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Abstract. 
The Property Specification (Prospec) tool uses patterns and scopes defined by Dwyer et al.,
to generate formal specifications in Linear Temporal Logic (LTL) and other languages. The work
presented in this paper provides improved LTL specifications for patterns and scopes over those
originally provided by Prospec. This improvement comes in the efficiency of the LTL formulas
as measured in terms of the number of states in the Büchi automaton generated for the formula. 
Minimizing the size of the Büchi automata for an LTL specification provides a significant improvement
for model checking software systems using such tools as the highly acclaimed Spin model checker.

1. Introduction
The process of model checking a system consists of developing a model of the system to be verified and writing specifications in a temporal logic such as Linear Temporal Logic (LTL) [1] or Computational Tree Logic (CTL) [2]. In automata-based model checking, both the model 
	
		
			

				𝑀
			

		
	
 and the complement of the temporal specification 
	
		
			

				𝑆
			

		
	
 are represented by a special type of state machine called a Büchi Automaton (BA) [3]. To check the consistency of 
	
		
			

				𝑀
			

		
	
 with 
	
		
			

				𝑆
			

		
	
, the model checker calculates the intersection of 
	
		
			

				𝑀
			

		
	
 and 
	
		
			
				𝑆
				′
			

		
	
 where 
	
		
			
				𝑆
				′
			

		
	
 is the complement of 
	
		
			

				𝑆
			

		
	
. If the intersection is empty, then 
	
		
			

				𝑀
			

		
	
 is consistent with 
	
		
			

				𝑆
			

		
	
. In other words, if 
	
		
			

				𝑀
			

		
	
 and 
	
		
			
				𝑆
				′
			

		
	
 each represent a set of specifications and if 
	
		
			
				𝑀
				∩
				𝑆
				′
				=
				∅
			

		
	
, then the system satisfies the specification; otherwise, the system is inconsistent with the specification and a counter-example is returned.
The process of writing formal specifications is not easy because of the required mathematical sophistication and depth of knowledge in the specification language. For this reason, tools that simplify the creation of formal specifications in logics such as LTL are of interest to the model checking community and others. In the case of automata-based model checkers such as Spin [4], it is important that these tools generate efficient formulas, since the model checker complements the formulas, translates the result into a BA, and intersects the BA with the automaton of the system. The size of the automaton that results from the intersection of two automata has as its upper bound the product of the number of states in each of the two. One way to avoid the classical problem of state space explosion is to minimize the number of states generated by the negation of the specification. This will reduce the number of states generated by the automaton of the intersection, and as a result, it will reduce the time required to model check a software system.
The Property Specification (Prospec) [5–7] builds on the Property Specification Patterns system (SPS) [8, 9], and it uses property pattern and scope to assist in the specification of formal properties in LTL as well as other languages. Patterns are high-level abstractions that provide descriptions of common properties, and scopes describe the extent of program execution over which the property holds. Prospec also introduces the notion of composite propositions to allow for the definition of more complex behavior to represent the behaviors for patterns and scopes.
This paper introduces more efficient LTL formulas for patterns and scopes than those originally generated by Prospec. In defining the new formulas, we tried to limit the number of temporal operators in a formula because we believe this reduces the number of states in the never-claim. The formulas are compared in terms of the number of states in the never-claim generated by the negation of these formulas since it is actually the complement of a formula that the model checker uses. To generate Büchi automata, we used the model checker SPIN, and the LTL to BA translators: LTL2BA [10], the Temporal Message Parlor [11], and LTL2NBA [12], all of which efficiently convert LTL specifications into BAs. Notice that some of these tools produce a BA in the form of a never-claim, which is a specific representation of BA used by the model checker Spin. In this article we use the terms Büchi automata and never-claims interchangeably. This paper also shows an approach for proving the equivalence of different LTL formulas. Finally, this paper describes the impact that more efficient formulas have when using composite propositions [6] to define pattern and scope limits.
The paper first presents a background on LTL and Büchi automata (BA), including the semantics of the languages. The Prospec tool is introduced in Section 3. Section 4 describes the new formulas and the process used to verify the semantic equivalence of the two sets of formulas. Section 4 also provides the results of the comparisons of the formulas. Finally, the impact of the work on composite propositions is presented in Section 5 followed by brief discussion and references. 
2. Background
2.1. Linear Temporal Logic
This section briefly describes Linear Temporal Logic (LTL) and its semantics. A more detailed description of LTL can be found in Manna [13].
Temporal Logic has been used to verify concurrent systems. There are three well used types of temporal Logic: Linear Temporal Logic (LTL), Computational Tree Logic (CTL), and CTL* [3]. Both LTL and CTL are subsets of CTL*. While CTL allows for branching type of behavior (i.e., semantically, formulas are defined both using the universal and existential quantifiers), LTL formulas describe specific path behavior (i.e., semantically, formulas are defined only using the universal quantifier). Formulas in this paper deal only with LTL.
LTL is used in various model checkers such as SPIN [4], NUSMV [14], and Java Path-Finder [15] and is also used in runtime verification of Java programs [16].
In LTL, a temporal formula is constructed inductively from a set of propositions 
	
		
			

				𝑃
			

		
	
 by applying Boolean connectives 
	
		
			

				¬
			

		
	
 and 
	
		
			

				∨
			

		
	
 and temporal operators next (
	
		
			

				𝑋
			

		
	
) and until (
	
		
			

				𝑈
			

		
	
) as follows.  (i)A proposition is a temporal formula.(ii)If 
	
		
			

				𝑝
			

		
	
 and 
	
		
			

				𝑞
			

		
	
 are temporal formulas, then the followings are also temporal formulas:  (i)
	
		
			

				¬
			

		
	
 
	
		
			

				𝑝
			

		
	
, (ii)
	
		
			

				𝑝
			

		
	
 
	
		
			

				∨
			

		
	
 
	
		
			

				𝑞
			

		
	
, (iii)
	
		
			

				𝑋
			

		
	
 
	
		
			

				𝑝
			

		
	
, (iv)
	
		
			

				𝑝
			

		
	
 
	
		
			

				𝑈
			

		
	
 
	
		
			

				𝑞
			

		
	
. 
A temporal formula that makes use only of Boolean connectives 
	
		
			

				¬
			

		
	
 and 
	
		
			

				∨
			

		
	
 is called a state formula, whereas a formula that makes use of temporal operators 
	
		
			

				𝑋
			

		
	
 and 
	
		
			

				𝑈
			

		
	
 is called a temporal formula.
Let 
	
		
			

				𝑃
			

		
	
 be a set of propositions; let 
	
		
			

				𝜎
			

		
	
 be an infinite sequence of states or computation, denoted by 
	
		
			

				𝜎
			

		
	
: 
	
		
			

				𝑠
			

			

				0
			

			
				,
				𝑠
			

			

				1
			

			
				,
				…
			

		
	
, let 
	
		
			

				∑
			

		
	
 be a set of states; let 
	
		
			
				𝐼
				(
				𝑠
				)
			

		
	
 be an interpretation such that for all 
	
		
			
				∑
				𝑠
				∈
			

		
	
, 
	
		
			
				𝐼
				(
				𝑠
				)
				⊆
				𝑃
			

		
	
 specifies the propositions that are true in state 
	
		
			

				𝑠
			

		
	
. For a state formula, the satisfaction relation 
	
		
			

				⊨
			

		
	
 is defined as follows: for a state 
	
		
			
				∑
				𝑠
				∈
			

		
	
 and a proposition 
	
		
			

				𝑝
			

		
	
 in 
	
		
			

				𝑃
			

		
	
, 
	
		
			

				𝑠
			

		
	
 satisfies 
	
		
			

				𝑝
			

		
	
, denoted 
	
		
			
				𝑠
				⊨
				𝑝
			

		
	
, if and only if 
	
		
			
				𝑝
				∈
				𝐼
				(
				𝑠
				)
			

		
	
. In addition, an inductive definition for the notion that a computation 
	
		
			

				𝜎
			

		
	
 satisfies formula 
	
		
			

				𝑝
			

		
	
 at 
	
		
			
				𝑖
				>
				0
			

		
	
, denoted 
	
		
			
				(
				𝜎
				,
				𝑖
				)
				⊨
				0
				𝑥
				0
				0
				0
				9
				1
				𝑝
			

		
	
, follows [1, 13]:  (i)
	
		
			
				(
				𝜎
				,
				𝑖
				)
				⊨
				0
				𝑥
				0
				0
				0
				9
				1
				𝑝
			

		
	
 if and only if 
	
		
			

				𝑠
			

			

				𝑖
			

			
				⊨
				𝑝
			

		
	
, where 
	
		
			

				𝑝
			

		
	
 is a state formula, (ii)
	
		
			
				(
				𝜎
				,
				𝑖
				)
				0
				𝑥
				0
				0
				0
				9
				1
				⊨
				¬
				𝑝
			

		
	
 if and only if 
	
		
			
				(
				𝜎
				,
				𝑖
				)
				⊭
				0
				𝑥
				0
				0
				0
				9
				1
				𝑝
			

		
	
, (iii)
	
		
			
				(
				𝜎
				,
				𝑖
				)
				⊨
				𝑝
				∨
				𝑞
			

		
	
 if and only if 
	
		
			
				(
				𝜎
				,
				𝑖
				)
				0
				𝑥
				0
				0
				0
				9
				1
				⊨
				𝑝
			

		
	
 or 
	
		
			
				(
				𝜎
				,
				𝑖
				)
				0
				𝑥
				0
				0
				0
				9
				1
				⊨
				𝑞
			

		
	
, (iv)
	
		
			
				(
				𝜎
				,
				𝑖
				)
				0
				𝑥
				0
				0
				0
				9
				1
				⊨
				𝑋
				𝑝
			

		
	
 if and only if 
	
		
			
				(
				𝜎
				,
				𝑖
				+
				1
				)
				⊨
				0
				𝑥
				0
				0
				0
				9
				1
				𝑝
			

		
	
, (vi)
	
		
			
				(
				𝜎
				,
				𝑖
				)
				⊨
				𝑝
				𝑈
				𝑞
			

		
	
 if and only if 
	
		
			
				(
				𝜎
				,
				𝑘
				)
				⊨
				𝑞
			

		
	
 for some 
	
		
			
				𝑘
				≥
				𝑖
			

		
	
, and 
	
		
			
				(
				𝜎
				,
				𝑗
				)
				0
				𝑥
				0
				0
				0
				9
				1
				⊨
				𝑝
			

		
	
 for all 
	
		
			
				𝑗
				,
				𝑖
				≤
				𝑗
				<
				𝑘
			

		
	
. 

					Additionally, the temporal operators (eventually, always, and weak-until) are derived as follows:  (i)
	
		
			
				⋄
				𝑝
				≡
				𝑡
				𝑟
				𝑢
				𝑒
				𝑈
				𝑝
			

		
	
, (ii)
	
		
			
				[
				]
				𝑝
				≡
				¬
				⋄
				¬
				𝑝
			

		
	
, (iii)
	
		
			
				𝑝
				𝑊
				𝑞
				≡
				[
				]
				𝑝
				∨
				(
				𝑝
				𝑈
				𝑞
				)
			

		
	
. 
2.2. Büchi Automata
Classical LTL model checking is based on a variation of the classic theory of finite automata [4]. While a finite automaton accepts only terminating executions, model checking requires a different type of machines that can handle executions that might not terminate. Such machines are necessary to model nonterminating systems such as operating systems, traffic lights, or ATMs. One such machine is a Büchi automaton. A Büchi automaton (BA) is a tuple (
	
		
			

				𝑄
			

		
	
, 
	
		
			

				∑
			

		
	
,  
	
		
			

				𝛿
			

		
	
, 
	
		
			

				𝑄
			

			

				0
			

		
	
, 
	
		
			

				𝐹
			

		
	
), where  (i)
	
		
			

				𝑄
			

		
	
 is a finite set of states, (ii)
	
		
			

				𝑄
			

			

				0
			

			
				⊆
				𝑄
			

		
	
 is a set of initial states, (iii)
	
		
			

				∑
			

		
	
 is an alphabet, (iv)
	
		
			
				∑
				𝛿
				∶
				𝑄
				×
				→
				2
			

			

				𝑄
			

		
	
 is a transition function, (v)
	
		
			
				𝐹
				⊆
				𝑄
			

		
	
 is a set of accepting states. 
An execution is a sequence 
	
		
			

				𝑠
			

			

				0
			

			
				,
				𝑠
			

			

				1
			

			
				,
				…
			

		
	
, where for all 
	
		
			
				𝑖
				𝑠
			

			

				𝑖
			

			
				∈
				𝑄
			

		
	
 and for all 
	
		
			
				𝑖
				≥
				0
			

		
	
, 
	
		
			
				(
				𝑠
			

			

				𝑖
			

			
				,
				𝑠
			

			
				𝑖
				+
				1
			

			
				)
				∈
				𝛿
			

		
	
. A finite execution is an accepting execution if it terminates in a final state 
	
		
			

				𝑠
			

			

				𝑓
			

			
				∈
				𝐹
			

		
	
. An infinite execution, also called an 
	
		
			

				𝑤
			

		
	
-execution or 
	
		
			

				𝑤
			

		
	
-run, is accepting if it passes through a state 
	
		
			

				𝑠
			

			

				𝑓
			

			
				∈
				𝐹
			

		
	
 infinitely often. An empty BA (accepts no words) is one that either terminates in a state that is not an accepting state or has no accepting state that is reachable from the initial state and that is visited infinitely often. The set of executions accepted by a BA is called the language of the BA.
Languages of BAs represent a superset of those of LTL; every LTL formula can be represented by a BA. When a BA is generated from an LTL formula, the language of the BA represents only the traces accepted by the LTL formula. For example, the BA in Figure 1 represents the language accepted by the LTL formula (
	
		
			
				𝑎
				∪
				𝑏
			

		
	
). This formula specifies that 
	
		
			

				𝑏
			

		
	
 holds in the initial state of the computation, or 
	
		
			

				𝑎
			

		
	
 holds until 
	
		
			

				𝑏
			

		
	
 holds. The language of the BA in Figure 1 accepts the set of traces {b…, ab…, aab…, …, aaab}. Notice that each of these traces passes through the accepting state Final. This state is both reachable from the initial state and is visited infinitely often (by virtue of the self-transition marked 1). 



Figure 1: BA for “
	
		
			
				𝑎
				∪
				𝑏
			

		
	
”.


Various work has been done on the translation of LTL to BA to reduce the number of states in the resulting BA and to speed up the process of the BA generation. This paper compares three LTL to BA translators (along with the SPIN model checker) in the number of states in the BA generated from those LTL formulas for patterns and scopes.  (i)Temporal Message Parlor (TMP) [11] is the work of Kousha Etessami at Lucent Technologies. (ii)LTL2BA [10] is the work of Denis Oddoux and Paul Gastin at the University of Paris 7, France. (iii)LTL2NBA [12] is the work of Carsten Fritz of the Department of Computer Science at Christian-Albrechts University. 
3. Prospec
The Property Specification tool (Prospec) [5–7] builds on the Specification Patterns System (SPS) [8, 9] by facilitating the identification of SPS patterns and scopes as well as validation of specifications. SPS defines patterns and scopes to assist the practitioner in formally specifying software properties. Patterns capture the expertise of developers by describing solutions to recurrent problems [17]. Each pattern describes the structure of specific behavior, defines the pattern's relationship with other patterns, and defines the scope over which the property holds.
The main patterns defined by SPS are universality, absence, existence, precedence, and response. Universality  
	
		
			

				𝑃
			

		
	
 states that property 
	
		
			

				𝑃
			

		
	
 is true at every point of the execution; absence  
	
		
			

				𝑃
			

		
	
 states that 
	
		
			

				𝑃
			

		
	
 is never true during the execution; existence  
	
		
			

				𝑃
			

		
	
 states that 
	
		
			

				𝑃
			

		
	
 is true at some point in the execution; precedence  
	
		
			
				(
				𝑇
				,
				𝑃
				)
			

		
	
 states that 
	
		
			

				𝑃
			

		
	
 holds before 
	
		
			

				𝑇
			

		
	
 holds;  response  
	
		
			
				(
				𝑃
				,
				𝑇
				)
			

		
	
 states that if 
	
		
			

				𝑃
			

		
	
 holds, then 
	
		
			

				𝑇
			

		
	
 must hold at a future state. Response properties represent a temporal relation called cause-effect between two propositions. Prospec displays traces of computation to illustrate the subtle issues that exist within the different patterns and scopes, and it displays a decision tree to guide the user through a series of decisions in selecting the appropriate pattern and/or scope. Given a computation represented as a sequence of states, and a finite set of events 
	
		
			

				𝐸
			

		
	
, a trace of computation is a list indicating, for each moment of time 
	
		
			

				𝑡
			

		
	
, which events from the set 
	
		
			

				𝐸
			

		
	
 occur at 
	
		
			

				𝑡
			

		
	
. Figure 2 shows the Prospec window for selecting a pattern and the traces of computation that are given to elucidate each pattern. Prospec enhances the definition of patterns and scope characteristics provided in the SPS website [18] by explicitly defining the relationships among the proposition that define a pattern and/or a scope and the boundaries defined by each scope. Tables 1 and 2 give those characteristics for pattern and scope, respectively, as they appear in the Prospec tool. These are the characteristics that were used by Salamah et al. [19] to verify the correctness of the LTL formulas for patterns and scopes. Prospec extends SPS by introducing a classification for defining sequential and concurrent behavior. This is accomplished by including composite propositions (CPs) as shown in Figure 3. Section 4 discusses composite propositions in more detail. While Prospec builds on SPS in defining the mapping of patterns and scopes into LTL, it makes some changes to those LTL formulas for patterns and scopes defined in SPS. (Comparing the new formulas in Section 4 with the original SPS formulas showed that the new formulas were at least as efficient in all cases with the exception of the case of the Response pattern within the After  
	
		
			

				𝐿
			

		
	
 Until  
	
		
			

				𝑅
			

		
	
 scope in which SPS formula produced one fewer state in the never-claim as produced by LTL2BA, LTL2NBA, and TMP).  Salamah et al. [19] provide a listing of those modifications and the justification behind the changes. Table 3 presents Prospec's LTL mappings for each pattern and scope combination. These formulas along with the ones defined in Section 3 are the ones being compared in this paper. 
Table 1: Summary of characteristics for patterns in Prospec. 
	

	  Pattern	 Characteristics
	

		(1) Event or condition 
	
		
			

				𝑃
			

		
	
 does not hold within the states defined by the scope of interest
		(2) The absence property is also known as alarm
	

	 Existence of (
	
		
			

				𝑃
			

		
	
)	 (1) Event or condition 
	
		
			

				𝑃
			

		
	
 holds at least once within the states defined by the scope of interest
	 (2) The existence property is also known as eventually. 
	

	 Universality of (
	
		
			

				𝑃
			

		
	
)	 (1) Event or condition 
	
		
			

				𝑃
			

		
	
 holds in every state of the scope of interest
	 (2) The universality property is also known as safety or invariant
	

	 (T) Precedes (
	
		
			

				𝑃
			

		
	
)	 (1) 
	
		
			

				𝑇
			

		
	
 holds before 
	
		
			

				𝑃
			

		
	
 holds, where 
	
		
			

				𝑇
			

		
	
 and 
	
		
			

				𝑃
			

		
	
 are events or conditions
	 (2) 
	
		
			

				𝑇
			

		
	
 may hold several times before 
	
		
			

				𝑃
			

		
	
 holds
	(3) 
	
		
			

				𝑃
			

		
	
 does not hold before 
	
		
			

				𝑇
			

		
	
 holds
	 (4) 
	
		
			

				𝑃
			

		
	
 may hold at the same state as 
	
		
			

				𝑇
			

		
	

	 (5) If 
	
		
			

				𝑇
			

		
	
 holds, then 
	
		
			

				𝑃
			

		
	
 may or may not hold
	 (6) If 
	
		
			

				𝑇
			

		
	
 holds, then 
	
		
			

				𝑇
			

		
	
 may or may not hold when 
	
		
			

				𝑃
			

		
	
 holds
	 (7) The precedence property represents a cause-effect relation, where 
	
		
			

				𝑇
			

		
	
 denotes a cause and 
	
		
			

				𝑃
			

		
	
 denotes an effect
	 (8) There is no effect 
	
		
			

				𝑃
			

		
	
 without a cause 
	
		
			

				𝑇
			

		
	

	 (9) 
	
		
			

				𝑇
			

		
	
 precedes 
	
		
			

				𝑃
			

		
	
 is also known as 
	
		
			

				𝑇
			

		
	
 before 
	
		
			

				𝑃
			

		
	

	

	 (
	
		
			

				𝑇
			

		
	
) Strictly Precedes (
	
		
			

				𝑃
			

		
	
)	 (1) 
	
		
			

				𝑇
			

		
	
 holds before 
	
		
			

				𝑃
			

		
	
 holds, where 
	
		
			

				𝑇
			

		
	
 and 
	
		
			

				𝑃
			

		
	
 are events or conditions
	 (2) 
	
		
			

				𝑇
			

		
	
 may hold several times before 
	
		
			

				𝑃
			

		
	
 holds
	 (3) 
	
		
			

				𝑃
			

		
	
 does not hold before 
	
		
			

				𝑇
			

		
	
 holds
	 (4) 
	
		
			

				𝑃
			

		
	
 does not hold at the same state at which 
	
		
			

				𝑇
			

		
	
 holds
	 (5) If 
	
		
			

				𝑇
			

		
	
 holds, then 
	
		
			

				𝑃
			

		
	
 may or may not hold
	 (6) If 
	
		
			

				𝑇
			

		
	
 holds, then 
	
		
			

				𝑇
			

		
	
 does not hold when 
	
		
			

				𝑃
			

		
	
 holds
	 (7) The precedence property represents a cause-effect relation, where 
	
		
			

				𝑇
			

		
	
 denotes a cause and 
	
		
			

				𝑃
			

		
	
 denotes an effect
	 (8) There is no effect 
	
		
			

				𝑃
			

		
	
 without a cause 
	
		
			

				𝑇
			

		
	

	 (9) 
	
		
			

				𝑇
			

		
	
 precedes 
	
		
			

				𝑃
			

		
	
 is also known as 
	
		
			

				𝑇
			

		
	
 before 
	
		
			

				𝑃
			

		
	

	

	 (
	
		
			

				𝑇
			

		
	
) Responds to (
	
		
			

				𝑃
			

		
	
)	 (1) 
	
		
			

				𝑃
			

		
	
 must be followed by 
	
		
			

				𝑇
			

		
	
, where 
	
		
			

				𝑃
			

		
	
 and 
	
		
			

				𝑇
			

		
	
 are events or conditions
	 (2) Some 
	
		
			

				𝑇
			

		
	
 follows each time that 
	
		
			

				𝑃
			

		
	
 holds
	 (3) The same state at which 
	
		
			

				𝑇
			

		
	
 holds may follow two or more states at which 
	
		
			

				𝑃
			

		
	
 holds
	 (4) 
	
		
			

				𝑇
			

		
	
 may hold at the same state as 
	
		
			

				𝑃
			

		
	
 holds
	 (5) If 
	
		
			

				𝑇
			

		
	
 holds, then 
	
		
			

				𝑃
			

		
	
 may or may not hold at a previous state
	 (6) The 
	
		
			
				𝑟
				𝑒
				𝑠
				𝑝
				𝑜
				𝑛
				𝑠
				𝑒
			

		
	
 property represents a cause-effect relation, where 
	
		
			

				𝑃
			

		
	
 denotes a cause and 
	
		
			

				𝑇
			

		
	
 denotes an effect
	 (7) If cause 
	
		
			

				𝑃
			

		
	
 holds, then at some future state effect 
	
		
			

				𝑇
			

		
	
 holds
	 (8) 
	
		
			

				𝑇
			

		
	
 responds to 
	
		
			

				𝑃
			

		
	
 is also knows as 
	
		
			

				𝑇
			

		
	
 follows 
	
		
			

				𝑃
			

		
	

	



Table 2: Summary of characteristics for scopes in Prospec. 
	

	  Scope	 Characteristics
	

	 Global	 (1) The scope denotes the entire computation
	 (2) The scope includes all the states in the computation
	 (3) The interval defined by the scope occurs once in a computation
	

	 Before 
	
		
			

				𝑅
			

		
	
	 (1) The scope denotes a subsequence of states or events (an interval) that begins with the start of computation and ends with the state or event immediately preceding the event or state at which 
	
		
			

				𝑅
			

		
	
 holds for first time in the computation
	 (2) The interval does not include the state or event associated with 
	
		
			

				𝑅
			

		
	

	 (3) The interval defined by the scope occurs once in a computation
	 (4) One or more events (conditions) may be associated with 
	
		
			

				𝑅
			

		
	
; a condition is a proposition and an event is a change in value of the proposition from one state to the next 
	

	 After 
	
		
			

				𝐿
			

		
	
	 (1) The scope denotes a subsequence of states or events (an interval) that begins with the first event or state at which 
	
		
			

				𝐿
			

		
	
 holds and ends with termination of computation
	 (2) The interval includes the state or event associated with 
	
		
			

				𝐿
			

		
	

	 (3) The interval defined by the scope occurs once in a computation
	 (4) One or more events (conditions) may be associated with 
	
		
			

				𝐿
			

		
	
; a condition is a proposition and an event is a change in value of the proposition from one state to the next
	

	 Between 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	
	 (1) The scope denotes a subsequence of states or events (an interval) that begins when 
	
		
			

				𝐿
			

		
	
 holds and ends with the state or event immediately preceding the event or state at which 
	
		
			

				𝑅
			

		
	
 holds
	 (2) Event or condition 
	
		
			

				𝐿
			

		
	
 must hold and, at a different event or state in the future, 
	
		
			

				𝑅
			

		
	
 must hold
	 (3) The interval includes the state or event associated with 
	
		
			

				𝐿
			

		
	

	 (4) The interval does not include the state or event associated with 
	
		
			

				𝑅
			

		
	

	 (5) The interval defined by the scope may occur more than once in a computation
	 (6) Multiple intervals may be defined within an interval when 
	
		
			

				𝐿
			

		
	
 holds more than once before 
	
		
			

				𝑅
			

		
	
 holds
	 (7) One or more events (conditions) may be associated with 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	

	

	 After 
	
		
			

				𝐿
			

		
	
 Until 
	
		
			

				𝑅
			

		
	
	 (1) The scope denotes a subsequence of states or events (an interval) that begins when 
	
		
			

				𝐿
			

		
	
 holds and ends either with the state or event immediately preceding the event or state at which 
	
		
			

				𝑅
			

		
	
 holds, or begins when 
	
		
			

				𝐿
			

		
	
 holds and ends with the termination of computation
	 (2) The interval includes the state or event associated with 
	
		
			

				𝐿
			

		
	

	 (3) The interval does not include the state or event associated with 
	
		
			

				𝑅
			

		
	

	 (4) The interval may repeat during a computation
	 (5) If 
	
		
			

				𝐿
			

		
	
 holds and 
	
		
			

				𝑅
			

		
	
 does not hold, the interval ends with termination of a computation
	 (6) The interval defined by the scope may occur more than once in a computation
	 (7) Multiple intervals may be defined within an interval when 
	
		
			

				𝐿
			

		
	
 holds more than once before 
	
		
			

				𝑅
			

		
	
 holds
	 (8) One or more events (conditions) may be associated with 
	
		
			

				𝐿
			

		
	
 and R 
	



Table 3: Prospec's original LTL formulas for pattern and scope.   
	

	  Pattern	 Scope	 LTL Formula
	

	 Absence	 Global	
	
		
			
				¬
				(
				⋄
				𝑃
				)
			

		
	

	 Before 
	
		
			

				𝑅
			

		
	
	
	
		
			
				⋄
				𝑅
				→
				¬
				(
				¬
				(
				𝑅
				)
				𝑈
				𝑃
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
	
	
		
			
				¬
				(
				𝐿
				)
				𝑊
				(
				𝐿
				∧
				¬
				(
				⋄
				𝑃
				)
				)
			

		
	

	 Between 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				∧
				⋄
				𝑅
				)
				→
				¬
				(
				¬
				(
				𝑅
				)
				𝑈
				𝑃
				)
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
 Until 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				→
				¬
				(
				¬
				(
				𝑅
				)
				𝑈
				𝑃
				)
				)
			

		
	

	

	 Existence	 Global	
	
		
			
				(
				⋄
				𝑃
				)
			

		
	

	 Before 
	
		
			

				𝑅
			

		
	
	
	
		
			
				⋄
				𝑅
				→
				(
				¬
				(
				𝑅
				)
				𝑈
				(
				𝑃
				∧
				¬
				(
				𝑅
				)
				)
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
	
	
		
			
				¬
				(
				𝐿
				)
				𝑊
				(
				𝐿
				∧
				(
				⋄
				𝑃
				)
				)
			

		
	

	 Between 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				∧
				⋄
				𝑅
				)
				→
				(
				¬
				(
				𝑅
				)
				𝑈
				(
				𝑃
				∧
				¬
				(
				𝑅
				)
				)
				)
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
 Until 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				)
				→
				(
				¬
				(
				𝑅
				)
				𝑈
				(
				𝑃
				∧
				¬
				(
				𝑅
				)
				)
				)
				)
			

		
	

	

	 Universality	 Global	
	
		
			
				[
				]
				𝑃
			

		
	

	 Before 
	
		
			

				𝑅
			

		
	
	
	
		
			
				⋄
				𝑅
				→
				(
				𝑃
				𝑈
				𝑅
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
	
	
		
			
				¬
				(
				𝐿
				)
				𝑊
				(
				𝐿
				∧
				[
				]
				𝑃
				)
			

		
	

	 Between 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				∧
				⋄
				𝑅
				)
				→
				(
				𝑃
				𝑈
				𝑅
				)
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
 Until 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				)
				→
				(
				𝑃
				𝑊
				𝑅
				)
				)
			

		
	

	

	 Precedence	 Global	
	
		
			
				¬
				(
				𝑃
				)
				𝑊
				𝑇
			

		
	

	 Before 
	
		
			

				𝑅
			

		
	
	
	
		
			
				⋄
				𝑅
				→
				(
				¬
				(
				𝑃
				)
				𝑈
				(
				𝑇
				∨
				𝑅
				)
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
	
	
		
			
				¬
				(
				𝐿
				)
				𝑊
				(
				𝐿
				∧
				(
				¬
				(
				𝑃
				)
				𝑊
				(
				𝑇
				)
				)
				)
			

		
	

	 Between 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				∧
				⋄
				𝑅
				)
				→
				(
				¬
				(
				𝑃
				)
				𝑈
				(
				(
				𝑇
				∨
				𝑅
				)
				)
				)
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
 Until 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				→
				(
				¬
				(
				𝑃
				)
				𝑊
				(
				𝑇
				∨
				𝑅
				)
				)
				)
			

		
	

	

	 Response	 Global	
	
		
			
				[
				]
				(
				𝑃
				→
				⋄
				𝑇
				)
			

		
	

	 Before 
	
		
			

				𝑅
			

		
	
	
	
		
			
				⋄
				𝑅
				→
				(
				(
				𝑃
				→
				(
				¬
				(
				𝑅
				)
				𝑈
				(
				𝑇
				∧
				¬
				(
				𝑅
				)
				)
				)
				)
				𝑈
				𝑅
				)
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
	
	
		
			
				(
				¬
				𝐿
				)
				𝑊
				(
				𝐿
				∧
				[
				]
				(
				𝑃
				→
				⋄
				𝑇
				)
				)
			

		
	

	 Between 
	
		
			

				𝐿
			

		
	
 and 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				∧
				⋄
				𝑅
				)
				→
				(
				𝑃
				→
				(
				¬
				(
				𝑅
				)
				𝑈
				(
				𝑇
				∧
				¬
				(
				𝑅
				)
				)
				)
				)
				𝑈
				𝑅
			

		
	

	 After 
	
		
			

				𝐿
			

		
	
 Until 
	
		
			

				𝑅
			

		
	
	
	
		
			
				[
				]
				(
				(
				𝐿
				∧
				¬
				(
				𝑅
				)
				→
				(
				𝑃
				→
				(
				¬
				(
				𝑅
				)
				𝑈
				(
				𝑇
				∧
				¬
				(
				𝑅
				)
				)
				)
				)
				𝑊
				𝑅
				)
			

		
	

	

	 Strict Precedence	 Global	
	
		
			
				¬
				(
				𝑃
				)
				𝑊
				(
				𝑇
				∧
				¬
				(
				𝑃
				)
				)
			

		
	

	 Before 
	
		
			

				