Review Article

A Review of Haptoglobin Typing Methods for Disease Association Study and Preventing Anaphylactic Transfusion Reaction

Dae-Hyun Ko,1,2 Ho Eun Chang,2 Taek Soo Kim,1,2 Eun Young Song,1 Kyoung Un Park,1,2 Junghan Song,1,2 and Kyou Sup Han1

1 Department of Laboratory Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
2 Department of Laboratory Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-707, Republic of Korea

Correspondence should be addressed to Kyoung Un Park; m91w95pf@snu.ac.kr

Received 27 November 2012; Accepted 5 February 2013

Copyright © 2013 Dae-Hyun Ko et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Haptoglobin, the product of the Hp gene, is a glycoprotein involved in the scavenging of free hemoglobin. Haptoglobin levels increase or decrease in response to various acquired conditions, and they are also influenced by genetic predisposition. There were 2 major alleles, Hp1 and Hp2, and 1 minor allele, Hpdel. Many researchers have attempted to study the haptoglobin types and their association with disease; however, no definitive conclusions have been reached yet. It is reported that patients who are genetically deficient in haptoglobin are at risk of anaphylaxis against blood components containing haptoglobin. Haptoglobin genotypes also affect the reference intervals of haptoglobin levels. Many studies have attempted to establish simple and accurate typing methods. In this paper, we have broadly reviewed several methods for haptoglobin typing—phenotyping, Southern blotting, conventional PCR, real-time PCR, and loop-mediated isothermal amplification. We discuss their characteristics, clinical applications, and limitations. The phenotyping methods are time consuming and labor intensive and not designed to detect patients harboring Hpdel. The rapid and robust haptoglobin genotyping may help in preventing fatal anaphylactic reactions and in establishing the relationships between the haptoglobin phenotypes and diseases.

1. Introduction

Haptoglobin (Hp) is a plasma glycoprotein and a positive acute-phase reactant [1]. It binds to free hemoglobin, forming hemoglobin-haptoglobin (Hb-Hp) complex. This complex is then removed by macrophages via a cell-surface receptor (CD163) [2]. Haptoglobin can thus prevent tissue damage caused by free hemoglobin and reduce iron loss in hemolytic conditions. From a clinical perspective, haptoglobin is one of the most important indicators of hemolytic anemia.

Recently, many studies have revealed the association between haptoglobin phenotypes and various infections and diseases such as diabetes, cancer, and cardiovascular diseases [1, 3, 4]. However, no definitive conclusions have been made yet, and the results of some earlier studies were inconsistent. This may be because of the relatively small numbers of subjects evaluated and the lack of a simple and robust typing method.

The most important issue in clinical practice concerning haptoglobin is probably anaphylactic transfusion reactions, although this is not a commonly encountered problem. Patients who are genetically deficient in haptoglobin and carry the anti-haptoglobin antibody may experience adverse reactions against the haptoglobin protein in blood products. There have been several reports on this issue [5–8]. Muta et al. reported that even a non-haptoglobin-deficient patient could experience a transfusion reaction caused by the anti-haptoglobin antibody [9]. However, true anhaptoglobinemia
cannot be determined on the basis of the haptoglobin level alone because many acquired conditions might lower the haptoglobin concentrations to undetectable levels [10, 11].

Recently, another issue related to haptoglobin typing in clinical practice has been recognized. Haptoglobin types may affect the interpretation of the HbA1c levels in the estimation of glucose controls in diabetes patients, since haptoglobin is involved in hemoglobin turnover [12].

The results of previous studies emphasize the need for a rapid and robust genotyping method for haptoglobin. In this paper, we discuss the haptoglobin typing methods reported till date and reassess their utility in clinical practice.

2. Gene Structure and Alleles of Haptoglobin

There are 2 major alleles of haptoglobin—Hp1 and Hp2. Hp2 is thought to be generated by the internal duplication of 2 exons of Hp1 [16]. They are inherited in a codominant manner and may combine to result in 3 phenotypes, that is, Hp 1-1, Hp 2-1, and Hp 2-2. In contrast to Hp 1 proteins which exist in dimer forms, Hp 2 proteins can polymerize to form multimers with higher molecular mass [17]. This unique property can be used for haptoglobin phenotyping, as discussed later. Further, haptoglobin types affect the reference interval of haptoglobin levels in the serum; higher ranges are observed when the Hp1 allele is present and lower ranges when the Hp2 allele is present [17–19].

The Hp1 allele—an unusual allele also designated as Hp0 in some literatures—is formed by the deletion of a portion of the 5′ flanking region of the Hp gene (3170 bp upstream of the exon 1 of Hp) to intron 4 of the Hpr (haptoglobin-related protein) gene [13, 20]. It is usually found in East and Southeast Asia with allele frequencies of 0.011–0.044 and not yet been reported in other races [13, 18, 21–24]. This allele is responsible for anhaptoglobinemia, which results from homozygosity for the Hp0 allele. A schematic diagram of the Hp1, Hp2, and Hp0 alleles is presented in Figure 1.

Some rare variants of the haptoglobin gene have also been reported with considerable ethnic differences [1]. Most of these variants have been designated on the basis of phenotypic methods, and their genetic mechanisms have not been fully studied. Some of the variants arise from genetic variations in the promoter regions, such as Hp 2-1M [25]. The variant Hp Johnson, also referred to as Hp3, is thought to result from an additional internal duplication of the Hp2 allele [26]. Although these alleles are of interest to researchers, their clinical significance has not been sufficiently evaluated. Thus, we will not discuss them in this paper.

Researchers wishing to conduct or design a haptoglobin-genotyping strategy should consider the presence of the Hp gene. The Hp gene is located near the Hp gene and contains sequences similar to those of the Hp gene. It is thought to originate from duplication and divergence [20, 27]. Primers and/or probes for the Hp gene should be carefully constructed to prevent them from binding to similar sequences in the Hpr gene.

3. Haptoglobin Phenotyping

As mentioned earlier, haptoglobin types influence the chemical structure of the products of the gene. Individuals homozygous for the Hp1 allele (Hp 1-1 phenotype) have only Hp 1 dimers in their serum, and individuals harboring 2 Hp2 alleles (Hp 2-2 phenotype) bear Hp 2 polymers with various sizes. Heterozygotes with both Hp1 and Hp2 alleles have Hp 1 dimers and Hp 2-1 polymers as well [17]. These proteins can be separated by gel electrophoresis, isoelectric focusing, chromatography, or ELISA [28–31]. A typical diagram of
In the simplest protocols, which used just 1 set of primers, the \(Hp^1 \) allele and the \(Hp^2 \) allele were amplified to generate bands of 1757 bp and 3481 bp, respectively (protocol 1). In some instances where a band of the \(Hp^2 \) allele might not be easily detected due to its large size, another set of primers was applied to create an \(Hp^2 \)-specific small amplicon of 349 bp (protocol 2). Koch et al. also tried to use all the 4 primers simultaneously to yield an \(Hp^1 \)-specific band (1757 bp), 3 \(Hp^2 \)-specific bands (349 bp, 1910 bp, and 1923 bp), and 2 nonspecific products (195 bp and 196 bp) (protocol 3). In the last protocol, an additional unknown band of about 450 bp was observed, which was suspected to be specific for the \(Hp^2 \) allele. An approach designed by Carter et al. used a similar scheme to produce a larger amplicon for the \(Hp^2 \) allele (4370 bp) and a smaller amplicon for the \(Hp^1 \) allele (3000 bp) [15]. However, these protocols could not detect the \(Hp^\text{del} \) allele. It is difficult to infer the presence of the \(Hp^\text{del} \) allele in the heterozygous state, and, since no amplification controls were used in both methods, it is impossible to discriminate the homozygous state for the \(Hp^\text{del} \) from amplification failure.

Park et al. used the strategies explained earlier to determine the haptoglobin genotypes in a Korean population [18]. Appropriate combinations of the methods can successfully detect the various combinations of the \(Hp \) alleles, such as \(Hp^1Hp^1 \), \(Hp^1Hp^2 \), \(Hp^2Hp^2 \), \(Hp^\text{del}Hp^1 \), \(Hp^\text{del}Hp^2 \), and \(Hp^\text{del}Hp^\text{del} \). However, genotyping strategies using conventional PCR require keeping multiple sets of primers and performing tedious postamplification processes, such as electrophoresis. In addition, it is difficult to detect relatively large products over 3 kb, especially in poor amplification conditions. Typical patterns of a conventional PCR corresponding to specific haptoglobin genotypes are shown in Figure 3.

4.3. Real-Time PCR. To overcome the drawbacks of conventional PCR, Soejima et al. have developed a haptoglobin genotyping strategy using real-time PCR [32–34]. According to the typing purpose, two types of detection techniques were used.

In the first protocol using TaqMan probes [32, 33], they designed 3 sets of primers and probes to target the \(Hp^\text{del} \) breakpoint specific for \(Hp^\text{del} \) (\(Hp^\text{del} \)), the breakpoint of the duplication region specific for \(Hp^2 \) (\(Hp^2 \)), and 5' region of exon 1 as an internal control (\(Hp^5' \)). Each genotype produced appropriate signals as expected. Subjects who are homozygous for \(Hp^2 \) and those harboring \(Hp^1 \) and \(Hp^2 \) could be discriminated on the basis of the \(Hp/ Hp^5' \) ratio calculated from the \(ΔΔCt \) values. This method could reliably determine the genotypes of the subjects in less than an hour through a single reaction. However, the approach cannot determine some rare variants such as Hp Johnson or Hp 2-1M [26, 32]. Nakamura et al. have applied this real-time PCR method for the genotyping of a Mongolian population [36]. More than 99% (943 of 946) of the subjects could be accurately typed by real-time PCR. In contrast, the haptoglobin genotypes of 3 individuals were misidentified, who were later revealed as having the rare Hp variant, Hp Johnson.
The principles and characteristics of various typing methods discussed earlier are summarized in Table 1.

5. Conclusions

Simple and reliable genotyping of haptoglobin is crucial in 4 aspects. (a) Phenotyping is laborious and cannot discriminate between patients with acute hemolytic conditions and those with Hp^{del}. (b) Haptoglobin levels should be interpreted according to the different reference intervals determined by genotypes. (c) Anaphylactic reaction to blood products can be fatal to transfusion recipients with anhaptoglobinemia. (d) Rapid and robust genotyping methods can establish a definite association between a haptoglobin genotype and a disease state.

We have discussed several haptoglobin typing methods. Phenotyping methods have been used for a long time, and a large body of data has been accumulated. Although certain rare and/or newly discovered variants may be identified via phenotyping, this approach does not detect anhaptoglobinemia. Southern blotting is easy to design and intuitive but requires tedious manual work and has the risk of radiation exposure. Conventional PCR can determine haptoglobin genotyping fairly well when appropriately designed. However, multiple primers and reactions are required to distinguish between the Hp¹, Hp², and Hp^{del} alleles. Genotyping strategy using real-time PCR using TaqMan probes has been suggested, and it can distinguish 3 alleles in a single reaction. From a perspective of transfusion reaction, to distinguish the Hp^{del} allele from others is important. SYBR Green I-based real-time PCR and LAMP assay have been proposed for this purpose.

To prevent anaphylactic transfusion reactions, distinguishing the Hp^{del} allele from the nondeficient allele is most important. However, discrimination between the Hp¹ and Hp² alleles may also be meaningful because they affect the reference interval of haptoglobin and may cause confusion in interpreting haptoglobin levels. Moreover, Muta et al. report a transfusion reaction caused by an anti-haptoglobin antibody in a non-haptoglobin-deficient patient, which suggests the possibility of developing a subtype-specific anti-haptoglobin antibody [9]. Thus, a genotyping method capable of distinguishing between the Hp¹, Hp², and Hp^{del} alleles is preferable. Real-time PCR using TaqMan probes developed by Soejima et al. seems to be desirable due to its simplicity and discriminative power, but reaction failure occurs in some samples for unknown reasons.

After reviewing various methods for haptoglobin typing, we conclude that no single method is sufficiently simple and efficient to discriminate between the various alleles of haptoglobin. The need for haptoglobin genotyping, however, is on the rise, and more simple and powerful methods are likely to be developed in the future. In the absence of an ideal method, researchers and/or laboratory physicians should fully comprehend the characteristics and limitations of various approaches used for haptoglobin genotyping and carefully choose 1 or more methods appropriate for their purpose.
Table 1: Characteristics of haptoglobin typing methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Typing principle</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phenotyping [28–31]</td>
<td>Structure and size variations in proteins</td>
<td>Used for a long time</td>
<td>Cannot detect H_p^{del} genotype</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Large amount of data accumulated</td>
<td>Requires special equipment and trained personnel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detects rare and/or new variants</td>
<td>Labor and timeconsuming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Detects H_p^{del} allele</td>
<td>Requires large amount of DNA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>May recognize new alleles</td>
<td>Risk of radiation hazard</td>
</tr>
<tr>
<td>Southern blotting [16, 20]</td>
<td>Restriction size variation</td>
<td>Distinguishes between H_p^1, H_p^2, and H_p^{del} alleles under appropriate combinations</td>
<td>Need to keep multiple primer sets</td>
</tr>
<tr>
<td>Conventional PCR [13–15, 18]</td>
<td>Size variation of amplified products</td>
<td>Discriminates between H_p^1, H_p^2, and H_p^{del} alleles in a single reaction</td>
<td>Tedious postamplification process</td>
</tr>
<tr>
<td>Real-time PCR using TaqMan probe [32, 33]</td>
<td>Signals from probes reacting to amplified regions and their ratios</td>
<td></td>
<td>Difficult to amplify and detect large-sized products</td>
</tr>
<tr>
<td>Real-time PCR using SYBR Green I [34]</td>
<td>Melting curve analysis</td>
<td>Detect H_p^{del} allele effectively</td>
<td>Cannot detect rare variants</td>
</tr>
<tr>
<td>Loop-mediated isothermal amplification [35]</td>
<td>Turbidity measurement</td>
<td>Detect H_p^{del} allele effectively</td>
<td>Multiple sets of primers and probes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No need for a thermal cycler</td>
<td>Reaction failure in a large scale study</td>
</tr>
</tbody>
</table>

References

Submit your manuscripts at
http://www.hindawi.com