Research Article

“Lantern-Shaped” Platinum(III) Complexes with Axially Bound 9-Ethylguanine or 1-Methylcytosine (L) of General Formula \[\text{[Pt}_2\text{HN=C(Bu^t)O}_4\text{L}_2\text{]}\text{(NO}_3\text{)}_2 \]

Concetta Pacifico, Francesco Paolo Intini, Fiorentin Nushi, and Giovanni Natile

Dipartimento Farmaco-Chimico, Università degli Studi di Bari, Via E. Orabona 4, 70125 Bari, Italy

Correspondence should be addressed to Giovanni Natile, natile@farmchim.uniba.it

Received 27 January 2010; Accepted 4 March 2010

Academic Editor: Spyros Perlepes

Copyright © 2010 Concetta Pacifico et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The synthesis, NMR characterization, and X-ray crystallography of “lantern-shaped” platinum(III) complexes with four pivaloamidate bridging ligands and two 9-ethylguanines (9-EtG) or 1-methylcytosines (1-MeC) in axial positions are reported: \(\text{cis-N}_2\text{O}_2\cdot[\text{Pt}_2\text{HN=C(Bu^t)O}_4\text{(9-EtG)}_2]\text{(NO}_3\text{)}_2 \) and \(\text{cis-N}_2\text{O}_2\cdot[\text{Pt}_2\text{HN=C(Bu^t)O}_4\text{(1-MeC)}_2]\text{(NO}_3\text{)}_2 \). The last complex is, to the best of our knowledge, the first dinuclear compound of platinum(III) with axially bound 1-MeC.

1. Introduction

The interest in dinuclear platinum(III) complexes is steadily increasing because of their very interesting chemical properties. They contain a metal-metal single bond which is generally supported by two or four bridging ligands (the latter generally indicated as “lantern shaped” complexes) ([1–3] and references therein). Only few exceptions with three bridging ligands [4], or unsupported by covalent bridges [5, 6], have been so far reported. Usually the bridging ligands form five-member rings comprising the two platinum centers and a set of three atoms providing a suitable bite, for example, NCO [6–23] (including pyrimidine nucleobases), NCS, NCN, SCS, OXO (X = C, S, P), or PXP (X = O, C) [24–29]. Some of these dinuclear platinum(III) complexes have antitumor activity [30–32] or have shown to act as catalysts for the oxidation of olefins [2, 33, 34]. Dinuclear platinum(III) complexes have equatorial and axial ligands [35]; these latter are invariably more weakly bound, due to the strong trans labilizing influence exerted by the intermetallic bond [5, 22]. In previous works we have reported the synthesis and structural characterization of “lantern-shaped” platinum(III) complexes with acetamidate and pivaloamidate (HN=C(R)O−, R = Me or Bu^t) bridging ligands and chloride, phosphine or water axial ligands [22, 23]. We have now extended the investigation to the case of axial ligands being purine and pyrimidine nucleobases. In this paper we report the synthesis and NMR characterization of pivaloamidate “lantern-shaped” platinum(III) complexes with 9-ethylguanine (9-EtG) and 1-methylcytosine (1-MeC). The two complexes, \(\text{cis-N}_2\text{O}_2\cdot[\text{Pt}_2\text{HN=C(Bu^t)O}_4\text{(9-EtG)}_2]\text{(NO}_3\text{)}_2 \) and \(\text{cis-N}_2\text{O}_2\cdot[\text{Pt}_2\text{HN=C(Bu^t)O}_4\text{(1-MeC)}_2]\text{(NO}_3\text{)}_2 \), have also been characterized by X-ray crystallography.

2. Experimental

2.1. Synthesis

2.1.1. Starting Materials. Reagent grade chemicals were used as received. \(\text{cis-N}_2\text{O}_2\cdot[\text{Pt}_2\text{HN=C(Bu^t)O}_4\text{(NO}_3\text{)}_2 \) was prepared as already described in a previous work [23].
2.1.2. cis-\text{N}_2\text{O}_2^-\cdot[{\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_2(9-\text{EtG})_2](\text{NO}_3)_2 \quad (1),
cis-\text{N}_2\text{O}_2^-\cdot[{\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_4(\text{NO}_3)_2] \quad (50.4 \text{ mg}, \ 0.055
\text{mmol}) \text{ and } 9-\text{EtG} \ (20.0 \text{ mg}, \ 0.11 \text{ mmol}) \text{ were dissolved in } \text{methanol (40 mL)} \text{ and the reaction solution stirred at } 25 \ ^{\circ} \text{C} \text{ for 6 hours. The solution was then taken to dryness under reduced pressure and the obtained solid was triturated with chloroform in order to remove unreacted reagents. The suspension was centrifuged and the solid was separated from the solution and dried in a stream of dry air. Anal. calc. for C_{34}H_{58}N_{16}O_{12}Pt_{2} \text{·CH}_2\text{O}: \text{C}, 30.35; \text{H}, 4.46; \text{N}, 15.73. Found: C, 30.87; H, 4.60; N, 16.18. 1H-NMR (CD_3OD, ppm): 8.20 (s, H_8), 4.31 (q, CH_2), 1.52 (t, CH_3), and 1.22 (s, Bu'). The compound was obtained in crystalline form (yellow crystals) from an ethanol solution layerd under tetrahydrofuran (THF).

2.1.3. \text{cis-}{\text{N}}_2\text{O}_2^-\cdot[{\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_4(1-\text{MeC})_2](\text{NO}_3)_2 \quad (2),
cis-\text{N}_2\text{O}_2^-\cdot[{\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_4(\text{NO}_3)_2] \quad (129.0 \text{ mg}, \ 0.14
\text{mmol}) \text{ and } 1-\text{MeC} \ (35.3 \text{ mg}, \ 0.28 \text{ mmol}) \text{ were dissolved in methanol (30 mL)}. The reaction mixture was stirred at 25 \ ^{\circ} \text{C} \text{ for 6 hours. The green solution was taken to dryness under reduced pressure and the solid was dried in a stream of dry air. Anal. calc. for C_{30}H_{54}N_{12}O_{12}Pt_{2} \text{·CH}_2\text{O}: \text{C}, 30.64; \text{H}, 4.98; \text{N}, 13.83. Found: C, 30.64; H, 4.65; N, 13.81. 1H-NMR (CD_3OD, ppm): 7.83 (d, H_6), 5.95 (d, H_5), 3.45 (s, CH_3), and 1.23 (s, Bu'). The compound was obtained in crystalline form (yellow crystals) from an ethanol solution layerd under 1,4-dioxiane.

2.2. X-Ray Crystallography. Selected crystals of compounds 1 and 2 were mounted on a Bruker AXS X8 APEX CCD system equipped with a four-circle kappa goniometer and a 4K CCD detector (radiation MoKα). For data reduction and unit cell refinement the SAINT-IRIX package was employed [36].

For compound 1, that crystallizes from CH_3OH/tetrahydrofuran per molecule of compound (1-C_4H_9O), a total of 42660 reflections (\(\Theta_{max} = 25.18^\circ\)) were collected. For compound 2, that crystallizes from CH_3CH_2OH/1,4-dioxiane incorporating two molecules of 1,4-dioxiane per molecule of compound (2-2C_4H_9O), a total of 43490 reflections (\(\Theta_{max} = 34.11^\circ\)) were collected. All reflections were indexed, integrated, and corrected for Lorentz, polarization, and absorption effects using the program SADABS [37].

The unit cell dimensions were calculated from all reflections and the structures were solved using direct methods technique in the P 2_1/c space group.

The model was refined by full-matrix least-square methods. All non-hydrogen atoms were refined anisotropically, except for atoms of tert-butyl group (disordered in the case of 2) and of solvent of crystallization (disordered tetrahydrofuran for 1 and disordered 1,4-dioxiane for 2) that required isotropic treatment in order to maintain satisfactory thermal displacement parameters.

In the case of complex 1, the hydrogen atoms were located by Fourier difference and refined isotropically except for the hydrogen atoms of the tert-butyl groups that were placed at calculated positions and refined given isotropic parameters equal to 1.5 times the U(eq) of the atom to which they are bound.

In the case of complex 2, all hydrogen atoms were placed at calculated positions and refined given isotropic parameters equivalent to 1.5 (methyl groups) or 1.2 (other groups) times those of the atom to which they are attached.

All calculations and molecular graphics were carried out using SIR2002 [38], SHELXL97 [39], PARST97 [40, 41], WinGX [42], and ORTEP-3 for Windows packages [43]. Details of the crystal data are listed in Table 1. Selected bond lengths and angles are listed in Table 2.

CCDC-762181 (1) and CCDC-762182 (2) are available. These data can be obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or e-mail: deposit@ccdc.cam.ac.uk.

3. Results and Discussion

3.1. Synthesis and Characterization. 9-EtG and 1-MeC both react with lanthanide shaped [{\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_4(\text{NO}_3)_2] \text{ (which has a } \text{cis-}{\text{N}}_2\text{O}_2^- \text{configuration on both platinum subunits)}, in methanol, giving, respectively, compounds 1 and 2 in almost quantitative yields. The new formed complexes exhibit single \(^{195}\text{Pt} \text{ NMR signals (−69.8 and } 28.2 \text{ ppm for 1 and 2, respectively, solvent CD}_3\text{OD + 10%}
\text{H}_2\text{O}), which are indicative of dinuclear Pt(III) species with symmetrical capping of the axial sites (the precursor complex, [{\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_4(\text{NO}_3)_2], resonates at −4.41 ppm in CD_3\text{OD}). The \(^1\text{H}-\text{NMR spectrum in CD}_3\text{OD + 10%}
\text{H}_2\text{O of complex 1 exhibits a single set of signals for 9-\text{EtG}} \text{ with frequencies at 11.32, 8.17, 6.71, 4.29, and } 1.51 \text{ ppmassigned, respectively, to NH, H(8), NH}_2, \text{CH}_2, \text{and CH}_3 \text{protons (corresponding signals of free 9-\text{EtG}} \text{ fall at 10.85, 7.78, 6.30, 4.07, and } 1.40 \text{ ppm, respectively). The } 0.40 \text{ ppm}
downfield shift of the 9-\text{EtG} H_8 \text{ proton suggests that the coordination occurs through N7. One set of signals is also observed for the pivaloamidate ligands with resonance peaks at 8.66 and 1.23 ppm assigned, respectively, to NH and tert-butyl protons (the corresponding protons in the precursor complex [\text{Pt}_2\{\text{HN} = \text{C(Bu')O}\}}_4(\text{NO}_3)_2], resonate at 7.54 and 1.22 ppm, respectively). The deshielding of about 1 ppm observed for the amidic protons of the pivaloamidate ligands may be attributed to the interaction with the guanine base in apical position (see following discussion).

The \(^1\text{H}-\text{NMR spectrum of compound 2 in CD}_3\text{OD + 10%} \text{H}_2\text{O exhibits one set of signals for 1-MeC with resonance peaks at 8.82 and 6.82 } \text{(these first two peaks exhibiting a strong exchange peak in the 2D NOESY experiment), 7.83, 5.95, and } 3.45 \text{ ppm assigned, respectively, to the two unequivalent aminic protons and to H(6), H(5), and methyl group (corresponding signals of free 1-MeC fall at 7.18 (broad singlet), 7.55, 5.85, and 3.35 ppm). The unequivalence of the aminic protons in coordinated 1-MeC is due to the partial double bond character of the C4–N4 linkage, which is reinforced by the metal coordination to N3 [44, 45]. The average deshielding of the aminic protons
of 1-MeC, as a consequence of coordination to platinum, is 0.64 ppm. However, while one proton, presumably that pointing towards platinum, undergoes a very large deshielding (1.64 ppm), the other proton undergoes a slight upfield shift (0.36 ppm). The pivaloamidate ligands exhibit one signal at 1.23 ppm. The cross peak between the pivaloamidate ligands which is less than half that observed for coordination of 9-EtG (0.51 as compared to 0.64 ppm). However, while one proton, presumably that of 1-MeC, as a consequence of coordination to platinum, is 0.64 ppm. However, while one proton, presumably that pointing towards platinum, undergoes a very large deshielding (1.64 ppm), the other proton undergoes a slight upfield shift (0.36 ppm). The pivaloamidate ligands exhibit one signal at 1.23 ppm. The cross peak between the pivaloamidate ligands which is less than half that observed for coordination of 9-EtG (0.51 as compared to 0.64 ppm).

3.2. X-Ray Diffraction Analysis

3.2.1. [Pt2{HN=C(Bu')O}4(9-EtG)2][NO3]2 (I). Complex I crystallizes incorporating one molecule of THF per molecule of complex. The asymmetric unit comprises half molecule of complex and half molecule of THF and the structure is generated by inversion at the midpoint of the Pt–Pt bond (Figure 1). Each platinum(III) atom has distorted octahedral geometry with the N7 of 9-EtG and the second platinum subunit in axial positions.

The Pt–Pt distance (2.4512(5) Å) is closer to that of the analogous complex with axial chlorides ([Pt2{HN=C(Bu')O}4Cl2], 2.448(2) Å) than to that of the complexes with one or two axial triphenylphosphine ligand(s) ([Pt2{HN=C(Bu')O}4(PPh3)(H2O)]2, 2.468(1) Å; [Pt2{HN=C(Bu')O}4(PPh3)2][NO3]2, 2.504(1) Å; [Pt2{HN=C(Bu')O}4(PPh3)(H2O)][NO3]2, 2.504(1) Å] [22, 23]. Thus the Pt–Pt distance is influenced by the nature of the axial ligands and an N7-coordinated guanine appears to exert a trans influence similar to that of a chloride. The platinum coordination squares are perfectly eclipsed (maximum twist angle 1.5°); such a conformation allows the greatest separation between the platinum atoms. The platinum atoms are displaced from the equatorial coordination planes by 0.087 Å towards the axial 9-EtG, such a displacement being a measure of the strength with which the four bridging ligands pull together the two metal centers.

The equatorial Pt–N distances [1.993(7)–1.996(6) Å] and Pt–O distances [2.019(5)–2.035(5) Å] are in the range of those reported for doubly and quadruply bridged dinuclear platinum(III) [17, 22, 23, 46], four-coordinate platinum(II), and six-coordinate platinum(IV) complexes [4].

Table 1: Crystal data and structure refinement parameters for [Pt2{HN=C(Bu')O}4(9-EtG)2][NO3]2·tetrahydrofuran (1·C4H8O) and [Pt2{HN=C(Bu')O}4(1-MeC)2][NO3]2·2(1,4-dioxane) (2·2C4H8O2).

<table>
<thead>
<tr>
<th>Crystal</th>
<th>1·C4H8O</th>
<th>2·2C4H8O2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C38H66N16O13Pt2</td>
<td>C38H70N12O16Pt2</td>
</tr>
<tr>
<td>Formula weight</td>
<td>1345.24</td>
<td>1341.24</td>
</tr>
<tr>
<td>Temperature (K)</td>
<td>293(2)</td>
<td>293(2)</td>
</tr>
<tr>
<td>Wavelength (Å)</td>
<td>0.71073</td>
<td>0.71073</td>
</tr>
<tr>
<td>Crystal system</td>
<td>monoclinic</td>
<td>monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 21/c</td>
<td>P 21/c</td>
</tr>
<tr>
<td>a (Å)</td>
<td>9.7776(3)</td>
<td>10.6566(5)</td>
</tr>
<tr>
<td>b (Å)</td>
<td>14.8367(5)</td>
<td>15.8137(6)</td>
</tr>
<tr>
<td>c (Å)</td>
<td>18.8734(7)</td>
<td>15.5866(5)</td>
</tr>
<tr>
<td>β(°)</td>
<td>98.54(1)</td>
<td>102.51(1)</td>
</tr>
<tr>
<td>Volume (Å³)</td>
<td>2707.5(2)</td>
<td>2564.5(3)</td>
</tr>
<tr>
<td>Z</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Density (calculated) (Mg/m³)</td>
<td>1.650</td>
<td>1.737</td>
</tr>
<tr>
<td>Absorption coefficient (mm⁻¹)</td>
<td>5.231</td>
<td>5.524</td>
</tr>
<tr>
<td>F(000)</td>
<td>1332</td>
<td>1332</td>
</tr>
<tr>
<td>Crystal size (mm³)</td>
<td>0.300 × 0.150 × 0.080</td>
<td>0.240 × 0.210 × 0.075</td>
</tr>
<tr>
<td>θ range for data collection (°)</td>
<td>1.75 to 25.18</td>
<td>2.34 to 34.11</td>
</tr>
<tr>
<td>Index ranges</td>
<td>−11 ≤ h ≤ 11, −17 ≤ k ≤ 17, −22 ≤ l ≤ 22</td>
<td>−16 ≤ h ≤ 16, −24 ≤ k ≤ 24, −23 ≤ l ≤ 23</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>42660</td>
<td>43490</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4843 [R(int) = 0.0917]</td>
<td>10083 [R(int) = 0.0639]</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data/restraints/parameters</td>
<td>4843/0/301</td>
<td>10083/0/291</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.046</td>
<td>1.003</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R1 = 0.0398, wR2 = 0.0906</td>
<td>R1 = 0.0469, wR2 = 0.1117</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0614, wR2 = 0.1014</td>
<td>R1 = 0.0968, wR2 = 0.1390</td>
</tr>
<tr>
<td>Largest diff. peak and hole (e Å⁻³)</td>
<td>1.372 and −0.751</td>
<td>2.571 and −0.766</td>
</tr>
</tbody>
</table>
As expected, the axial Pt(III)–N7 bond length (2.200(5) Å in 1) is longer than those typically seen in 4-coordinate platinum(II) and 6-coordinate platinum(IV) guanine complexes (~1.96–2.11 Å) [47–51]. The lengthening can be ascribed to the strong trans influence exerted by the Pt–Pt bond. We also notice that the Pt(III)–N7 bond is slightly longer in 1 than in analogous dinuclear Pt(III) species (e.g., 2.189(6) Å in trans-[Pt2(NH3)4(1-MeC-N3,N4)2(9-EtG)2][(ClO4)4·5H2O] (ht indicates the head-to-tail arrangement of the two bridging 1-MeC ligands) [52], 2.187(6) and 2.181(7) Å in trans-[Pt2(NH3)4(1-Mec-N3,N4)2(9-EtG)2]2+[ClO4]−·5H2O (ht indicates the head-to-tail arrangement of the two bridging 1-MeC ligands) [52]). We believe that the longer Pt(III)–N7 bond observed in 1 can be ascribed to a stronger trans influence exerted by the Pt–Pt bond, that in 1 is shorter (2.451(1) Å) than in the latter two complexes (2.587(1) Å and 2.586(1) Å in trans-[Pt2(NH3)4(1-Mec-N3,N4)2(9-EtG)2]2+[ClO4]−·5H2O [52] and in trans-[Pt2(NH3)4(1-Mec-N3,N4)2(9-EtG)2]2+[ClO4]−·9H2O, respectively) [53].

The guanine is nearly coplanar with a pivaloamidato (C5g–N7g–Pt–N1 torsion angle of 16.4(7)°); this allows the formation of a strong hydrogen bond between the NH of the amidate ligand and the O6 of guanine (N1···O6g = 2.80(1) Å, N1–H1···O6g = 2.07(9) Å, N1–H1···O6g = 166(9)°). The resulting seven-member ring motif can be defined as S(7) by Etter’s graph-set notation [54].

The orientation of the guanine in 1 is very similar to that found in the tetrabridged dirhodium(II) complex [Rh2{O−C(CH3)O}4{HN=C(But)O}4(9-EtG)2]2+ forming an eight-member ring (R2’(8)) [55] also containing a strong H-bond (N···O6g = 2.94(2) Å, N1–H1···O6g = 2.20(9) Å, N1–H1···O6g = 158(1)°). It appears that a pivaloamidato ligand is as good as the trifluoroacetamidato ligand in forming such an H-bond.

The crystal packing is mainly governed by two symmetrical hydrogen bonds involving N2 and N3 of two adjacent guanines (N2g···N3gii = 3.07(1) Å, N2g–H21g···N3gii = 175(1)°; ii = −x + 1, −y + 1, −z + 1), forming a centrosymmetric eight-member ring. This ring motif can be defined as R2’(8) by Etter’s graph-set notation (Figure 2). These H-bonds allow the formation of chains of complexes extending, alternatively, parallel to the (110) and to the (1T0) directions. The angle between adjacent chains is 66°.

Different chains are linked by nitrate anions. The nitrate anion is anchored to the guanine base through two strong H-bonds (N1g···O5 = 2.81(1) Å, N1g–H1g···O5 = 1.99(8) Å, N1g–H1g···O5 = 173(7)°; N2g···O4 = 2.87(1) Å, N2g–H22g···O4 = 2.02(8) Å, N2g–H22g···O4 = 171(1)°) forming an eight-member ring (R2’(8) according
to Etter’s graph-set notation). The same nitrate anion forms a third hydrogen bond with the amidic NH of an adjacent complex \((\text{N}2^2 \cdots \text{O}3 = 3.18(1) \text{ Å}, (\text{N}2)^2 \text{H}2^i \cdots \text{O}3 = 2.49(8) \text{ Å}, \text{N}2^2 \cdots \text{H}2^i \cdots \text{O}3 = 157(8)^\circ; i = x, −y + 1/2, z − 1/2)\) with an Etter’s graph-set motif of type D.

The THF solvent molecule is disordered, the oxygen atom of 50% of the molecules pointing in the direction opposite to that of the other 50% molecules. As a consequence THF appears as a flat 1,4-dioxane-type molecule with the two oxygens having occupancy factor 0.5 and the carbons occupancy factor 1. The accuracy of the X-ray data is not allowed to distinguish between carbon atoms belonging to the differently oriented THF molecules.

3.2.2. \([\text{Pt}_2\{\text{HN}=\text{C}^{(\text{Bu}^t)}\};\text{O}]_4(1\text{-MeC})_2\] \((\text{NO}_3)_2\) (2). Compound 2 crystallizes incorporating two molecules of 1,4-dioxane per molecule of complex. The asymmetric unit comprises half molecule of complex and one of dioxane and the structure is generated by inversion at the midpoint of the Pt–Pt linkage (Figure 3). Each Pt(III) atom has a distorted octahedral geometry with the N3 of 1-MeC and the second nitrogen atom \((\text{N}4)\) of 1-MeC pointing in the direction opposite to the adjacent complex (N2^2 \cdots \text{H}2^i \cdots \text{O}3 = 2.230(5) \text{ Å}, N2^2 \cdots \text{H}2^i \cdots \text{O}3 = 2.98(1) \text{ Å}, N2^2 \cdots \text{H}2^i \cdots \text{O}3 = 152(1)^\circ; N1^1 \cdots \text{O}5 = 3.02(1) \text{ Å} (N1^1)\text{H}1^1 \cdots \text{O}5 = 2.25(1) \text{ Å}, N1^1 \cdots \text{H}1^i \cdots \text{O}5 = 149(1)^\circ; i = −x, −y + 1/2, z − 1/2). In this way each molecule of complex is surrounded by four molecules of dioxane connecting the former complex to the four adjacent complex molecules on face A (Figure 4).

In the crystal packing, complex molecules are located (with the inversion center) at the four corners and at the center of face A. The crystal packing is mainly governed by hydrogen bonds between complexes and 1,4-dioxane molecules. Each molecule of 1,4-dioxane (1,4-dioxane oxygens O4 and O5) bridges two adjacent molecules of complex (N2^2 \cdots \text{O}4 = 2.98(1) \text{ Å}, (N2)^2 \text{H}2^i \cdots \text{O}4 = 2.19(1) \text{ Å}, (N2)^2 \text{H}2^i \cdots \text{O}4 = 152(1)^\circ; N1^1 \cdots \text{O}5 = 3.02(1) \text{ Å}, (N1^1)\text{H}1^1 \cdots \text{O}5 = 2.25(1) \text{ Å}, N1^1 \cdots \text{H}1^i \cdots \text{O}5 = 149(1)^\circ; i = −x, −y + 1/2, z − 1/2). In this way each molecule of complex is surrounded by four molecules of dioxane connecting the former complex to the four adjacent complex molecules on face A (Figure 4).

The tert-butyl groups are disordered and each set of three methyl groups can occupy two different positions, each position with occupancy factor 0.5. Also the 1,4-dioxane solvent molecules are disordered. The position is fixed for the two oxygen atoms while the four carbon atoms can occupy two different positions each one with occupancy factor 0.5. In each case the 1,4-dioxane molecule adopts a chair conformation.
The coordination of 9-EtG and 1-MeC to the axial sites of quadruply bridged dinuclear species of platinum(III) has been established. The complexes are stable in solution as well as in the solid state. Complex 1 is one of the few examples of dinuclear platinum(III) species with axially bound guanines, while complex 2 is, to the best of our knowledge, the first compound of this type (axially bound 1-MeC). The axial Pt–N3 bond in 2 is 0.010 Å longer than the axial Pt–N7 bond in 1. Since the Pt–Pt core is very similar in the two cases, we argue that the longer distance found in 2 is indicative of a weaker binding of 1-MeC as compared to 9-EtG. Previous attempts to bind 1-MeC in the axial positions of a dinuclear platinum(III) complex, (e.g., cis-[Pt2(NH3)4(1-MeC-N3,N4)X2]Zn, X and Y stand for axial ligands of different types and Z stands for counteranion(s)) have been unsuccessful [52]. In contrast our dinuclear Pt(III) core, with four pivaloamidate bridging ligands, readily binds nucleobases, comprising 1-MeC, forming stable compounds. It is possible that the presence in the equatorial platinum coordination plane of groups with good H-bond donor/acceptor properties, and therefore able to establish additional bonds with the apical ligands, gives a decisive contribution to the formation of such complexes. H-bond interaction causes, in the case of 1, a downfield shift of the pivaloamidate amido proton by 1.12 ppm and, in the case 2, a downfield shift of one aminic proton of 1-MeC by 1.64 ppm. In the latter case the H-bond is bifurcated and the 1-MeC aminic proton, (N4c)H41c, interacts, simultaneously, with the oxygen atoms of two cis pivaloamidate ligands. In principle, the 1-MeC could form, in addition to the H-bond described above, also an H-bond between the 1-MeC oxygen, O2c, and the pivaloamidate amido protons; such an H-bond, however, does not form or is extremely weak (downfield shift of the amido proton of only 0.51 ppm as compared to 1.12 ppm observed in compound 1). A possible cause of weakness of the latter H-bond is the dihedral angle of 45° between 1-MeC and pivaloamidate planes; such an angle is optimal for the bifurcated H-bond involving the amionic group but is detrimental for a potential H-bond involving the 1-MeC oxygen. In fact it appears that, while a proton can interact with two oxygens (bifurcated H-bond), one oxygen can only interact with one proton (regular H-bond as observed in compound 1).

“Lantern shaped” platinum(III) complexes have been shown, by Cervantes and coworkers, to be endowed with antitumor activity (e.g., [Pt2(2-mercaptopyrimidine)4Cl2] and [Pt2(2-mercaptopyridine)4Cl2]) [30–32]. It will be worth investigating the antitumor activity of our amide complexes for which we have shown a greater propensity to form adducts with nucleobases in apical positions.

Acknowledgments

The authors thank the University of Bari, the EC (COST action D39), and the Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici (CIRCMSB) for support. The authors gratefully acknowledge Professor Ferdinando Scordari and Dr. Ernesto Mesto (University of Bari) for the X-ray diffraction data collection.

References

Submit your manuscripts at http://www.hindawi.com