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Abstract. 
Deformable image registration is the spatial mapping of corresponding locations between images and can be used for important applications in radiotherapy. Although numerous methods have  attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR), free-form deformation (FFD), and demons, no automatic method for registration is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the deformation field is often complex and cannot be estimated well by current automatic deformable registration methods. This paper focuses on how to revise registration results interactively for deformable image registration. We can manually revise the transformed image locally in a hierarchical multigrid manner to make the transformed image register well with the reference image. The proposed method is based on multilevel B-spline to interactively revise the deformable transformation in the overlapping region between the reference image and the transformed image. The resulting deformation controls the shape of the transformed image and produces a nice registration or improves the registration results of other registration methods. Experimental results in clinical medical images for adaptive radiotherapy demonstrated the effectiveness of the proposed method.


1. Introduction
Radiotherapy is an image-guided treatment, and imaging is involved in every key step of the process. The evolution of radiation therapy has been strongly correlated with the development of imaging techniques [1]. The term of image-guided radiation therapy (IGRT) is employed loosely to refer to newly emerging techniques of radiation planning, patient setup, and delivery procedures that integrate cutting-edge image-based tumor definition methods, patient positioning devices, and/or radiation delivery guiding tools. These techniques combine new imaging tools, which interface with the radiation delivery system through hardware or software, and state-of-the-art 3D conformal radiation therapy (CRT) or intensity modulated radiation therapy (IMRT) and allow physicians to optimize the accuracy and precision of the radiotherapy by adjusting the radiation beam based on the true position of the target tumor and critical organs [2]. This increased accuracy justifies a smaller clinical target volume to planning target volume (CTV-PTV) margin, thus decreasing the consequent collateral damage to the normal tissues. While IGRT is certainly a step forward for radiation oncology, the efficacy of these image-guided treatments depends on a treatment plan optimized using these images.
One of the key questions in image guidance is how the information is used to modify treatment. If the target and organs at risk (OARs) can be delineated on online volumetric images, it is possible to generate an adaptive treatment plan. Replanning theoretically provides the highest precision and does not need specialized hardware such as the robotic couch. However, online replanning requires superior online image quality, as well as fast and robust algorithms, to perform automatic region-of-interest (ROI) delineation, dose calculation, and beamlet weight optimization. Various methods are used clinically to increase the speed of ROI delineation, including atlas-based segmentation, ROI propagation, and deformable image registration [3]. Deformable image registration is a fundamental task in medical image processing due to its potential clinical impact [4]. For instance, the advantage of deformable image registration in adaptive radiotherapy is that the deformation field can be used for nonrigid dose accumulation [5].
The process of deformable image registration consists of establishing functional and/or spatial anatomical correspondences between different images. The term deformation is often used to denote the fact that the observed images are associated through a nonlinear dense transformation or spatially varying deformation model [6]. Deformable image registration has been studied in great detail, and numerous methods have attempted to register deformable medical images automatically, such as salient-feature-based registration (SFBR) [7, 8], free-form deformation (FFD) [9], and Demons [10, 11]. SFBR is a point-based registration approach which uses salient features that are prominent and distinctive features in the image. The features are extracted in two images using an interest point detector and are then matched for correspondence. The correspondent features are then used to interpolate a nonrigid transformation using the thin-plate-spline method [12]. In order to recover the local geometric differences well between anatomic structures by SFBR, it is also assumed that there are enough correspondent landmarks in local geometric differences areas. Typically, a large number of reliable corresponding anchor points are required for accurate registration [13]. However, it is not often fulfilled in clinical applications; for instance, in homogenous regions, the feature-based method may fail when few or no salient features locate in these corresponding regions. The Demons algorithm uses image intensity values and assumes that pixels presenting the same anatomical points on each image have the same intensity values, and thus it is appropriate for monomodality image registration. When the local geometric deformation is large or images are in multimodality, the Demons algorithm becomes difficult to handle. FFDs are one of the most common types of transformation models in medical images. The advantage of the transformation model lies in its simplicity, smoothness, and ability to describe local deformations with few degrees of freedom. However, misregistration in the difference image after such deformable registration is still viable. The main reason for this is the limited flexibility of deformation registration methods to describe complex local deformations. In addition, most of the existing methods based on energy minimization or optimization may fail in clinical settings due to the suboptimal solutions and excessive running time. Some recently proposed methods [14, 15] attempted to solve the problem of deformable registration via hierarchical subdivision. However, these methods can only be applied for monomodality registration, and local deformations are linear and small. To the best of our knowledge, no automatic method for registration is perfect, and no generic automatic algorithm has shown to work properly for clinical applications due to the fact that the deformation field is often complex and cannot be estimated well by current automatic deformable registration methods.
The aim of this study is to refine the deformable image registration by manual revision for clinical applications. The B-spline is a powerful tool for modeling 2D or 3D deformable objects. The proposed method is based on multilevel B-spline to interactively revise the misregistration regions by manipulating an underlying mesh of control points in the overlapping region between the reference image and the transformed image in RGB color model. This paper is organized as follows. Section 2 describes material and proposed registration refinement technique. In Section 3, we show the experimental results on clinical images. Section 4 concludes this paper.
2. Materials and Methods
2.1.  The Framework of Interactive Multigrid Refinement Algorithm
We explored digital B-splines to devise an interactive multigrid refinement that consists of automatic process and manual process to improve the accuracy of deformable registration. As shown in Figure 1, the proposed framework of multigrid refinement algorithm consists of two steps. The first is the automatic process in which conventional automatic deformation registration methods or rigid and linear transformation model can be used to coarsely register deformable images. The second is the manual process in which multilevel B-splines are used in the overlapping region of the transformed image and the reference image in RGB model for manual revision. The misregistered areas are represented by colors and the registered areas by gray level to show alignment of the two images. If the automatic registration methods can register deformable images well, there is no need to use the second manual process. In clinical applications, however, the automatic methods often do not register well. The second step will attempt to eliminate the errors visually by manual revision in the misregistered areas. In order to describe the deformation field, we chose the B-splines to model 2D and 3D deformations. Due to the fact that misregistered areas may be large or small in different clinical cases, multilevel B-spline is designed to generate control point mesh at decreasing spacing in a coarse-to-fine manner. Misregistered areas will be reduced coarsely by dragging control points with large spacing mesh. As the misregistered areas are reduced, fine control point mesh will be generated with small spacing. Only control points in misregistered areas need to be revised in the fine level. The process will be stopped until visually satisfying registration results are displayed. Registration of the revised transformed image and the reference image will make the overlapping image in RGB model become gray. We will illustrate the proposed technique in the next sections in detail.


	
		
		
			
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
		
			
		
			
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
		
			
		
		
			
		
		
			
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
		
			
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
			
		
		
		
			
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
					
				
					
				
			
		
		
			
				
					
				
					
				
			
		
		
			
		
			
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
					
				
					
				
			
		
		
		
			
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
				
			
		
		
			
				
					
				
					
				
			
		
		
			
	



Figure 1: The framework of interactive multigrid refinement algorithm.


2.2. B-Splines and Local Deformation Model
As introduced in the previous section, the goal of interactive multigrid refinement is to reduce the local registration error of deformable registration methods. The nature of local deformation of anatomic structures can vary significantly across patients and ages. Therefore, it is difficult to describe the local deformation via parametric transformations, such as rigid transformation, or affine transformation, which can capture only the global motion of organs. Free-form deformation based on the B-splines is a powerful tool for modeling 3D deformation objects. However, optimization of a cost function associated with the global transformation parameters and the local transformation parameters in the framework of free-form deformation uses an iterative multiresolution search strategy, which is often computationally expensive and prone to local minimum. Generally, the deformation results of free-form deformation contain errors which are visually distinctive from corresponding difference images. Such cases also exist in other kinds of automatic deformation registration methods. To this end, we propose a manual revision process to refine the local deformation model based on multilevel B-splines. Only the misregistration areas are revised by manipulating an underlying mesh of control points. The revision process can be fast and efficient.
To define a local deformation model, B-splines are used for modeling the deformation fields. The domain of the image volume is denoted as
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. In general, the transformations that result from cubic B-splines are smooth and able to describe local deformation with few degrees of freedom. In contrast to thin-plate spline [12] or elastic body splines [16], B-splines are locally controlled; in particular, the basis functions of cubic B-splines have a limited support that changing control point 
	
		
			

				Φ
			

			
				𝑖
				,
				𝑗
				,
				𝑘
			

		
	
 affects the transformation only in the local neighborhood of that control point. If any data points are added, removed, or modified, B-splines can be computationally efficient. This is the reason we chose B-spines for local deformation model.
The control points 
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 are the parameters of the B-splines, and the degree of deformation field is essentially dependent on the spacing of control points. A large spacing of control points allows modeling of global deformation with large displacement, and hence, one control point will influence the deformation of large local areas, while a small spacing of control points allows modeling of local deformation within small areas. The resolution of control point mesh generally determines the degrees of freedom. Therefore, hierarchical B-spline refinement can be used to refine the deformation field. We have designed a hierarchical multiresolution B-spline refinement tool in which the resolution of control mesh is increased to revise the deformation field in a coarse-to-fine manner. Let 
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denote hierarchical control point meshes at different spacings for deformation revision. For each control point mesh 
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In this way, the overall local transformation of deformation revision is represented as a combination of B-splines at increasing resolution of control point mesh. For those misregistered areas, large spacing of control point mesh is generated when misregistered areas are large. After manual revision with related control points, the overall misregistered areas will be reduced. In order to refine the results further, the control point mesh is progressively refined. In this case, the control point mesh at level 
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. Therefore, the control point spacing is halved at every step. With the revision of control point at different levels, the final deformation field will be generated to make the reference image coincide with the transformed image.
2.3. Manual Refinement in RGB Model
In order to observe the misregistered area between the reference image and the transformed image well, we designed the RGB model. Without loss of generality, we take the case of 2D image registration for explanation. In RGB model, the reference image is shown in the green band, and the transformed test image is shown in the red and blue bands of a color image. Therefore, when the images register perfectly, all three color bands at a pixel will have the same or similar values, producing gray scale. In areas where the images do not register well, the pixels will appear green or purple. Also appearing in green or purple are occluded areas. Thus, the misregistered areas will be displayed in green or purple in RGB model. The manual refinement which is based on the B-splines will revise the deformation transformation through manipulating control points in the transformed image. With the revision of the transformed image, the misregistered areas would be reduced or even eliminated because the local anatomic structures in the transformed images are revised to be aligned with the corresponding structures in the reference image. Meanwhile, the pixels in the misregistered areas that appear green or purple will become gray due to overlapping of the corresponding anatomic structures. The process of manual revision will be stopped until satisfying results are achieved. That is, the overlapping area in RGB model appears gray.
Due to the local geometric differences from large deformation or gray level change between the reference image and the test image, it is not easy to obtain perfect registration between corresponding structures. Therefore, the finally obtained overlapping area does not appear to be gray everywhere. In such case, we take the distinctive edge or salient object as the criterion for manual refinement. For example, if a distinctive edge in the transformed image is revised to be coincided with the corresponding edge in the reference image in RGB model, we consider that the manual refinement is good in such local areas around the distinctive edge. In our experiments, there is no need to revise every control point because the two images have been registered coarsely by automatic deformation registration methods and the misregistered areas are assumed to be limited. Our proposed manual revision is only used to improve the coarsely obtained registration results if the deformable registration methods do not work well. To our knowledge, the whole process of automatic deformable registration methods may not be satisfactory in clinical applications if these registration methods do not work well or if large registration errors are visible. Our proposed method provides a means to aid the process to be successful and allows the user to drag control points to get a better image alignment. If the automatic registration methods do not work well in clinical applications, the clinicians can use our tool to efficiently revise the former registered results directly.
To demonstrate the scheme of the manual refinement in RGB model, lung CT images in different respiratory phases are used for illustration. Precise targeting of lung tumors is of great importance in conformal radiotherapy, particularly stereotactic body radiation therapy (SBRT) for lung cancer. The discontinuity of the sliding behavior of the lungs makes the registration of lungs in different respiratory phases very challenging. Figure 2 shows the lung images in inhale and exhale phases of a patient’s 4D CT set. Due to the local deformation of the shape of lungs, we can register the two images by our manual revision technique. As shown in Figure 2(c), the RGB model consists of three color components resulting from the test image and the reference image. Purple or green shows the misregistered area between the two images, and the well registered area appears to be gray. It should be noted that the two input images can be either two unregistered images or two images that have been p