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Abstract. 
We present explicit formula for the general Randić connectivity, general sum-connectivity, Hyper-Zagreb and Harmonic Indices, and Harmonic polynomial of some simple connected molecular graphs.



1. Introduction
In this paper, we consider only simple connected graphs without loops and multiple edges. A connected graph is a graph such that there is a path between all pairs of vertices. Let  be an arbitrary simple connected graph; we denote the vertex set and the edge set of  by  and , respectively. For two vertices  and  of , the distance between  and  is denoted by  and defined as the length of any shortest path connecting  and  in . For a vertex  of , the degree of  is denoted by  and is the number of vertices of  adjacent to .
In chemical graph theory, we have many invariant polynomials and topological indices for a molecular graph. A topological index is a numerical value for correlation of chemical structure with various physical properties, chemical reactivity, or biological activity [1–3].
One of the oldest topological indices or molecular descriptors is the Zagreb index that has been introduced more than forty years ago by Gutman and Trinajstić in 1972 [4].
Now, we know that, for a molecular graph , the first Zagreb index  and the second Zagreb index  are defined as
Recently, a new version of Zagreb indices named Hyper-Zagreb index was introduced by Shirdel et al. in 2013 [5] and it is defined as
We encourage the reader to consult [6–30] for historical background and mathematical properties of the Zagreb indices.
In 1975, Randić proposed a structural descriptor called the branching index [31] that later became the well-known Randić molecular connectivity index. Motivated by the definition of Randić connectivity index based on the end-vertex degrees of edges in a graph defined as the sum of the weights  of all edges  of ,
Later, the Randić connectivity index had been extended as the general Randić connectivity index, which is defined as the sum of the weights  and is equal to
Also, a closely related variant of Randić connectivity index called the sum-connectivity index was introduced by Zhou and Trinajstić in 2008 [32, 33]. The sum-connectivity index  is defined as
The general sum-connectivity index of a graph  is equal to 
In 1987 [34], Fajtlowicz introduced the Harmonic index  of a graph  which is defined as the sum of the weights  of  and is equal to
The Harmonic index is one of the most important indices in chemical and mathematical fields. It is a variant of the Randić index which is the most successful molecular descriptor in structure-property and structure activity relationships studies. The Harmonic index gives somewhat better correlations with physical and chemical properties compared with the well-known Randić index. Estimating bounds for  is of great interest, and many results have been obtained. For example, Favaron et al. [35] considered the relationship between the Harmonic index and the eigenvalues of graphs, and Zhong [36–38] determined the minimum and maximum values of the Harmonic index for simple connected graphs, trees, unicyclic graphs, and bicyclic graphs and characterized the corresponding extremal graphs, respectively. It turns out that trees with maximum and minimum Harmonic index are the path  and the star , respectively.
Recently, Iranmanesh and Salehi [39] introduced the Harmonic polynomial  of a graph  which is equal towhere .
We encourage the reader to consult [40–43] for more history and mathematical properties of the Randić index and the Harmonic index.
In this paper, we present explicit formula for the general Randić connectivity, general sum-connectivity, Hyper-Zagreb and Harmonic Indices, and Harmonic polynomial of some hydrocarbon molecular graphs.
2. Results and Discussion
In this section, we compute the general Randić connectivity, general sum-connectivity indices, the Hyper-Zagreb and Harmonic Indices, and Harmonic polynomial of a family of hydrocarbon molecules, which are called Polycyclic Aromatic Hydrocarbons .
The Polycyclic Aromatic Hydrocarbons  is a family of hydrocarbon molecules, such that its structure is consisting of cycles with length six (benzene). The Polycyclic Aromatic Hydrocarbons can be thought of as small pieces of graphene sheets with the free valences of the dangling bonds saturated by . Vice versa, a graphene sheet can be interpreted as an infinite PAH molecule. Successful utilization of PAH molecules in modeling graphite surfaces has been reported earlier [44–52] and references therein. Some first members and a general representation of this hydrocarbon molecular family are shown in Figures 1 and 2.




	
	
		
			
		
		
			
		
			
		
			
	


Figure 1: Some first members of the Polycyclic Aromatic Hydrocarbons ().






	
	
		
			
		
	


Figure 2: A general representation of the hydrocarbon molecular family “Polycyclic Aromatic Hydrocarbons, ”.


Theorem 1 (see [45]).  Consider the Polycyclic Aromatic Hydrocarbons . Then, the first and second Zagreb indices of  are equal to
Theorem 2.  The Hyper-Zagreb index of Polycyclic Aromatic Hydrocarbons  is equal to
Theorem 3 (see [46]).  The Randić connectivity and sum-connectivity indices of the Polycyclic Aromatic Hydrocarbons  are equal to
Theorem 4.  Let  be the Polycyclic Aromatic Hydrocarbons. Then, (i)the general Randić connectivity index of  is equal to(ii)the general sum-connectivity index of  is equal to
Theorem 5.  Consider the Polycyclic Aromatic Hydrocarbons . Then, (i)the Harmonic index of  is equal to :(ii)the Harmonic polynomial of  is equal to :
Before presenting the main results, consider the following definition.
Definition 6 (see [10]). Let  be a simple connected molecular graph. We divide the vertex set  and edge set  of  based on the degrees  of a vertex/atom  in . Obviously,  and we denote the minimum and maximum of the  by  and , respectively:
Proof of Theorem 2. Let  be the Polycyclic Aromatic Hydrocarbon for all integer numbers . From the general representation of  in Figure 2, one can see that in this hydrocarbon molecular family there are  vertices/atoms  such that  of them are carbon atoms and also  of them are hydrogen atoms. In other words,Thus, there are  edges/chemical bonds  in .
Now, by using Definition 6 and according to Figure 2, one can see that in hydrocarbon molecules  all hydrogen atoms have one connection and the degree of them is  and there are 3 edges/chemical bonds for all carbon atoms; thus, .
Therefore, we have two partitions of the vertex set  of Polycyclic Aromatic.
Hydrocarbons  are as follows:On the other hand, from Figure 2 and [45, 46], we can see that  and .
Here, we have the following computations for the Hyper-Zagreb index of the Polycyclic Aromatic Hydrocarbons  as follows:Here, we complete the proof of Theorem 2.
Proof of Theorem 4. Consider the Polycyclic Aromatic Hydrocarbons  with  vertices/atoms and  edges. Then, by using the results from the above proof, we have the following computations for the general Randić and sum-connectivity indices of :
Proof of Theorem 5. Let  be the Polycyclic Aromatic Hydrocarbon for all integer numbers . By results from proof of Theorem 2, we see that the Harmonic index and Harmonic polynomial of  are equal toHere, the proof of Theorem 5 was completed.
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