Due to unfortunate errors at the proof-reading stage, there are several misplaced references. A list of correct references in specified sentences is provided here as follows.

Page 3: binding of E-1 to integrin α2β1 does not induce uncoating but instead may lead to the stabilization of capsid suggesting that viral RNA is released during endocytosis and not on plasma membrane [54, 60].

Page 3: this was based on the virus accumulation in caveolin-1-positive endosomes in SAOS cells overexpressing integrin α2β1 [60, 66]. However, at the same time and using another cell model, CV-1, the same authors demonstrated that majority of E-1 do not colocalize with caveolin-1 on the plasma membrane [67]. This observation was based on parallel comparisons to SV40, which is known to use caveolar route at least in some cell lines [62].

Page 4: dominant-negative caveolin-3 has been shown to block E-1 infection [68].

Page 4: which are localized in early endosomes and function in MVB formation [69].

Page 4: the recent finding that ESCRT complex recruits caveolin-1 into maturing intralumenal vesicles may explain why E-1 and caveolin-1 are found in similar structures early in infection [66, 69].

Page 5: we recently showed that CV-A9 internalization is dependent on β2-microglobulin [72].

Page 5: Arf6 (ADP-ribosylation factor 6) is a small GTPase, which has multiple roles in the regulation of membrane traffic and other cellular functions, but it was only recently when it was linked to virus endocytosis [72].

Due to unfortunate errors at the proof-reading stage, there are several misplaced references. A list of correct references in specified sentences is provided here as follows.

Page 3: binding of E-1 to integrin α2β1 does not induce uncoating but instead may lead to the stabilization of capsid suggesting that viral RNA is released during endocytosis and not on plasma membrane [54, 60].

Page 3: this was based on the virus accumulation in caveolin-1-positive endosomes in SAOS cells overexpressing integrin α2β1 [60, 66]. However, at the same time and using another cell model, CV-1, the same authors demonstrated that majority of E-1 do not colocalize with caveolin-1 on the plasma membrane [67]. This observation was based on parallel comparisons to SV40, which is known to use caveolar route at least in some cell lines [62].

Page 4: dominant-negative caveolin-3 has been shown to block E-1 infection [68].

Page 4: which are localized in early endosomes and function in MVB formation [69].

Page 4: the recent finding that ESCRT complex recruits caveolin-1 into maturing intralumenal vesicles may explain why E-1 and caveolin-1 are found in similar structures early in infection [66, 69].

Page 5: we recently showed that CV-A9 internalization is dependent on β2-microglobulin [72].

Page 5: Arf6 (ADP-ribosylation factor 6) is a small GTPase, which has multiple roles in the regulation of membrane traffic and other cellular functions, but it was only recently when it was linked to virus endocytosis [72].