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Vaccines are the greatest single instrument of prophylaxis against infectious diseases, with immeasurable benefits to human
wellbeing. The accurate and reliable prediction of peptide-MHC binding is fundamental to the robust identification of T-cell
epitopes and thus the successful design of peptide- and protein-based vaccines. The prediction of MHC class II peptide binding
has hitherto proved recalcitrant and refractory. Here we illustrate the utility of existing computational tools for in silico prediction
of peptides binding to class II MHCs. Most of the methods, tested in the present study, detect more than the half of the true
binders in the top 5% of all possible nonamers generated from one protein. This number increases in the top 10% and 15% and
then does not change significantly. For the top 15% the identified binders approach 86%. In terms of lab work this means 85% less
expenditure on materials, labour and time. We show that while existing caveats are well founded, nonetheless use of computational
models of class II binding can still offer viable help to the work of the immunologist and vaccinologist.

1. Introduction

Vaccines continue to have an enormous and unprecedented
positive impact on humanity and its wellbeing. Hundreds
of millions of human lives have been saved since the first
vaccine was discovered: Edward Jenner’s smallpox vaccine in
1796 [1]. Yet the need to develop and deploy new vaccines
has never been more urgent. Infectious disease causes about
25% of global deaths, particularly in children under five.
The leading annual causes of death are 2.9 millions for
tuberculosis; 2.5 million for diarrhoeal illnesses, especially
rotaviruses; a rapidly escalating 2.3 million for HIV/AIDS;
and 1.08 million deaths for malaria. There are no effective
vaccines for HIV and Malaria, and the only vaccine available
for tuberculosis is of limited utility. Consider also the 35
new, previously unknown, infectious diseases identified in
the past 25 years: ebola, SARS, Dengue, West Nile fever, and
potentially pandemic H5N1 influenza among them.

Historically, vaccines have been attenuated whole
pathogen vaccines such as BCG for TB or Sabin’s Polio
vaccine. Issues of safety have led to the development of
other strategies for vaccine development, separately focus-
ing on antigen and epitope vaccines. The epitope is the
minimal structure able to evoke an immune response. It

is the immunological quantum that lies at the heart of
immunity. Epitope-based vaccines have the advantage that
many sequences able to induce autoimmunity or adverse
reactions can be eliminated. Such vaccines are intrinsically
safer: they contain no viable microorganisms and cannot
induce microbial disease. However, several significant obsta-
cles must be overcome before epitope-based vaccines can
reach the market en masse. One such obstacle is MHC
polymorphism.

Major histocompatibility complex (MHC) proteins, also
known as human leukocyte antigens (HLA), are glycopro-
teins which bind within the cell short peptides, also called
epitopes, derived from host and/or pathogen proteins, and
present them at the cell surface for inspection by T-cells. T
cell recognition is a fundamental mechanism of the adaptive
immune system by which the host identifies and responds to
foreign antigens [2].

There are two classes of MHC molecules: class I and class
II. MHC class I molecules typically present peptides from
proteins synthesized within the cell (endogenous processing
pathway). MHC class II proteins primarily present peptides
derived from endocytosed extracellular proteins (exogenous
processing pathway). Both classes of MHC proteins are
extremely polymorphic. More than 3500 molecules are listed
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in IMGT/HLA database [3]. MHC class I proteins are
encoded by three loci: HLA-A, HLA-B, and HLA-C. MHC
class II proteins also are encoded by three loci: HLA-DR,
HLA-DQ, and HLA-DP. The peptide binding site of class
I proteins has a closed cleft, formed by a single protein
chain (α-chain) [4]. Usually, only short peptides of 8 to 11
amino acids bind in an extended conformation. In contrast,
the cleft of class II proteins is open-ended, allowing much
longer peptides to bind, although only 9 amino acids actually
occupy the site. The class II cleft is formed by two separate
protein chains: α and β [4]. Both clefts have binding pockets,
corresponding to primary and secondary anchor positions
on the binding peptide. The combination of two or more
anchors is called a motif. The experimental determination
of motifs for every allele is prohibitively expensive in terms
of labor, time, and resources. The only practical and useable
alternative is a bioinformatics approach.

Many bioinformatics methods exist to predict peptide-
MHC binding [5]. Experimentally determined affinities
data have formed the basis of many peptide-MHC binding
prediction methods, able effectively to discriminate binding-
from nonbinding peptides. Such methods include so-called
motifs, as well as highly sophisticated computer science
algorithms—artificial neural networks [6], HMMs [7], and
support vector machines (SVMs) [8]—and methods derived
from computational chemistry, such as QSAR analysis [9]
and structure-based approaches [10].

MHC-binding motifs are an easily understood method
of epitope identification. They generate many false-positives
and many false-negatives. SVMs are based on statistical
theory that seeks to induce a dichotomy of distinct classes.
HMMs model systems by assuming them to be Markov
processes with unknown parameters. An HMM profile
can determine those sequences which exhibit binder-like
characteristics. QSAR techniques can refine the peptide
interactions within the MHC class I groove by optimizing
individual residue-to-residue pairs.

Several sophisticated methods have been created to
resolve the dynamic variable-length problem inherent within
the class II prediction. Such methods include an iterative
“meta-search” algorithm, Ant Colony search, Gibbs sampling
algorithm, and multiobjective evolutionary algorithm. Cer-
tain new approaches have significantly outperformed more
traditional methods [11]. No single method yet proposes a
wholly satisfying and satisfactory solution to this dilemma.
The efficiency demonstrated by these algorithms is often very
different for different class II alleles and there is little overlap
between peptide rankings generated by these methods. This
has resulted in much pessimism regarding the usefulness
of a computational approach. Here, we seek to address this
issue.

In the present study, a set of 167 proteins containing
4540 epitopes binding to HLA-DRB1 alleles was compiled
and used to test the predictive ability of several publically-
available servers for MHC binding predictions. Our aim was
not to compare the performance of the available servers, per
se. This has been undertaken several times already. Rather, in
the context of tasks regularly undertaken by immunologists
and vaccinologists, we wish to illustrate the utility of existing

computational tools for in silico prediction of peptides
binding to class II MHCs. We show that while existing caveats
are wellfounded, nonetheless use of computational models
of class II binding can still yield viable help to the work of
immunologists and vaccinologists.

2. Materials and Methods

2.1. Test Set Used in the Study. At the time of evalu-
ation (December 2009), the Immune Epitope Database
[12] contained 10 925 peptides of different length bind-
ing to HLA-DRB1 alleles. For the purpose of our study
we extracted only binders annotated with an identified
source protein. After removing the duplicate sequences
and proteins containing unknown amino acids, the final
set consisted of 4540 binders, belonging to 167 proteins,
and binding to 12 widely spread HLA-DRB1 alleles. The
alleles used in the study were DRB1∗0101 (2051 binders),
DRB1∗0301 (190 binders), DRB1∗0401 (392 binders), DRB1
∗0404 (159 binders), DRB1∗0405 (244 binders), DRB1∗0701
(336 binders), DRB1∗0802 (153 binders), DRB1∗0901
(160 binders), DRB1∗1101 (275 binders), DRB1∗1201 (24
binders), DRB1∗1302 (243 binders), and DRB1∗1501 (313
binders).

2.2. Servers for MHC Class II Binders Prediction Used in the
Study. The servers for MHC class II binding prediction used
in our assessment were selected on the basis of matching
to the following criteria: computational or machine-learning
method-based, free web access, and the ability to predict
binding to at least 10 of the 12 HLA-DRB1 alleles considered
in the study (Table 1).

ProPred [13] predicts MHC class II binding peptides
using the quantitative matrix-based pocket profiles of
Sturniolo et al. [14]. RANKPEP [15] uses position-specific
scoring matrices (PSSM) or profiles which represent the
observed sequence-weighted frequency of all amino acids in
every position of a sequence alignment. IEDB-ARB [16] is a
matrix-based prediction method where the peptide binding
score is calculated by multiplying the relative contribution
coefficients for each amino acid at each peptide position.
The IEDB-SMM align method [17] is based on an integrated
alignment and motif identification algorithm and predicts
directly peptide binding affinities. MHC2Pred [18] is a
SVM-based prediction server. EpiTOP [19] is a newly
developed method for MHC class II binding prediction
based on proteochemometrics [20]. It is a matrix-based
method which considers both peptide and protein binding
site amino acids contributions. NetMHCII and NetMHCI-
Ipan are ANN-based methods. NetMHCIIpan takes into
account both peptide and MHC sequence information
[21].

Most of the servers do not predict binding to all
DRB1 alleles used in the test sets. Only servers IEDB,
NetMHCIIpan, and EpiTOP make predictions for all 12
DRB1 alleles. Obviously, each server was only evaluated using
the alleles it predicts.
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Table 1: Servers for MHC class II binders prediction used in the study.

Server Method URL

NetMHCII ANNa http://www.cbs.dtu.dk/services/NetMHCII/

NetMHCIIpan ANN http://www.cbs.dtu.dk/services/NetMHCIIpan/

ProPred QMb http://www.imtech.res.in/raghava/propred/

RANKPEP QM http://bio.dfci.harvard.edu/RANKPEP/

IEDB-ARB QM http://tools.immuneepitope.org/analyze/html/mhc II binding.html

IEDB-SMM QM http://tools.immuneepitope.org/analyze/html/mhc II binding.html

EpiTOP QM http://www.pharmfac.net/EpiTOP/

MHC2Pred SVMc http://www.imtech.res.in/raghava/mhc2pred/
aANN: artificial neural networks, bQM: quantitative matrix, cSVM: support vector machine.

3. Performance Evaluation

The evaluation was performed under conditions similar
to those an experimental immunologist might use: the
complete protein sequences were submitted to a server and
the results recorded. Five cutoffs were used to categorise
the result: top 5%, 10%, 15%, 20%, and 25% of the
predicted binding nonamers. ProPred only returns the top
10% of predictions; for RANKPEP this limitation is 20%. An
identified binding peptide was considered to be any nonamer
identical in sequence to a nonamer from the set of known
binders, and originating from the same protein. Identified
binders are shown as a percentage of all binders (sensitivity).
Although many of the methods give quantitative predictions,
in the evaluation study they were used as classification
methods.

4. Results

4.1. HLA-DRB1∗0101 Binders Predictions. The test subset
of peptides binding to HLA-DRB1∗0101 consisted of 2051
binders. Four of the servers (NetMHCII, NetMHCpan,
RANKPEP, and EpiTOP) recognize more than 60% of them
in the top 10% (Figure 1(a)). The number of the identified
binders increases in the next cutoff steps reaching 93% by
NetMHCpan, 91% by EpiTOP, and 88% by NetMHCII and
RANKPEP at the top 25%.

4.2. HLA-DRBI∗0301 Binders Predictions. One hundred and
ninety binders from the test set bind to HLA-DRB1∗0301.
More than half of them are recognized by NetMHCpan,
NetMHCII, and ProPred even at the top 5% of the predicted
best binders. Sensitivity above 80% is achieved by NetMHC-
pan, NetMHCII, and EpiTOP at cutoff of 15% (Figure 1(b)).

4.3. HLA-DRBI∗0401 Binders Predictions. The subset of
HLA-DRB1∗0401 binders consisted of 392 binders. Most of
the servers present well at the top 5% level recognizing more
than a half of the binders (Figure 1(c)). At the 20% level
NetMHCII, and NetMHCIIpan present best identifying 96%
and 95% of the binders, respectively, followed by EpiTOP
and RANKPEP (91%).

4.4. HLA-DRBI∗0404 Binders Predications. The binders to
HLA-DRB1∗0404 in the test set were 159. Only NetMHCI-
Ipan achieves more than 60% sensitivity at the top 5%
cutoff. More than 80% of the known binders are recognized
by NetMHCIIpan at the top 10% level and by RANKPEP,
EpiTOP, and NetMHCII at the top 15% (Figure 1(d)).

4.5. HLA-DRB1∗0405 Binders Predictions. The test set con-
tained 244 binders to HLA-DRB1∗0405. The performance
of the servers on this allele was very similar to HLA-
DRB1∗0404. NetMHCIIpan and NetMHCII recognize more
than 60% of the binders in the top 5% of the predicted best
binders. Sensitivity of 80% is achieved by NetMHCIIpan at
the top 10% level and by RANKPEP, EpiTOP, and NetMHCII
at the top 15% (Figure 1(e)).

4.6. HLA-DRB1∗0701 Binders Predictions. Three hundred
forty four are the binders to HLA-DRB1∗0701 in the test set.
NetMHCII performs best here identifying more than 60%
of the known binders at the top 5% level and 80% of them
at the top 10% (Figure 1(f)). Sensitivity of 80% is achieved
by NetMHCIIpan, RANKPEP, and EpiTOP at the top 15%.
MHC2Pred does not predict affinity to this allele.

4.7. HLA-DRB1∗0802 Binders Predictions. The binders to
HLA-DRB1∗0802 in the test set were 153. NetMHCIIpan,
NetMHCII, and ProPred achieve more than 60% sensitivity
at the top 5% cutoff (Figure 1(g)). A sensitivity higher than
80% has NetMHCIIpan at top 10% level, and NetMHCII and
EpiTOP—at top 15%. RANKPEP is not trained to predict
binders to this allele

4.8. HLA-DRB1∗0901 Binders Predictions. The test set con-
tained 160 binders to HLA-DRB1∗0901. NetMHCIIpan
recognizes 68% of the known binders to this allele in the
top 5% (Figure 1(h)). Sensitivity of 80% is achieved by
NetMHCII, NetMHCIIpan, EpiTOP, and RANKPEP at the
top 15% level. ProPred does not make predictions for this
allele.

4.9. HLA-DRB1∗1101 Binders Predictions. Two hundred
seventy five peptides in the test set happen to bind to HLA-
DRB1∗1101. NetMHCII and NetMHCIIpan recognize 60%
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Figure 1: Continued.
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DRB1∗1501 n = 313
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Figure 1: Number of identified binders (sensitivity) in the top 5%, 10%, 15%, 20% and 25% of all overlapping nonamers generated
from a protein: (a) DRB1∗0101, (b) DRB1∗0301, (c) DRB1∗0401, (d) DRB1∗0404, (e) DRB1∗0405, (f) DRB1∗0701, (g) DRB1∗0802, (h)
DRB1∗0901, (i) DRB1∗1101, (j) DRB1∗1201, (k) DRB1∗1302, (l) DRB1∗1501.
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Figure 2: Overall HLA-DRB1 binders prediction.

of them at the top 5% and 80% of them at the top 10% of the
predicted best binders (Figure 1(i)).

4.10. HLA-DRB1∗1201 Binders Predictions. Only 24 pep-
tides are the binders to HLA-DRB1∗1201 in the test set.
NetMHCII performs best here identifying 92% of the known
binders at the top 5% level and 100% of them at the top 15%
(Figure 1(j)). Second best is EpiTOP with sensitivity of 83%
at the top 10%. NetMHCII, ProPred, and MHC2Pred do not
predict affinity to this allele.

4.11. HLA-DRB1∗1302 Binders Predictions. The binders to
HLA-DRB1∗1302 in the test set were 243. Only NetMHCI-
Ipan achieves more than 60% sensitivity at the top 5% cutoff
(Figure 1(k)). A sensitivity higher than 80% has NetMHC
and NetMHCIIpan at top 10% level, and EpiTOP—at top
15%.

4.12. HLA-DRB1∗1501 Binders Predictions. The subset of
peptides binding to HLA-DRB1∗1501 consisted of 313
binders. Sixty percent of them are recognized by NetMHCII
and NetMHCIIpan at the top 5% cutoff (Figure 1(l)).
NetMHCIIpan reaches 80% sensitivity at the top 10%, while
NetMHCII and EpiTOP—at the top 15%.

4.13. Overall HLA-DRB1 Binders Predictions. Half of the
binders are identified within the top 5% by NetMHCIIpan
and NetMHCII (Figure 2). Sensitivity of 80% is achieved by
NetMHCIIpan, NetMHCII, RANKPEP, and EpiTOP within
the top 15%. This performance is maintained in the top
20% and top 25% and top 25%; see supplementary material
available online at doi: 10.1165/2010/705821.

5. Discussion

The peptides presented by MHC class II molecules are
derived predominantly from extracellular proteins (not
cytosolic as in MHC class I), which are mainly of bacterial
origin. They are endocytosed by professional antigen pre-
senting cells (APCs) such as dendritic cells, macrophages and
B-cells, digested in lysosomes by cathepsin S [22], and bound
by class II molecules in subcellular vesicles. Then the complex
peptide-class II molecule is expressed on the cell surface and
interacts exclusively with CD4+T cells (helper T-cells, THC).
TH cells help to trigger an appropriate immune response
which may include localized inflammation and swelling due
to recruitment of phagocytes or may lead to a full-force
antibody-mediated immune response due to the activation
of B cells.

MHC binding is the stage of antigen presentation which
we understand best in both the class I and class II pathways. It
is also the most discriminating stage within the presentation-
recognition pathways. That is why most of the methods for
T-cell epitope prediction are in practice methods for MHC
binding prediction. The successful prediction of MHC class
II binding is more difficult than the successful prediction
of class I binding. The main difficulty is the unrestricted
length of class II epitopes. Compared with MHC class I
binders, which are limited up to 11 amino acids, though
sometimes longer, the open-ended class II binding site does
not constrain peptide lengths, allowing binding of peptides
consisted of up to or more than 25 amino acids. However,
as X-ray structures show, the class II binding site is always
occupied by nine amino acids, with the rest of the peptide
protruding at both sides. Thus, class II prediction methods
need to identify the binding nonamer for each sequence
and then develop a predictive model. Most of the models
consider the principle “one nonamer per binding sequence”.
Experimental data, however, suggests the possible existence
of multiple registers with different nonameric core regions
within a binding peptide, each serving as recognition sites for
MHC class II molecules [23]. Our previous work indicated
that when an easily distinguished good binder is not available
in the peptide sequence, the binding affinity is a degenerate
average of affinities from several binding subsequences [24].
The multiple registers of binding peptides and the degenerate
recognition might explain the lower predictive ability for
MHC class II compared to those for MHC class I [25].

The present comparative study was provoked by two
emergent themes in the immunoinformatics literature con-
cerning the development of T-cell epitope predictive meth-
ods. The first includes papers describing new predictive
methods. Most such studies tend to favour the method they
invent and this inevitably influences the choice of test data
and the way in which that test is conducted. Thus, the test
set is never truly independent and the reason for this is the
immanent bias associated with the process of selecting test
data.

The second trend, which inspired us to perform this
study, was the prevalent negative attitude of many scien-
tists to the efforts of the immunoinformatic community,
which has sought to develop methods that will facilitate
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experimental lab work reducing significantly the practition-
ers’ laborious times and resource. Where data are sufficiently
abundant, methods aimed at predicting class I MHC binding
seem to work well [26]. However, other types of prediction
have the reputation of working poorly. for example, the
structure-driven prediction of class I and class II T-cell
epitopes [27]. More recently, several comparative studies
have shown that, in particular, the prediction of class II T-cell
epitopes is suboptimal [28–30]. This has led to unnecessary
pessimism regarding the utility of such approaches; here
we seek to redress this unnecessarily cautious attitude and
perception.

For different reasons, reliable prediction across the
board remains elusive, and will continue so for some time.
Nonetheless, even extant predictive informatic methodolo-
gies, when applied shrewdly and combined synergistically
with other approaches, can deliver clear and useful benefits.

Methods are limited by data. What is needed are properly
designed data sets which can properly sample and explore the
multidimensional space accessed by all congeneric molecules
under examination. No data-driven method can go beyond
the training data: all methods are better at interpolating than
extrapolating. It is only by having excellent and general data
that we can hope for general and excellent models.

Except in rare cases, data is usually multi-dimensional,
and each dimension will typically be correlated, to a greater
or lesser extent, with one or more other dimensions.
Together, these many dimensions delineate a space: a space
of structural variation or variation of properties. If our data
is itself of sufficient quality and provides a good enough
coverage of the space, then straightforward methods drawn
from, say, computer science—of which there are indeed very
many—are now of sufficient accuracy to generate models of
high predictive accuracy.

The quality, quantity, and availability of data must
increase and improve, particularly for class II. Nonetheless,
existing methods built on extant data can, in spite of its
inherent imperfections, still be useable and useful, as we
show here. Prediction is captive to its underlying data. Bias
within the data places strict limitations upon the inter-
pretability and generality of models derived from it. In gen-
eral, for MHC-peptide binding experiments, the sequences
of peptides studied are very biased in terms of amino acid
composition, often favouring hydrophobic sequences. This
arises, in part, from preselection processes that result in
self-reinforcement. Binding motifs are often used to reduce
the experimental burden of epitope discovery. Very sparse
sequence patterns are matched and the corresponding subset
of peptides tested, with an enormous reduction in sequence
diversity.

In this study, we choose a test set of 4540 known binders
to HLA-DRB1 alleles from the Immune Epitope Database
[12]. The binders were of different length and originate from
known source proteins. The number of the source proteins
was 167. Peptides bound to 12 widely spread HLA-DRB1
alleles. The evaluation was performed under conditions
similar to those which an experimental immunologist might
use: the complete sequence of a protein of interest is
submitted to an available web server and the results recorded.

Five thresholds were used: top 5%, 10%, 15%, 20%, and 25%
of all overlapping nonamers generated from a protein. The
identified binders were presented as a percent of each allele
binders (sensitivity) used in the study.

The results from our evaluation are unexpectedly encour-
aging. Half of the known binders are identified within
the top 5% by two servers: NetMHCIIpan and NetMHCII
(Figure 2). For some alleles, the sensitivity at this level
reaches, 92% (NetMHCIIpan for HLA-DRB1∗1201). The
sensitivity increases in the top 10% and 15% and then
does not alter significantly. Most of the servers achieve
sensitivity of 80% at the top 15%. In terms of lab work,
this means 85% less expenditure on expended on materials,
labour, and time. Apart from NetMHCIIpan and NetMHCII,
two other servers—RANKPEP and EpiTOP—perform well.
The moderate performance of IEDB-ARB, IEDB-SMM, and
MHC2Pred, which are well known and widely used servers
for MHC class II binding prediction, is surprising. One
possible explanation could be the high levels of specificity,
predefined in this evaluation through the cutoffs of top 5%
to top 25% of the predicted best binders. The aim of these
high levels of specificity is to avoid the great number of false
positives often generated by quantitative predictions.

The results we present here for MHC binding prediction
illustrate the usefulness of computational tools for the
everyday work of the immunologist. These results go a long
way to refuting - and refuting eloquently - the apparent
skepticism among many experimental immunologists and
vaccinologists regarding efforts by immunoinformatics and
immunoinformaticians to design and develop highly pre-
dictive computational tools for the in silico identification
of T-cell epitopes. Accurate prediction remains vital for the
future of vaccine informatics and for vaccinology as a whole.
It is important to realize what can be and what cannot be
done.

In future work, we will use the specific results and
general know-how generated in this study to inform data-
fusion approaches to improve class II peptide-MHC binding
prediction. In particular, we will explore the use of optimised
voting algorithms to generate a viable meta-predictor, which
unites the output of several prediction methods in an
intelligent manner so that the combined output is more
accurate and more reliable than any individual prediction
program. Such approaches have been widely employed in
other areas and even in immunoinformatics: Trost et al. have
addressed class I binding [31], while Karpenko et al. have
used this approach to predict class II MHCs binding [32]. We
will seek to capitalise upon the as-yet-unrealised potential of
such approaches.

What vaccine informatics offers are tools that can
become important components of a deeper, broader experi-
mental and clinical endeavour. The models we explore above
are tools of true utility replete with practical real-world
applications. Vaccinology and immunology, as disciplines,
need only embrace such methods; in their turn such
techniques will liberate the vaccinologist and immunologist
from the drudgery of uninformed experimentation, allowing
them to design better, faster, smarter ways of discovery of new
reagents, diagnostics, and vaccines.
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