OPEN-CIRCUIT END EFFECT OF MICROSTRIP LINE CONFIGURATION IN PLASMA MEDIUM

PREM BHUSHAN MITAL,
Fellow, IETE
Department of Electronics & Communication Engineering, C R State College of Engineering, Murthal (Sonepat) Pin 131039 (INDIA)

(Received August 31, 1995; in final form January 25, 1996)

The extension in length for open microstrip configuration in plasma media is determined using spectral domain technique under quasi static approach [1, 2]. The results were verified by modifying Hammerstad equation for plasma media. Good agreement is found between the two results.

INTRODUCTION

The ideal field patterns of a open-circuited microstrip line are distorted with fringing electric fields. The fringing fields and the increase in electrostatic energy as a result of the extra stored energy is modeled by a capacitive termination C_F. The fringing capacitance at the termination of the line is equivalent to extending line by $\Delta \ell$ as given by the expression

$$\Delta \ell = \frac{1}{\beta} \tan^{-1} (Z_0 \omega C_F)$$ \hspace{1cm} (1)

where β = propagation constant on the line
Z_0 = characteristic impedance of the line
ω = angular frequency

FORMULATION

The microstrip in plasma medium is shown in Fig. 1 where ε_p is the dielectric constant of plasma medium defined as

$$\varepsilon_p = A^2 = 1 - \left(\frac{\omega_p}{\omega}\right)^2$$ \hspace{1cm} (2)

where A is the plasma parameter

If $\phi (x, y) = \text{static potential distribution in microstrip structure}$
then $\phi(\beta, y) = \text{Fourier transform of } \phi(x, y)$

$$= \int_{-\infty}^{\infty} \phi(x, y) e^{i\beta x} \, dx$$

Assuming in media (1) $\phi = Ae^{\beta y} + Be^{-\beta y}$ \hspace{1cm} (3)

& in media (2) $\phi = Ce^{-\beta y} + De^{\beta y}$ \hspace{1cm} (4)

In Fourier transform domain, the boundary conditions are

at $y = 0$ \hspace{1cm} $\phi(\beta, 0) = 0$ \hspace{1cm} (5)

$y = \infty$ \hspace{1cm} $\phi(\beta, \infty) = 0$ \hspace{1cm} (6)

At interface

$\phi(\beta, h + 0) = \phi(\beta, h - 0)$ \hspace{1cm} (7)

and $\epsilon_r \frac{d\phi}{dy}(\beta, h + 0) = \epsilon_i \frac{d}{dy} \phi(\beta, h - 0) - \tilde{f}(\beta)$ \hspace{1cm} (8)

Taking $f(x)$ as the change distribution on the strip conductor, total charge on strip conductor

$$Q = \int_{-\infty}^{\infty} f(x) \, dx$$

Hence
\[
\tilde{f}(\beta) = \int_{-\infty}^{\infty} f(x) e^{ix} dx
\] (9)

Solving the above, we have

\[
\Phi(x, h) = C e^{-\beta h} = \frac{\tilde{f}(\beta)}{\beta (\epsilon_1 \coth \beta h + \epsilon_p)}
\] (10)

Hence the Fourier transform of potential distribution is given as:

\[
\tilde{f}(\beta, h) = \frac{\tilde{f}(\beta)}{\beta (\epsilon_1 \coth \beta h + \epsilon_p)}
\] (11)

Line capacitance \(C \) is obtained using symmetry as

\[
\frac{1}{C} = \frac{1}{\pi \epsilon Q^2} \int_{0}^{\infty} \frac{[\tilde{f}(\beta)]^2}{[\epsilon_p + \epsilon_1 \coth \beta h] \beta h} d(\beta h)
\] (12)

Taking approximately trial function for \(f(x) = |x| \) which gives capacitance as maximum

\[
f(x) = \begin{cases}
|x| - \omega/2 & \text{if } -\omega/2 \leq x \leq \omega/2 \\
0 & \text{elsewhere}
\end{cases}
\]

\[
\frac{\tilde{f}(\beta)}{Q} = 2 \left[\frac{2 \sin \left(\frac{\beta \omega}{2} \right)}{(\beta \omega)} \right] - \left[\frac{\sin \left(\frac{\beta \omega}{4} \right)}{\beta \omega} \right]^2
\] (13)

If \(\beta h = x \), then \(d\beta h = dx \).

Hence

\[
\frac{1}{\pi \epsilon_0} \int \left[\frac{f \left(\frac{x}{h} \right)}{Q} \right]^2 dx
\]

or

\[
\frac{1}{C} = \frac{1}{[\epsilon_p + \epsilon_1 \coth x]x} dx
\] (14)
The effective permittivity of microstrip is given by

\[
\frac{C}{\varepsilon_0} = \int_0^{\pi} \frac{\sin \left(\frac{x \omega}{2h} \right)}{\sin \left(\frac{x \omega}{4h} \right)} \left[\frac{\sin \left(\frac{x \omega}{2h} \right)}{\sin \left(\frac{x \omega}{4h} \right)} \right]^2 \, dx
\]

(\epsilon_p + \epsilon_r \coth x)x

The effective permittivity of microstrip is given by
\[\epsilon_{\text{eff}} = \frac{C}{C_0} \]

(16)

where \(C \) and \(C_0 \) are the capacitances per unit length of line with and without dielectric. The effective dielectric constant is also given as

\[\epsilon_{\text{eff}} = \frac{\epsilon_r + \epsilon_p}{2} + \frac{\epsilon_r - \epsilon_p}{2} \left(\frac{1}{\sqrt{1 + \frac{12h}{\omega}} + 1} \right) \]

(17)

And line extension \(\Delta \ell \) as given by Hammerstad is [3]:

\[\frac{\Delta \ell}{h} = 0.412 \frac{\epsilon_r + 0.3 \frac{\omega}{h}}{\epsilon_r - 0.258 \frac{\omega}{h}} + 0.262 + 0.813 \]

(18)

NUMERICAL RESULTS

The results were obtained solving equations 15, 16, 17, and 18 numerically and are plotted in Fig. 2 to 5.
CONCLUSIONS

Calculations of length extension (Δl) in plasma medium for various plasma parameter values ($A = .1,.3,.5,.7,.9$) in an open microstrip configuration are obtained using spectral domain technique under quasi static approach [4,5] and by modifying Hammerstad equation for plasma media. Good agreement is found between the two results.

ACKNOWLEDGEMENT

The author is indebted to Prof. B. Bhat and Prof. S.K. Koul, Centre for Applied Research in Electronics, I.I.T. New Delhi for providing research facilities.

REFERENCES
