-Linearization Hierarchies

		  3. Two New Reformulation-Convexification Hierarchies

		  4. Links between RTC, RSC, and L&P Extended Linear Descriptions

		  5. Weak RTC and Weak RSC Hierarchies

		  6. Conclusion

		  References 





EPUB/Content/page-template.xpgt
 

   


     
	 
    

     
	 
    


     
	 
    


     
         
             
             
             
        
    

  




