ON EXPERIMENTAL DATA OF THE TCR OF TFRs
AND THEIR RELATION TO THEORETICAL
MODELS OF CONDUCTION MECHANISM

I. STORBECK and M. WOLF

Zentralinstitut für Festkörperphysik und Werkstofforschung der
Akademie der Wissenschaften der DDR, Dresden

(Received 25 May 1983; in final form 5 October 1983)

Any theory of electrical conduction in TFRs encounters mainly two problems: (i) explanation of the
dependence of \(R_\alpha \) on properties of conducting component (volume fraction, grain size, resistivity),
(ii) explanation of the temperature dependence of \(R_\alpha \) taking into account (i). In order to achieve
this one has to fit some microscopic parameters to experimental \(R_\alpha \)-and TCR-values, and to check if
they are reasonable or not. The aim of the following discussion is to show, that such a fitting by means
of experimental TCR-values is not correct. This is due to the fact that TCR-behaviour, as is well
known, is determined also by the dependence of resistivity on strain. But any theoretical model
neglects strains, also those who are induced by thermal strains. By means of published experiments
concerning the strain dependence of resistance, the magnitude is estimated by which the TCR-values
have to be corrected for the described fit.

1. INTRODUCTION

One of the most important properties, that any theory of TFRs has to explain, is their
very low TCR at ambient temperatures. A lot of experimental results and their theoretical
analysis led to the conclusion, that tunnelling (modified, because of trap-activation and
the small size of metallic-like grains) through glassy interlayers determines the resistivity
of TFRs.\(^1\)\(^2\) It is also well known, that TFRs exhibit a large piezo-resistive effect.\(^3\) The
aim of this paper is to show, that because of the piezo-resistive effect, the measured
TCR-values have to be corrected by a term, determined by strain dependence of the
resistivity, if they are to be compared with theoretical models or are to be used to fit
any parameter in such models. This is necessary, because in any theoretical model thermal
expansion of TFR is neglected.

2. THEORETICAL CONSIDERATIONS

From experiments it is well known that TFRs exhibit a large piezo-resistive effect.\(^3\)
This means that the resistance \(R \) increases if a strain \(\epsilon \) is applied. Let us describe this
phenomenologically by:-

\[
R = \rho(T, \epsilon) \cdot \frac{1}{bd},
\]

where \(\rho \) denotes the resistivity dependent on temperature \(T \) and strain \(\epsilon \). \(l, b, d \) are the
length, width, and thickness of the TFR, respectively.\(^\dagger\) Note that we have assumed the

\(^\dagger\)DDR – 8027 Dresden, Postfach

\(^\dagger\)Experimentally a non-linear dependence of \(R \) on \(l \) is observed. These effects are due to interaction
with contacts (constriction resistance, migration of metallic particles). This means different values of \(l \)
correspond to different physical systems. This influence has to be suppressed. Hence the estimations in
the following have to be based on (1).
resistivity ρ to be a function of ε, not of stress. This is appropriate because in theoretical models $\varepsilon = \text{constant}$ is assumed.

If the temperature is changed, one has to take into account that R changes also, because TFR (called film in the following) and substrate expand. That means, ε and also l, b, d are temperature-dependent. If one defines by

$$TP = \left. \frac{1}{\rho} \frac{\partial \rho}{\partial T} \right|_{\varepsilon = \text{const}}$$

the temperature coefficient of ρ under the condition $\varepsilon = \text{constant}$, the theoretical analysis for the TCR gives:

$$TCR = \frac{1}{R} \frac{dR}{dT} = TP + \frac{1}{\rho} \frac{\partial \rho}{\partial \varepsilon} \left[2\alpha_s + \alpha_f - \frac{2\nu_f}{1 - \nu_f} (\alpha_s - \alpha_f) \right]$$

$$+ \frac{2\nu_f}{1 - \nu_f} (\alpha_s - \alpha_f) - \alpha_f.$$ \(2\)

Eqn. (2) holds for thin films, if these do not influence the expansion of the substrate. In typical cases $d \approx 10$ μm, but the thickness of the substrate is of the order of 1 mm, and thus Eqn. (2) is applicable. In (2) α_s, α_f denote the coefficients for thermal expansion of the substrate and film respectively. ν_{ts} denotes the Poisson modulus of the film (substrate). The second term arises from the temperature-dependence of ε, the last two from the temperature-dependence of l, b, and d.

Information concerning $\rho^{-1} \cdot \partial \rho / \partial \varepsilon$ can be obtained by the measurement of the gauge factor. The longitudinal gauge factor, $GF_L = R^{-1} \cdot dR / d\varepsilon$, describes the relative change of resistance, if a strain ε is applied to substrate and the current is parallel to this component of strain. The following relation holds

$$GF_L = \frac{1 - \nu_s}{1 - \nu_s} - \frac{1}{\rho} \frac{\partial \rho}{\partial \varepsilon} \cdot \frac{1 - 2\nu_f}{1 - \nu_f} + \frac{\nu_f}{1 - \nu_f}. \quad \text{(3)}$$

The gauge factor depends on both the Poisson moduli, ν_f and ν_s, because there is a strain in the d-direction (determined by ν_f and ν_s) and a strain, $-\nu_s \varepsilon$, in the b-direction, if ε is applied in the l-direction.

By means of (2) and (3) it is possible to estimate the quantity TP, the temperature coefficient of the resistivity under the condition $\varepsilon = \text{const.}$, if one takes into account the following:

i) α_s is known, $\alpha_s \approx 6.1 \cdot 10^{-6} \text{ K}^{-1}$ for Al_2O_3-substrates;

ii) α_f has been measured for different pastes and depends on R_ε. For Bi$_2$Ru$_2$O$_7$ based TFRs a value of $\alpha_f = (6.9 \ldots 8) \cdot 10^{-6} \text{ K}^{-1}$ has been obtained

iii) $\nu_s = 0.2$;

iv) no information as regards ν_f could be obtained. However by well-known physical reasons ν_f obeys the relation $0 \leq \nu_f \leq 0.5$. Within these limits the two expressions $(1 - 2\nu_f)/(1 - \nu_f)$ and $\nu_f/(1 - \nu_f)$ in (3) decrease and increase, respectively, monotonically with ν_f. Therefore the right-hand side of (3), which is a linear function of $\rho^{-1} \cdot \partial \rho / \partial \varepsilon$, behaves as shown in Figure 1. Because, for TFRs, the left-hand side of (3) is larger than 1, from Figure 1 it follows immediately that:

$$\frac{1}{\rho} \frac{\partial \rho}{\partial \varepsilon} \left|_{\varepsilon = \text{const.}} \right. > \frac{1}{\rho} \frac{\partial \rho}{\partial \varepsilon} \left|_{\varepsilon = \text{const.}} \right. = \frac{GF_L - 1 - \nu_s}{1 - \nu_s} \quad \text{(4)}$$
A solution of (3) increasing \(1 - \nu_s\) holds. Thus in a rough approximation \(\rho^{-1} \cdot \partial \rho / \partial \varepsilon \approx GF_L\), and for the second term in (3) a value of about 180 ppm K\(^{-1}\) is expected (\(GF_L \approx 10\) typically). Therefore, neglecting the difference between \(\alpha_f\) and \(\alpha_s\) and dropping the last two terms in (3) (which are of the order of some \(10^{-6}\) K\(^{-1}\)) result in an error smaller than 5\% for typical TCR values of about \((50 \ldots 100) \cdot 10^{-6}\) K\(^{-1}\). Within these approximations \(TC_p\) can be estimated by:

\[
TC_p \leq TC_p \left|_{\text{max}} \right. \simeq TC_p - \frac{GF_L - 1 - \nu_s}{1 - \nu_s} \cdot 3\alpha_s
\]

The results are given in the next section. It contains also the results for \(TC_p\) assuming \(\nu_f = \nu_s\). This assumption is reasonable, because a TFR contains a lot of glass. These values have been calculated to test the sensitivity of our estimations.

3. ESTIMATION OF \(TC_p\) FOR DU PONT 1441 AND DU PONT 1451 PASTES

In this section the results of the estimations for the temperature coefficient of the thick-film material \(TC_p\) are given for the pastes DP 1441 and DP 1451. The TCR-values for these pastes have been published by C. Canali et al.\(^4\), and A. Cattaneo and M. Prudenziati.\(^5\) Values of the gauge factors have been published by C. Canali et al.\(^3\) Tables I and II present the measured TCR, \(TC_p|_{\nu_f = \nu_s}\) (estimated by means of (5)) and \(TC_p|_{\nu_f = \nu_s}\) at different temperatures. Because of the narrow temperature range considered here, \(\alpha_f, \alpha_s, \nu_s\) can be assumed to be constant. Moreover an isotropic thermoelastic behaviour has been assumed. Because terms of the order \(10^{-6}\) K\(^{-1}\) have been neglected, all results are given in an approximated form. Here it should be pointed out once again, that \(TC_p\)-values in the third line are the highest possible ones.
I. STORBECK AND M. WOLF

4. DISCUSSION

From the results, given in Table I and Table II, the following can be concluded:

1) The small TCR of TFRs at ambient temperatures (−30 . . . + 120°C) results as the difference of the temperature dependence of resistivity at constant strain (TCρ) and the temperature dependence induced by strain. These two terms are half a order larger (if one does not consider the case TCR ≈ 0) than the difference itself.

2) In spite of the TCR, TCρ is always negative for the pastes and temperature range considered.

3) In all models, claiming to explain the temperature dependence of TFRs, thermal expansion is neglected (cf. for instance1). Hence, in these models TCp is considered. If such models are compared with experiments, then that has to be taken into account. Thus, the temperature Tmin,R, at which the resistance reveals its minimum, must be replaced by the corresponding quantity for ρ at e = const. The difference Tmin,ρ-Tmin,R of these two temperatures is given by:

\[T_{\text{min,}R} - T_{\text{min,}R} \approx \frac{1}{\rho} \frac{\partial \rho}{\partial \varepsilon} \frac{3\alpha_s}{2c}, \]

where c is the parameter introduced by C. Marshall7 in order to describe the R(T)-behaviour of TFR. By means of (3), and the published GF_L and c7 one obtains:

\[T_{\text{min,}R} - T_{\text{min,}R} \approx (440 . . . 570) \text{ K for DP 1441} \]
\[T_{\text{min,}R} - T_{\text{min,}R} \approx (350 . . . 470) \text{ K for DP 1451} \]

The differences are high, because any thermal expansion is suppressed by considering \(\rho^{-1} \cdot \partial \rho/\partial T \varepsilon = \text{const}. \)

4) All results, concerning microscopic parameters necessary to explain temperature dependence of TFRs (e.g. activation energy, ratio of grain resistance/boundary resistance) in the model of reference 1 have been obtained by means of the TCR. Because these

<table>
<thead>
<tr>
<th>T°C</th>
<th>TCp of DP 1441 paste</th>
<th>TCR/10^{-6} K^{-1}</th>
<th>-25</th>
<th>25</th>
<th>75</th>
<th>125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TCρ_{max}10^{-6} K^{-1}</td>
<td>-330</td>
<td>-260</td>
<td>-200</td>
<td>-160</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCρ_{\nu_{\rho}v_{\nu_{\rho}}}10^{-6} K^{-1}</td>
<td>-420</td>
<td>-340</td>
<td>-280</td>
<td>-220</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T°C</th>
<th>TCp of DP 1451 paste</th>
<th>TCR/10^{-6} K^{-1}</th>
<th>-40</th>
<th>0</th>
<th>40</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TCρ_{max}10^{-6} K^{-1}</td>
<td>-380</td>
<td>-320</td>
<td>-280</td>
<td>-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>TCρ_{\nu_{\rho}v_{\nu_{\rho}}}10^{-6} K^{-1}</td>
<td>-480</td>
<td>-420</td>
<td>-380</td>
<td>-340</td>
</tr>
</tbody>
</table>
data contain the strain-induced temperature dependence (cf.1-2), such estimations should be repeated with the estimated TC\rho-values.

5) For low sheet resistivities the corrections are not small. Assuming GF_L \approx 6, the TCR-value would have to be corrected by a term 100\cdot10^{-6} K, which is again of the order of TCR.

6) The same critical remarks are valid regarding the interpretation of low temperature measurements. The discussion of such experiments becomes still more difficult, because the coefficients of thermal expansion are not constant at low temperatures, not even approximately.

7) Although the quantity TCR = \rho^{-1} \cdot \partial \rho/\partial T_{\text{le}=\text{const.}} is very important from a theoretical point of view (cf.4,5,6), it cannot be determined experimentally. Also if one prepares TFR-samples, which are not supported by a substrate, these samples exhibit thermal expansion and the temperature coefficient of their resistance is given by:

\[\text{TCR}_{\text{not supp.}} = \text{TCR} + 3 \frac{1}{\rho} \frac{\partial \rho}{\partial \varepsilon} \alpha_T - \alpha_T. \]

(7)

The temperature at which the resistance of such samples exhibits a minimum is also different from that for TFRs fired on substrates. But the difference of T_{\text{min}}-values is now \sim |\alpha_T - \alpha| and becomes much smaller than the values discussed in 3).

8) Because \alpha_T depends weakly on R_\Omega, the well known empirical relation between R_\Omega and TCR also holds for R_\Omega and TCR.

In conclusion it should be remarked, that in deriving (2) and (3) it has been assumed that:

i) \rho is isotropic

ii) \rho remains isotropic if a strain is applied.

The second, very remarkable property follows from the experimental result, that the longitudinal and transversal gauge factors obey the relation GF_L - GF_T = 2 (1 + \nu_\rho).4

REFERENCES

Submit your manuscripts at http://www.hindawi.com