Research Article
A New Method of Diagnosing Constitutional Types Based on Vocal and Facial Features for Personalized Medicine

Bum Ju Lee, Boncho Ku, Kihyun Park, Keun Ho Kim, and Jong Yeol Kim

Division of Constitutional Medicine Research, Korea Institute of Oriental Medicine, 1672 Yuseongdae-ro, Yuseong-gu, Deajeon 305-811, Republic of Korea

Correspondence should be addressed to Jong Yeol Kim, ssmed@kiom.re.kr

Received 21 May 2012; Accepted 30 May 2012

Academic Editor: Sabah Mohammed

Copyright © 2012 Bum Ju Lee et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The aim of the present study is to develop an accurate constitution diagnostic method based solely on the individual’s physical characteristics, irrespective of psychologic traits, characteristics of clinical medicine, and genetic factors. In this paper, we suggest a novel method for diagnosing constitutional types using only speech and face characteristics. Based on 514 subjects, the area under the receiver operating characteristics curve (AUC) values of classification models in age and gender groups ranged from 0.64 to 0.89. We identified significant features showing statistical differences among three constitutional types by performing statistical analysis. Also, we selected a compact and discriminative feature subset for constitution diagnosis in each age and gender group. Our method may support the direction of improved diagnosis prediction and will serve to develop a personal and automatic constitution diagnosis software for improvement of the effectiveness of prescribed medications and development of personalized medicine.

1. Introduction

Due to the development of medicine and advances of biotechnology and information technology, the midpoint of medical treatment has shifted away from common treatments of a certain disease to personalized medicine [1–8]. Consistent with this paradigm, there has been an explosion of interest in alternative oriental medicines and in a fusion of oriental and western medicines [9–16]. One of the core research areas of personalized medicine in western and oriental medicine is to understand the psychological characteristics, morphological traits, genetic characteristics, and constitution of individuals. The human constitution has been researched in western and oriental medicine for a long time. For example, Hippocrates suggested that the human constitution could be attributed to four kinds of substances (blood, phlegm, choler, and black bile) [4]. Wang classified humans into seven constitutional groups using physiological and physical status [4, 17]. Similarly, Lee classified humans into four Sasang constitutional types as TE (Teaeumin), TY (Taeyangin), SE (Soeumin), and SY (Soyangin) based on physiological, psychological, and physical characteristics [2, 11–13, 15].

Personal constitution diagnosis is important for several reasons. Firstly, people have vulnerability to particular diseases according to their individual psychological characteristics, genetic characteristics, and morphological traits. Therefore, risk factors for particular diseases can be identified according to an individual’s constitution in the early stages of disease progression [18]. Secondly, drug response to prescribed medicine varies with personal constitution [11]. As such, the efficiency of prescribed medicine can be improved if we know the patient’s constitution.

Many studies on Sasang constitution have been conducted. For the association of Sasang constitutions and diseases and the difference of constitutional types, many researchers introduced constitution analysis methods [1, 4, 5, 8, 12, 13, 15, 18–23]. Song et al. [22] classified TE and SE among the constitutional types using skin elasticity of the hand and proved that elasticity of the TE type was higher than that of the SE type. Their constitution diagnosis measured hand skin elasticity based on a questionnaire survey of thickness and elasticity of the skin. The limitations of the study were that experiments were performed in only TE and SE types and not in the TY and SY types, and elasticity measurements were performed only on the back of
2. Materials and Methods

2.1. Data Preparation. Speech and facial feature extraction from 514 subjects in several hospitals and the Korea Institute of Oriental Medicine.
of Oriental Medicine in the Republic of Korea was carried out. Constitutional types of all subjects were determined by specialists and drug responses [21]. Speech record configurations were no resonance, noise intensity from 40 to 50 dB, room temperature of 20 °C ± 5 °C and humidity of 40% ± 5%, Sennheiser e-835s microphone, Blaster Live 24-bit external sound card, and GoldWave recording program. Distance of the mouth of subjects and the microphone was 4–6 cm, and features were extracted using five vowels (A, E, I, O, U) and one sentence. The extracted features consisted of pitch, average ratio of pitch period, jita (absolute Jitter), MFCC (Mel frequency cepstral coefficients) [29, 30], and so forth.

We took photographs from the side and front of the subject’s face using a digital camera with a ruler (Nikon D700 with an 85 mm lens). Based on an identified feature point from a side- and front-face image, we obtained features such as distance, distance ratios, angle, and area from forehead, nose, mouth, face shape, and eye [20]. Doctors designated the feature points (Figure 1). Height and weight of subject were measured by a digital scale (LG-150; G Tech International Co., Ltd, Republic of Korea). A total of 82 features were used in this study (29 features from speech signals, 51 features from face, and weight and height features). All feature measurements were done based on self-made tool using MATLAB on Window XP. The specific content of the extracted features was described in Table 1.

Since the face and speech signals are influenced by age and gender [21, 31], experimental data were divided into five categories based on age and gender: Female-20 (women aged 18–20 years), Female-25 (women aged 25–30 years), Female-30 (women aged 30–35 years), Female-40 (women aged 40–45 years), and Female-50 (women aged 50–60 years).
Table 2: Comparisons using AUC values in 5 groups (Hybrid: combining face and speech data, FF: using full features, FS: using feature selection).

<table>
<thead>
<tr>
<th>Method</th>
<th>Female-20</th>
<th>Female-30</th>
<th>Female-50</th>
<th>Male-30</th>
<th>Male-50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid-FS</td>
<td>0.89</td>
<td>0.64</td>
<td>0.75</td>
<td>0.72</td>
<td>0.78</td>
</tr>
<tr>
<td>Hybrid-FF</td>
<td>0.67</td>
<td>0.59</td>
<td>0.67</td>
<td>0.67</td>
<td>0.69</td>
</tr>
<tr>
<td>Face-FS</td>
<td>0.77</td>
<td>0.67</td>
<td>0.69</td>
<td>0.73</td>
<td>0.71</td>
</tr>
<tr>
<td>Face-FF</td>
<td>0.62</td>
<td>0.59</td>
<td>0.63</td>
<td>0.63</td>
<td>0.62</td>
</tr>
<tr>
<td>Speech-FS</td>
<td>0.69</td>
<td>0.57</td>
<td>0.58</td>
<td>0.67</td>
<td>0.73</td>
</tr>
<tr>
<td>Speech-FF</td>
<td>0.6</td>
<td>0.48</td>
<td>0.54</td>
<td>0.39</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Table 3: Detailed performance evaluation of experiments using feature selection in all groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>Measure</th>
<th>TE</th>
<th>SE</th>
<th>SY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female-20</td>
<td>Sensitivity</td>
<td>0.89</td>
<td>0.77</td>
<td>0.91</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.93</td>
<td>0.95</td>
<td>0.9</td>
</tr>
<tr>
<td></td>
<td>F-measure</td>
<td>0.87</td>
<td>0.83</td>
<td>0.88</td>
</tr>
<tr>
<td>Female-30</td>
<td>Sensitivity</td>
<td>0.63</td>
<td>0.4</td>
<td>0.53</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.78</td>
<td>0.84</td>
<td>0.66</td>
</tr>
<tr>
<td></td>
<td>F-measure</td>
<td>0.6</td>
<td>0.44</td>
<td>0.52</td>
</tr>
<tr>
<td>Female-50</td>
<td>Sensitivity</td>
<td>0.87</td>
<td>0.17</td>
<td>0.8</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.79</td>
<td>0.97</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>F-measure</td>
<td>0.8</td>
<td>0.26</td>
<td>0.72</td>
</tr>
<tr>
<td>Male-30</td>
<td>Sensitivity</td>
<td>0.81</td>
<td>0.84</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.74</td>
<td>0.78</td>
<td>0.92</td>
</tr>
<tr>
<td></td>
<td>F-measure</td>
<td>0.72</td>
<td>0.75</td>
<td>0.14</td>
</tr>
<tr>
<td>Male-50</td>
<td>Sensitivity</td>
<td>0.89</td>
<td>0.5</td>
<td>0.68</td>
</tr>
<tr>
<td></td>
<td>Specificity</td>
<td>0.81</td>
<td>0.92</td>
<td>0.82</td>
</tr>
<tr>
<td></td>
<td>F-measure</td>
<td>0.81</td>
<td>0.58</td>
<td>0.68</td>
</tr>
</tbody>
</table>

20–29 years), Female-30 (women aged 30–49 years), Female-50 (women aged 50 years and over), Male-30 (men aged 30–49 years), and Male-50 (men aged 50 years and over). The Male-20 (men aged 20–29 years) category was excluded due to the lack of a minimum number of subjects. The numbers of each constitutional type in 5 groups are listed in Table 4 for statistical analysis.

2.2. Experiment Configurations. The goals of our experiment were to measure the ability to distinguish constitutional types, and to identify a more discriminative and compact feature set through feature selection. We conducted classification experiments of TE, SE, and SY constitution types with our five data sets according to the difference of age and gender, with and without feature selection. To investigate the differences of detailed performances of each feature types, speech feature set, face feature set, and hybrid feature set (combining face and speech) were used in this experiment.

We applied normalization (scale 0~1 value) to all data sets. The Wrapper approach using machine learning of LIBLINEAR [32] and the best-first search (forward) was used in feature subset selection. All experiments were performed using LIBLINEAR (L2-loss SVM dual type) in Weka software [33], and a 10-fold cross validation for a statistical evaluation of learning algorithm was performed. For optimal parameter selection (tuning), the value of the C parameter was obtained in the range of {0.01, 0.05, 0.1, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, ..., 16348}, and other parameters were fixed as defaults. The area under receiver operating characteristic curve (AUC) was used as a major evaluation criterion. AUC is widely used to quantify the quality of a prediction or classification model in medical science, bioinformatics, medicine statistics, and biology [34–36]. We also evaluated performance using the sensitivity, specificity, and F-measure for detailed evaluation. Statistical analyses were conducted by SPSS version 19 for Windows (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion

3.1. Comparison of Experimental Results. For brief summarization of performance evaluation, the AUC values for the 5 groups with and without feature selection method are showed in Table 2.

In experiments using full features without feature selection, the results indicated that the hybrid feature set (Hybrid-FF) performed better than the individual face and speech feature sets (Face-FF and Speech-FF), except for performance by the face feature set in the Female-30 group. The AUC values of age and gender classification models using hybrid feature set without feature selection ranged from 0.59 to 0.69%.

After application of feature subset selection, the remaining number of features was small, whereas the AUC values of constitution classification were greater than that of
Table 4: Statistical analysis by the one-way ANOVA test and the post-hoc Scheffe’s test.

<table>
<thead>
<tr>
<th>Group</th>
<th>Feature</th>
<th>Class</th>
<th>N</th>
<th>Mean</th>
<th>Std.</th>
<th>F</th>
<th>Sch.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female-20</td>
<td>Height</td>
<td>TE</td>
<td>18</td>
<td>162.2</td>
<td>5.334</td>
<td></td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>22</td>
<td>163.8</td>
<td>5.018</td>
<td>3.689</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>23</td>
<td>159.7</td>
<td>4.979</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>Weight</td>
<td>TE</td>
<td>18</td>
<td>62.26</td>
<td>7.328</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>22</td>
<td>52.09</td>
<td>4.689</td>
<td>19.85</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>23</td>
<td>51.62</td>
<td>5.776</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>uF2</td>
<td>TE</td>
<td>18</td>
<td>−0.613</td>
<td>0.750</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>22</td>
<td>−0.531</td>
<td>1.146</td>
<td>4.975</td>
<td>A</td>
</tr>
<tr>
<td>Female-30</td>
<td>FD43_143</td>
<td>TE</td>
<td>57</td>
<td>133.0</td>
<td>5.985</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>53</td>
<td>124.4</td>
<td>7.085</td>
<td>23.55</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>73</td>
<td>127.2</td>
<td>7.100</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Female-50</td>
<td>Weight</td>
<td>TE</td>
<td>57</td>
<td>61.78</td>
<td>8.052</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>53</td>
<td>52.09</td>
<td>4.689</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>73</td>
<td>51.62</td>
<td>5.776</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>Male-30</td>
<td>Weight</td>
<td>TE</td>
<td>32</td>
<td>79.34</td>
<td>9.244</td>
<td></td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>31</td>
<td>64.45</td>
<td>7.099</td>
<td>26.29</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>22</td>
<td>71.22</td>
<td>7.868</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td>Male-50</td>
<td>iJITA</td>
<td>TE</td>
<td>26</td>
<td>0.464</td>
<td>1.282</td>
<td></td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>18</td>
<td>1.793</td>
<td>4.813</td>
<td>3.456</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>25</td>
<td>−0.364</td>
<td>1.144</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>oJITA</td>
<td>TE</td>
<td>26</td>
<td>0.099</td>
<td>1.023</td>
<td></td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>18</td>
<td>1.762</td>
<td>4.564</td>
<td>3.558</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>25</td>
<td>−0.163</td>
<td>1.004</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>SITS</td>
<td>TE</td>
<td>26</td>
<td>−0.730</td>
<td>1.182</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>18</td>
<td>0.252</td>
<td>0.763</td>
<td>5.088</td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>25</td>
<td>−0.042</td>
<td>1.123</td>
<td></td>
<td>A, B</td>
</tr>
<tr>
<td></td>
<td>RSF60_120_240_480</td>
<td>TE</td>
<td>26</td>
<td>−0.148</td>
<td>1.033</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>FDV81_50</td>
<td>TE</td>
<td>26</td>
<td>32.42</td>
<td>2.788</td>
<td></td>
<td>B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SE</td>
<td>18</td>
<td>29.93</td>
<td>2.744</td>
<td>6.426</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>25</td>
<td>29.86</td>
<td>2.953</td>
<td></td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>FArea03</td>
<td>SE</td>
<td>18</td>
<td>4135</td>
<td>417.1</td>
<td>14.23</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SY</td>
<td>25</td>
<td>4331</td>
<td>502.4</td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>

(N: number of samples, Std.: standard deviation, Sch.: Scheffe’s test, *P < 0.05, **P < 0.01, and ***P < 0.001).
the full feature set in all the experiments. For example, the
AUC values of classification models using hybrid feature
set ranged from 0.64 to 0.89%. The values of classification
models using feature selection showed improvements of 0.22
in the Female-20 group and 0.09 in Male-50.

When comparing the face (Face-FS), speech (Speech-
FS), and hybrid feature sets (Hybrid-FS), the performance
of Hybrid-FS method was higher than that of Face-FS and
Speech-FS in the Female-20, Female-50, and Male-50 groups.
However, performance of Face-FS method was higher than
that of Hybrid-FS and Speech-FS in the Female-30 and
Male-30 groups. Thus, it is preferable to use the Face-FS
method in these two groups. The theoretical performance
of the Hybrid-FS method using feature selection is better
than or equal to that of Face-FS and Speech-FS, because the
hybrid feature set includes all the speech and face features.
However, realistically, many of the feature selection methods
may not ensure better performance because a greater number
of features add difficulty in building a classifier and lead
to the curse of dimensionality and an NP problem [36–
38]. Detailed performance evaluation of experiments using
feature selection was showed in Table 3.

3.2 Statistical Analysis of Meaningful Features. For the
statistical analysis of features obtained from feature selection
in Hybrid-FS method, we carried out a one-way ANOVA
test, and for the post-hoc analysis, we performed the Scheffe’s
multiple comparison test. The ANOVA test indicated that
there was a significant difference among constitutional types.
All features showing P values of <0.05 are shown in Table 4.

In this statistical analysis, we did not found features
that covered a broad range of applicability in predicting
constitutional types in the age- and gender-specific classification.
However, we identified several features with an obvious
propensity for classifications of constitutional type.

In facial feature analysis using results from the Scheffe’s
multiple comparison test, there was a statistically significant
difference in weight among constitutional types. Weights
between TE and the other types were significantly different
in the Female-20 group ($F = 19.85, P = 0.0000$). Weights
between TE and the other types in the Female-50 group were
significantly different ($F = 25.64, P = 0.0000$). Weights among
TE, SE, and SY were significantly different in the Male-30
group ($F = 26.298, P = 0.0000$). There was a significant
difference in $P_{D43,143}$ between TE and the other types in the
Female-30 group ($F = 23.558, P = 0.0000$) and between
TE and SE in the Female-50 group ($F = 5.384, P = 0.0374$).
$FArea03$ between TE and the other types was significantly
different in the Male-50 group ($F = 14.231, P = 0.0000$).

For speech features, there was a significant difference in
SITS between TE and SE in the Male-50 group ($F = 5.088,
P = 0.0088$). The uF2 value between SY and the other
types was significantly different in the Female-20 group
($F = 4.975, P = 0.0100$), and $aRF2_F1$ between TE and SY
was significantly different in the Female-20 group ($F = 3.772,
P = 0.0286$).

3.3 Limitations and Future Work. Constitution diagnosis is
very difficult in this area, because constitution type decisions
are dependent on qualitative judgments of doctors and
inspectors [22]. We think that it is possible to develop an
accurate diagnosis method or standardization for constitu-
tion diagnosis after collecting more diagnosis information by
doctors or inspectors.

Our experimental and statistical analysis showed an
important and useful feature for better diagnosis based on
differences in age and gender. Since diagnosis performances
and selected features differ according to age and gender, it
makes constitution diagnosis difficult in the real world. Until
now, features showing an obvious propensity for constitution
diagnosis are not yet sufficient, and data sets to achieve diag-
noses that are more accurate are insufficient. Accordingly,
more research for constitution diagnosis is needed.

In future work, we will investigate the relationship
between constitution and improvement of the effectiveness
of medications and explore the role of constitutional types in
certain disease. We think that this is very important research
in clinical medicine, because the efficiency of prescribed
medicine can be improved if we know the patient’s consti-
tution. For instance, Jeong et al. [9, 10] investigated changes
in cytokine production in the acute stage of SY constitution
CI (cerebral infarction) patients after oral administration of
Yangkyuk-Sanwha-Tang water, and revealed that Yangkyuk-
Sanwha-Tang had a good effect on anti-inflammatory
cytokines and a good CI treatment effect. The results of these
studies may help to improve the effectiveness of prescribed
medications in Sasang constitutional types.

4. Conclusions

This study describes a novel prediction method for consti-
tution diagnosis as an essential prerequisite for personalized
medicine or alternative medicine. We demonstrated the
possibility and usefulness of constitution diagnosis using the
combination of face and speech feature sets in age- and
gender-specific groups, identified a compact and discrim-
inative feature subset, and included supporting statistical
analysis of significant features. Our results could be used
for developing an automatic constitution diagnostic tool for
improving the effectiveness of prescribed medications and
could be used in the fields of speech and face recognition.

Acknowledgments

This work was supported in part by National Research
Foundation of Korea (NRF) Grant funded by the Korea
government (MEST) (20110027738).

References

[1] R. P. Ebstein, J. Benjamin, and R. H. Belmaker, “Person-
ality and polymorphisms of genes involved in aminergic

individualized medicine: psychological and physical traits of
Sasang typology,” Journal of Alternative and Complementary

Submit your manuscripts at http://www.hindawi.com