Research Article

Characterization of *Legionella pneumophila* Isolated from Environmental Water and Ashiyu Foot Spa

Masato Tachibana, 1,2 Masaya Nakamoto, 2 Yui Kimura, 2 Takashi Shimizu, 1,2 and Masahisa Watarai 1,2

1 The United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
2 Laboratory of Veterinary Public Health, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan

Correspondence should be addressed to Masahisa Watarai; watarai@yamaguchi-u.ac.jp

Received 27 May 2013; Accepted 25 June 2013

Academic Editor: Hiroshi Asakura

Copyright © 2013 Masato Tachibana et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Hot springs are the most common infectious source of *Legionella pneumophila* in Japan. However, little is known about the association between *L. pneumophila* and environmental waters other than hot springs. In this study, water samples from 22 environmental water sites were surveyed; of the 22 samples, five were *L. pneumophila* positive (23%). *L. pneumophila* was mainly isolated from ashiyu foot spas, a type of hot spring for the feet (3/8, 38%). These isolates had genetic loci or genes that encoded the virulence factors of *L. pneumophila*. Moreover, these isolates showed higher intracellular growth and stronger cytotoxicity compared with the reference strain. These results suggest that ashiyu foot spa can be the original source for *L. pneumophila* infection.

1. Introduction

Legionella pneumophila is the causative agent of legionellosis. In humans, *L. pneumophila* can induce Legionnaires' disease and Pontiac fever. Legionnaires' disease is a form of severe pneumonia, while Pontiac fever produces acute flu-like symptoms without pneumonia [1]. A number of factors including type II and type IV secretion systems, a pore-forming toxin, type IV pili, flagella, and heat shock proteins [2–7] contribute to *L. pneumophila* virulence. *L. pneumophila* is a facultative intracellular Gram-negative bacterium that can reside and multiply within free-living amoebae in environmental waters. *L. pneumophila* can withstand temperatures of 0–68°C and a pH range of 5.0–8.5 and survive in most environments for long periods [8]. *L. pneumophila* mainly lives in natural and man-made aquatic environment such as ponds, hot springs, fountains, cooling towers, and portable waters [8]. Hot springs and public baths are known to be most common source of *L. pneumophila* outbreaks in Japan [9–11]. Abundance information about the relationship between *L. pneumophila* and hot springs and public baths has been accumulated, but there is little information regarding *L. pneumophila* in environmental waters other than hot springs and public baths.

In this study, 22 environmental water places were surveyed in Yamaguchi Prefecture, Japan, and *L. pneumophila* was isolated from five sites.

2. Materials and Methods

2.1. Bacteria and Culture Conditions. *Legionella pneumophila* Lp02 and the ΔdotA mutant, Lp03 [2, 5], were maintained as frozen glycerol stocks and cultured on N-(2-acetamido-2-aminoethanesulphonic acid (ACES)-buffered charcoal-yeast extract broth containing 1.5% agar (CYET) or liquid ACES-buffered yeast extract broth (AYET) supplemented with 100 μg/mL thymidine.

Isolation of *L. pneumophila* was performed using CYET supplemented with glycine (Wako, Osaka, Japan, 3 mg/mL), vancomycin HCl (Wako, 1 μg/mL), polymyxin B (Sigma, MD, USA, 79.2 IU/mL), and sulfate cycloheximide (Wako,
2.2. Specimen Collection and Preparation. Samples were collected from 22 environmental water sites. Eight samples were collected from ashiyu foot spas, seven were from water fountains, four were from basins of shrine, and three were from ponds (Table 1). Five hundred milliliters of sample was collected from environmental water sites in Yamaguchi Prefecture, Japan. Samples were concentrated and spread on GYPC agar. Five possible colonies were obtained. Three were isolated from ashiyu foot spas, one was isolated from a water fountain, and the other was isolated from a pond.

With regard to L. pneumophila or not, the presence of L. pneumophila specific gene, msp [14], was tested by PCR. The msp gene was detected in all isolates, indicating that these isolates were L. pneumophila. We named these isolates Twr292, Ymt294, Ofk308, Ymg289, and Bnt314 (Tables 1 and 3).

To confirm whether these isolates were L. pneumophila or not, the presence of L. pneumophila specific gene, msp [14], was tested by PCR. The msp gene was detected in all isolates, indicating that these isolates were L. pneumophila. We named these isolates Twr292, Ymt294, Ofk308, Ymg289, and Bnt314 (Tables 1 and 3).

3. Results

3.1. Isolation and Identification. Twenty-two samples were collected from environmental water sites in Yamaguchi Prefecture, Japan. Samples were concentrated and spread on GYPC agar. Five possible colonies were obtained. Three were isolated from ashiyu foot spas, one was isolated from a water fountain, and the other was isolated from a pond.

3.2. Growth in Liquid Medium. We compared the growth of the five isolates in AYET medium with that of the virulent

<table>
<thead>
<tr>
<th>Place</th>
<th>No. of collected points</th>
<th>No. of positive points</th>
<th>Positive rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water fountain</td>
<td>7</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Ashiyu foot spa</td>
<td>8</td>
<td>3</td>
<td>38</td>
</tr>
<tr>
<td>Basin</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pond</td>
<td>3</td>
<td>1</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>22</td>
<td>5</td>
<td>23</td>
</tr>
</tbody>
</table>

Table 2: Oligonucleotides.

<table>
<thead>
<tr>
<th>Name/region</th>
<th>Sequence (5'-3')</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>lvhl/lvhB3</td>
<td>atgggagtcttcggcaata</td>
<td>This study</td>
</tr>
<tr>
<td>lvh2/lvhB3</td>
<td>gctgggtgacctttgaata</td>
<td>This study</td>
</tr>
<tr>
<td>rtxi/trxA</td>
<td>gctgccacccctttgttga</td>
<td>This study</td>
</tr>
<tr>
<td>rtx2/trxA</td>
<td>caggggtgtaggttgtagt</td>
<td>This study</td>
</tr>
<tr>
<td>dot1/dotA</td>
<td>caaatccggcattcaaatc</td>
<td>This study</td>
</tr>
<tr>
<td>dot2/dotA</td>
<td>ctattgcgccttgqggtt</td>
<td>This study</td>
</tr>
<tr>
<td>hsp1/hsp60</td>
<td>gccaaccttttttaaacacaagaaac</td>
<td>[15]</td>
</tr>
<tr>
<td>hsp2/hsp60</td>
<td>caattggcagctgгаgаттягаatag</td>
<td>[15]</td>
</tr>
<tr>
<td>mp1/mp</td>
<td>ggtgacgctgctgatgatg</td>
<td>[16]</td>
</tr>
<tr>
<td>mp2/mp</td>
<td>ggccaataggttcgcacagg</td>
<td>[16]</td>
</tr>
</tbody>
</table>
reference strain Lp02 and the avirulent ΔdotA mutant Lp03, which lacks a functional Dot/Icm secretion system. Twr292, Ofk308, Ymg289, and Bnt314 showed comparable growth with Lp02 and Lp03. In contrast, Ymt294 had shown lower growth rate. After 48 h, the number of Ymt294 was almost one-tenth of Lp02 and Lp03 (Figure 1).

3.3. Invasion, Intracellular Growth, and Cytotoxicity in HeLa Cells. To investigate the intracellular behavior of the isolates, their invasion, growth, and cytotoxicity in HeLa cells were examined. HeLa cells were infected with the isolates, and the number of invaded L. pneumophila was counted at 1 h after infection. Ymt294, Twr292, and Ymg289 invaded HeLa cells more than ten times higher than reference strain Lp02 (Figure 2(a)).

Intracellular growth of the isolates was measured by counting intracellular bacteria numbers at 24 and 48 h after infection. At 24 h after infection, Twr292, Ymg289, and Bnt314 showed higher growth and the bacterial number was more than ten times as compared with the reference strain Lp02. At 48 h after infection, the numbers of all isolates were decreased. The ΔdotA mutant Lp03 failed to replicate in HeLa cells, as previously reported [17] (Figure 2(b)).

The cytotoxicity of isolates was measured by LDH release assay and phase-contrast microscopy. At 24 and 48 h after infection, Ymt294, Twr292, and Ymg289 showed high cytotoxicity (Figure 2(c)). At 24 h after infection with isolates, cells were damaged and detached from the culture plates (Figures 4(a)–4(c) and data not shown).

3.4. Intracellular Growth and Cytotoxicity in THP-1 Cells. L. pneumophila resides predominantly in macrophages after infection; therefore, the growth and cytotoxicity of isolates were examined in a human macrophage cell line, THP-1 cells. At 24 h and 48 h after infection, all isolates showed potent growth. The numbers of these isolates were ten times higher than the reference strain Lp02. The ΔdotA mutant Lp03 failed to grow in THP-1 cells (Figure 3(a)). Moreover, all isolates showed higher cytotoxicity than the reference strain in THP-1 cells. Particularly Twr292 induced strong cytotoxicity (Figure 3(b)). Damaged and detached THP-1 cells were observed with phase-contrast microscopy after cells were infected with Twr292 (Figures 4(d)–4(f)).

3.5. Detection of Loci and Genes Related to Virulence Factor. To estimate whether these isolates are pathogenic to humans, the presence of genetic loci of dot, lvh, and rtx that encode typical virulence factors of L. pneumophila was examined. Loci of dot and lvh encode components of type IV secretion system that play an important role in intracellular growth [18]. Locus rtx encodes proteins involved in adherence, cytotoxicity, and pore formation [19]. The presence of dot, lvh, and rtx loci was tested by detecting dotA, lvhB3, and rtxA genes located in these loci, respectively, by PCR. The presence of the hsp60 gene was also examined. hsp60 encodes a 60 kDa heat shock protein (Hsp60) that enhances invasion and elicits cytokine expression in macrophages [20, 21]. These genes were detected in all five isolates (Table 4), indicating that these isolates are human pathogenic.

4. Discussion

In Japan, hot springs are reported to be the major infectious source for L. pneumophila [9–11]. However, there is little information about L. pneumophila in environmental waters other than hot springs. In this study, we tested...
Figure 2: Invasion, intracellular growth, and cytotoxicity in HeLa cell. (a) HeLa cells were infected with *L. pneumophila* strains for 1 h. The infected cells were cultured in the presence of 50 µg/mL gentamicin. After 1 h of incubation, the infected cells were washed with PBS and lysed with cold distilled water. CFU were determined by serial dilution on CYET. (b) HeLa cells were infected with *L. pneumophila* strains at MOI of 100 for 1 h. The infected cells were cultured in the presence of 50 µg/mL gentamicin. The infected cells were cultured for 1, 24, and 48 h and washed with PBS followed by lysis with cold distilled water. CFU were determined by serial dilution on CYET. (c) HeLa cells were infected with *L. pneumophila* strains for 1 h. The infected cells were cultured in the presence of 50 µg/mL gentamicin for 1 h. After 24 or 48 h incubation, the cells were washed and cultured in fresh medium. The supernatants of infected cells were collected, and the release of LDH was measured. All values represent the average and the standard deviation for three identical experiments. Statistically significant differences compared with the control are indicated by asterisks (*, \(P < 0.05\)).
22 environmental water sites in Yamaguchi Prefecture, Japan. Eight were from ashiyu foot spas, seven were from water fountains, four were from basins, and three were from ponds. *L. pneumophila* was isolated from five sites (23%) (Table 1). Three were isolated from ashiyu foot spas (38%), one was isolated from a water fountain (14%), and the other was isolated from pond (33%). Interestingly, *L. pneumophila* was isolated mostly from ashiyu foot spas. Ashiyu foot spa is a type of hot spring where people bathe their feet. Ashiyu foot spa is usually in open air and freely available. Its temperature is generally controlled around 45°C. Older people often use this facility. For these people, *L. pneumophila*-containing aerosols generated from environmental waters could be a source of *L. pneumophila* infection. To the best of our knowledge, this is the first report related to isolation of *L. pneumophila* from ashiyu foot spa. Previous surveys of hot springs have demonstrated that around 30% of hot springs or public baths were *L. pneumophila* positive [22, 23]. In this study, *L. pneumophila* was isolated from three of the eight sites (38%) of ashiyu foot spa sampled. These results may suggest an equivalent risk of contracting *L. pneumophila* at ashiyu foot spa as compared with hot spring. However, a more extensive survey is required to obtain more accurate epidemiological relevance and to analyze the risk of *L. pneumophila* infection from ashiyu foot spa.

The growth of the *L. pneumophila* isolates in liquid medium was almost the same as reference strain Lp02, but Ymt294 showed lower growth rate (Figure 1). Since the number of Ymt294 was not increased from 24 to 48 h, the growth of Ymt294 seemed to be saturated at one-tenth of final concentration of other strains. Intracellular growth of these isolates was different in HeLa and THP-1 cells. In HeLa cells, growth of isolates was significantly higher than Lp02 at 24 h after infection. However, the numbers of intracellular bacteria were decreased at 48 h after infection (Figure 2(b)). Some isolates such as Ymt294, Twr292, and Ymg289 showed strong cytotoxicity in HeLa cells, and cells were detached from culture plate at 48 h (Figures 2(c) and 4). This detachment may be a dominant factor of decrease in intracellular growth of those isolates. In THP-1 cells, the numbers of intracellular bacteria were increased from 24 to 48 h, despite the high cytotoxicity of those isolates (Figures 3(a) and 3(b)). Consistent with the strong preference of *L. pneumophila* for macrophages, these results indicate that macrophages are more suitable for *L. pneumophila* growth than epithelial cells.
Figure 4: Cytotoxicity in HeLa and THP-1 cells. HeLa cells ((a)–(c)) and THP-1 cells ((d)-(e)) were infected with *L. pneumophila* strains Lp02 ((b) and (e)) or Twr292 ((c) and (f)) for 1h. The infected cells were cultured in the presence of 50 μg/mL gentamicin for 1h. The cells were washed and cultured in fresh medium. After 24 h of incubation, the condition of cells was observed using phase-contrast microscope.

Since all isolates harbored genes of well-characterized virulence factors including *dot*, *lvh*, *rtx*, and *hsp60*, the relationship between virulence factors and cytotoxicity or intracellular growth was not clear. However, the existence of genes of the virulence factors may suggest that those isolates can be human pathogenic. In particular, the Twr292 isolate from ashiyu foot spa showed high intracellular growth and strong cytotoxicity in HeLa and THP-1 cells. In addition, the contamination level of Twr292 was very high (128 CFU/100 mL). According to the guidelines of Japan’s Ministry of Health, Labour and Welfare, the concentration of *L. pneumophila* should be maintained below 10 CFU/100 mL in hot springs or public batheres. The concentration of Twr292 was more than ten times that of the defined standard.

Overall, our results strongly suggest that ashiyu foot spa is a possible source of *L. pneumophila* infection.

Acknowledgment

This work was supported partially by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research (C), 22580333.

References

Submit your manuscripts at http://www.hindawi.com