A novel universal current-mode filter with three inputs and one high imedance output is presented. The proposed circuit uses four plus-type second-generation current-conveyors, grounded resistors and grounded capacitors. The proposed circuit enjoys low active and passive sensitivities and independent control of the parameters \(\omega_0 \) and \(Q_0 \) using grounded resistors.

Keywords: Current conveyors; active filters

INTRODUCTION

Recently, Chang, Chien and Wang, 1994, proposed a universal active current filter with three inputs and one output using current conveyors. The proposed circuit uses two plus-type first-generation current-conveyors, two minus-type second-generation current conveyors, two grounded capacitors and two grounded resistors and enjoys the following attractive features:

1. Low filter sensitivity to passive components.
2. The use of grounded capacitors which is attractive for integrated circuit implementation.

*Corresponding author.
3. The versatility to synthesize virtually any type of active filter transfer function.

However, the circuit suffers from the following disadvantages:

1. Use of different types of current conveyors.
2. Interdependent control of the parameters ω_0 and ω_0/Q_o. Thus, while the parameter ω_0 can be adjusted without disturbing the parameter ω_0/Q_o, the parameter ω_0/Q_o cannot be adjusted without disturbing the parameter ω_0.
3. The sensitivity of the circuit to the voltage and current tracking errors of the current conveyors is not clear.

This paper presents a novel three-input universal current-mode biquad active filter. The proposed circuit enjoys the following attractive features:

1. Use of one type of second-generation current-conveyor.
2. Independent control of the parameters ω_0 and ω_0/Q_o. Thus the parameter ω_0 can be adjusted without disturbing the parameter ω_0/Q_o, and the parameter ω_0/Q_o can be adjusted without disturbing the parameter ω_0.
3. Enjoys low active and passive sensitivities.
4. Use of grounded capacitors and grounded resistors.

PROPOSED CIRCUIT

The proposed circuit is shown in Figure 1. The circuit uses plus-type second-generation current-conveyors (CCII+) only. Using the standard notation, the CCII+ characteristics can be described by $i_x = \alpha i_y$, $\nu_x = \beta \nu_y$, where $\alpha = 1 - \varepsilon_i$ and ε_i denotes the current-tracking error, $\beta = 1 - \varepsilon_v$ and ε_v denotes the voltage-tracking error. The single output current I_o can be expressed as

$$I_o = \frac{\alpha_4 \beta_4 G_2 s^2 C_1 C_2 \alpha_2 \beta_2 I_3 - s C_1 G_4 \alpha_2 \beta_2 I_2 + G_2 G_4 \alpha_1 \alpha_2 \alpha_3 \beta_3 I_1}{s^2 C_1 C_6 + s C_1 G_6 + G_2 G_5 \alpha_1 \alpha_2 \alpha_3 \beta_1 \beta_3}$$ \hspace{1cm} (1)

From (1) the parameters ω_0 and ω_0/Q_o can be expressed as

$$\omega_0^2 = \frac{\alpha_1 \alpha_2 \alpha_3 \beta_1 \beta_3 G_2 G_5}{C_1 C_6}$$ \hspace{1cm} (2)
From (1) it can be seen that:

1. The lowpass response can be realised with $I_2 = I_3 = 0$
2. The highpass response can be obtained with $I_1 = I_2 = 0$
3. The bandpass response can be obtained with $I_1 = I_3 = 0$
4. The notch response can be obtained with $I_2 = 0$ and $I_1 = I_3$
5. The allpass response can be obtained with $I_1 = I_2 = I_3$, $G_4 = G_5$ and $C_3 = C_6$.

From (1) it can also be seen that the lowpass gain, the highpass gain and the bandpass gain are approximately given by

$$G_{LP} \approx \frac{G_7}{G_5}$$

(4)
and

\[G_{BP} \cong \frac{G_7}{G_6} \] \hspace{1cm} (6)

From (2) – (6) it can be seen that the parameter \(\omega_o \) can be adjusted by controlling the resistance \(R_2 = 1/G_2 \) without disturbing the parameters \(\omega_o/Q_o \), \(G_{LP} \), \(G_{HP} \) and \(G_{BP} \). Also, the highpass gain can be adjusted by controlling the resistance \(R_4 = 1/G_4 \) without disturbing the parameters \(\omega_o, \omega_o/Q_o, G_{LP} \) and \(G_{BP} \). Moreover, the parameter \(\omega_o/Q_o \) can be adjusted by controlling the resistance \(R_6 = 1/G_6 \) without disturbing the parameter \(\omega_o \). However, controlling the resistance \(R_6 \) will disturb the bandpass gain \(G_{BP} \). A possible strategy for adjusting the parameters \(\omega_o, \omega_o/Q_o, G_{LP}, G_{HP} \) and \(G_{BP} \) is, therefore, as follows: First the resistance \(R_6 = 1/G_6 \) is controlled to adjust the parameter \(\omega_o/Q_o \), then the resistor \(R_7 = 1/G_7 \) is controlled to adjust the bandpass gain \(G_{BP} \); the resistance \(R_4 = 1/G_4 \) is controlled to adjust the highpass gain \(G_{HP} \); the resistance \(R_5 = 1/G_5 \) is controlled to adjust the lowpass gain \(G_{LP} \), and finally the resistance \(R_2 = 1/G_2 \) is adjusted to control the parameter \(\omega_o \).

From (2) and (3) it is easy to show that the active and passive sensitivities of the parameters \(\omega_o \) and \(Q_o \) are

\[
S^\omega_{R_2} = S^\omega_{R_5} = S^\omega_{C_1} = S^\omega_{C_6} = -S^\omega_{\alpha_1} = -S^\omega_{\alpha_2} = -S^\omega_{\alpha_3} \]
\[= -S^\omega_{\beta_1} = -S^\omega_{\beta_2} = -S^\omega_{\beta_3} = \frac{1}{2} \]

\[
S^Q_{R_2} = S^Q_{R_5} = S^Q_{C_1} = S^Q_{C_6} = -S^Q_{\alpha_1} = -S^Q_{\alpha_2} \]
\[= -S^Q_{\alpha_3} = -S^Q_{\beta_1} = -S^Q_{\beta_2} = 0 \]

\[
S^\omega_{R_6} = 1, \quad S^\omega_{\alpha_4} = S^\omega_{\beta_4} = S^Q_{\alpha_4} = S^Q_{\beta_4} = S^\omega_{\beta_2} = S^Q_{\beta_2} = 0 \]
\[S^\omega_{R_4} = S^Q_{R_4} = S^Q_{R_5} = S^\omega_{R_5} = 0 \]

Thus, all the active and passive sensitivities are no more than unity.
It is worth mentioning here that, another output current can be obtained when $I_1=0$. By using an additional second-generation current-conveyor and a grounded resistor as shown in the dotted box of Figure 1; this addition is, however, optional, the new output current can be expressed as

$$I_{out} = \alpha_3\alpha_4\beta_3\beta_4 \frac{G_8 G_5}{G_7 sC_1} I_o$$

(7)

Thus, when I_o is realising a bandpass response, the current I_{out} will realise a lowpass response. Also, when I_o is realising a highpass response, the current I_{out} will realise a bandpass response.

EXPERIMENTAL RESULTS

To verify the theoretical analysis, the proposed circuit was used to realise LP, HP, BP and notch filters using the AD844 current-conveyor.

FIGURE 2 Measured lowpass, highpass and notch responses. $C_1 = C_3 = C_6 = 470\,\text{PF}$, $R_2 = 4\,\text{K}$, $R_4 = R_5 = R_6 = R_7 = 5\,\text{K}$.
The results obtained with $C_1 = C_3 = C_6 = 470 \text{ pF}$, $R_2 = 4\text{K}$, $R_4 = R_5 = R_6 = R_7 = 5\text{K}$ are shown in Figure 2. These results are in good agreement with the theoretical analysis.

CONCLUSION

A new universal current-mode filter has been presented. The proposed filter offers the following advantages:

(i) Use only one type of current-conveyors (CCII+).
(ii) All resistors and capacitors are grounded.
(iii) Low active and passive sensitivities.
(iv) Independent control of the parameters ω_o and ω_o/Q_o using grounded resistors.
(v) High output impedance.
(vi) All the standard filter functions are realised with no component matching requirement except for all allpass realisation.

References

Hindawi Publishing Corporation
http://www.hindawi.com

Submit your manuscripts at
http://www.hindawi.com