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Calorie restriction (CR), which usually refers to a 20–40% reduction in calorie intake, can effectively prolong lifespan preventing
most age-associated diseases in several species. However, recent data from both human and nonhumans point to the ratio of
macronutrients rather than the caloric intake as amajor regulator of both lifespan and health-span. In addition, specific components
of the diet have recently been identified as regulators of some age-associated intracellular signaling pathways in simple model
systems. The comprehension of the mechanisms underpinning these findings is crucial since it may increase the beneficial effects
of calorie restriction making it accessible to a broader population as well.

1. Introduction

The amount and quality of nutrient intake during lifetime are
commonly regarded as main health-span regulators. Diet is
in fact one of the lifestyle components capable of affecting
the quality and the duration of life in a wide range of
living organisms. The list of human pathologies, directly or
indirectly affected by nutrients, is growing at a fast pace and
includes major causes of mortality and morbidity such as
cardiovascular diseases, diabetes, cancer, inflammation and
neurodegeneration. Considering that population aging and
disabilities are major concerns industrialized countries are
going to face in next years, the possibility to increase the
health-spanwith a consequent reduction of related healthcare
costs is of general interest. It is therefore surprising that
the most straightforward nutritional intervention to prolong
lifespan is almost 80 years old but has had only limited
application so far.

McCay published, in 1935, the first paper demonstrating
that reduced intake of nutrients without malnutrition (Calo-
rie Restriction, CR) could increase the mean as well as the
maximum lifespan of rats [1]. The amount of calorie depriva-
tion and the age at which the reduction in calorie intake starts
influence the magnitude of the modification observed. Many
other investigators, throughout the world, have confirmed
this observation in all the other model systems tested. Yeasts,

fruit flies, nematodes, fishes, hamsters, and several strains
of mice as well as rats consistently increase their lifespan
when the nutrient availability drops between 30% and 75% of
the normal calorie supplementation, according to the species
considered. Not only calorie restricted rodents lived longer
than the ad libitum fed counterparts, but a significant part
of them (about 30%) died without any apparent pathology,
raising the striking possibility that aging is not necessarily
tightly linked with costly pathologies.

However, accumulating data in both human and non-
humans suggest that not only calorie restriction but also
the balance of nutrients such as protein, amino acid, fat,
mineral and phytochemicals may have an important role in
regulating both lifespan and health-span. Protein restriction,
methionine restriction, and alternate day fasting, without
overall reduction in calorie intake, are some examples of
interventions with outcome similar to that observed follow-
ing a calorie restricted diet regimen. There is a growing
interest in this field also because, while calorie restriction
may encounter limited compliance on the population scale,
dietary restriction promises to have broader application.
Here we review the effects of calorie restriction in different
model organisms and the molecular mechanisms by which
dietary interventions may modulate lifespan in simple model
organisms and mammals.
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2. CR in Yeast

The simple genetic techniques, the low cost, the possibility
to do multiple tests and the short lifespan have tempted
the research community to use yeast to precisely dissect
the molecular mechanisms involved in nutrient responses.
Glucose depletion, themost common practice tomimic calo-
rie restriction in yeast cultures, progressively increases the
mean and maximum life span when glucose concentration
drops from 2% up to 0.01% [2]. On the contrary, addition
of glucose to starved yeasts modifies one-third of the yeast
transcriptomemodulating both PKA and Sch9p activities [3].
However, Ras/PKA pathway seems to have a predominant
role in this response; in fact incubation of yeast cultures with
limited glucose availability (0.5%) do not further extend the
lifespan of long-lived cdc25-10 mutants (the Ras2p exchange
factor) [2] or the stress resistance of ras2 deleted mutants [4].
Phosphorylation of Bcy1p, the PKA regulatory subunit, which
results in increased Bcy1p inhibitory function, seems to be
involved in glucose regulation of PKA activity as well [5].

Many studies have shown that also the availability of
amino acids and nitrogen bases affect the lifespan of yeasts
[6]. This is consistent with the observation that mutations in
genes involved in amino acid biosynthesis or nitrogen uptake
influence the life span [7]. Nitrogen limitation has been
linked to ROS increase and promotes autophagy induction
[8, 9] by the sphingolipids biosynthetic pathway [10, 11].
The relative concentration of each available amino acid also
affects yeast longevity [7, 12–15] as well as the ratio of
essential to nonessential amino acids [16]. It is not surprising
that single amino acid addition or depletion is sufficient to
affect yeast longevity. As observed in rodents, methionine
restriction extends the lifespan even of glucose-depleted
cultures (0.5% glucose), while a 6-fold excess of glutamic
acid has a pro-longevity effect [16, 17]. It is interesting to
note that the effect of these amino acids is not influenced
by SIR2 or SOD2 deletions whereas Gcn2p, which is a
modulator of amino acid deprivation response, was shown
to impair lifespan extension induced by the depletion of
these amino acids [16]. Finally, since methionine restriction
does not extend the lifespan of strains lacking Sch9p, the
latter protein must be involved in methionine response [16].
A role for methionine in growth promotion and autophagy
inhibition has been identified; this process involves the
methionine product S-adenosyl-methionine that acts as a
methyl donor during these processes [18]. Very recently,
the role of single amino acid in the regulation of longevity
pathways and stress resistance has been clarified at the
molecular level [4].The study demonstrates the existence of at
least two different amino acid response pathways: the first one
transduces threonine and valine through TORC1 activation;
the second one transduces serine activating PDK1 orthologs
Pkhsp [4, 19]. Both pathways modify Sch9p, promoting its
phosphorylation at specific amino acidic residues [4]. It is
interesting to note that the restriction of each of these amino
acids is capable to significantly increase both the lifespan
and stress resistance of yeast cultures even in the presence of

high glucose concentration, thus confirming that the effect of
specific amino acids is not simply due to their role as energy
source.

However, the observation that extreme starvation can
double maximum life span when stationary phase cells are
switched into water, not only in wild type, but also in ras2sch9
double deleted mutants cells [20], supports the hypothesis
that nutrients can trigger pathways alternative to the two
identified so far. Consistent with this hypothesis RIM15
deletion, which reverses life span extension associated with
the deletion of TOR1, RAS2, or SCH9, has only a partial effect
on the life span extension under extreme CR, an observation
that suggests the existence of at least another yet to be
discovered prolongevity mechanism [19].

Many metabolic changes are associated with CR and
some of them must be responsible for the effect on life
span observed. CR accelerates ethanol and neutral lipids
catabolism as well as gluconeogenesis [21, 22]. It promotes
trehalose and glycogen storage, while glycogen catabolism
takes place at later stages. Neutral lipids, the storage
molecules free fatty acids that diacylglycerol and ergosterol
are derived from, regulate energy homeostasis as well as
membrane stability. In addition, they can activate apopto-
sis and phospholipids biosynthesis, which in turn trigger
multiple transduction networks. Therefore CR, promoting
lipids consumption, may have synergistic effects with many
processes [16]. ATP levels are high in calorie-restricted cells;
in fact, CR enhances mitochondrial activity. ROS levels are
higher in cells grown on 0.2% glucose media compared to
those grown on 0.5%. It has been observed that shifting
the metabolism toward respiration has the same effects
on lifespan and transcriptome than CR [23, 24], and that
this increased respiration fuels ROS production. Therefore,
probably, the amount of ROS produced with lower glucose
concentration is not sufficient to damage cellular components
but at the same time activates stress-protecting processes like
the increase in cytosolic and mitochondrial ROS scavenging
proteins (mitohormesis) [22]. It has recently been reported
that such ROS production may involve epigenetic silencing
of subtelomeric chromatin [25, 26].

These and other findings support the hypothesis that
nutrient composition andnot simply calorie restrictionmight
be the key regulator of lifespan [12]. In particular Sch9p the
appears to be the major nutrient, especially amino acids,
sensing factor [4].

3. CR in Caenorhabditis elegans

The nutrition of laboratory-based nematodes relies on bac-
teria, mainly E. coli, and calorie restriction metabolic state
is usually obtained either diluting these bacteria or reducing
worm eating capability as well as nutrient transportation
pathways. In fact, a reduction of the bacterial density by 10-
fold results in 60% increased lifespan [27], whereas higher
bacterial dilution can extend the lifespan ofworms up to 150%
[28]. Mutations in genes that affect feeding mechanics (e.g.,
eat-2 which causes a pharyngeal pumping defect) increase
life span by about 30–60% [29]. Decreased activity of the gut
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sodium dicarboxylate transporter NAC-3 or NAC-2 (high-
affinity sodium-dicarboxylate cotransporters that accept a
range of tricarboxylic acid-cycle intermediates with 4-5
carbon atoms), obtained using RNAi, produces an increase in
life span varying from 15% to 19% [30, 31]. Like in othermodel
organisms, inactivating the Ins/IGF-1 pathway significantly
prolongs life span; but many experiments have shown that
life span extension caused by dilution or absence of E. coli or
eat-mutation does not completely overlap with this pathway
[32, 33]. Indeed, eat-2/daf-2 double mutant lived 20% longer
than daf-2 alone [33], and, while daf-2mutant lived 69%more
than the wild type, the lifespan of the same mutants, grown
in the absence of bacteria, increased by 274% compared to
the wild type. Furthermore, daf-2, daf-2/daf-12, and daf-16
mutants are still sensitive to nutrients as judged by SOD and
catalase activities measurement [33].

Other evidences link CR to a better oxidative stress
response in an insulin/IGF-1 independent way. CR response
is mediated by thioredoxin 1 (trx-1) a protein that has
oxidoreductase activity and is conserved in many animals.
Trx-1 regulates aging and stress resistance; its deletion short-
ens adult lifespan and increases the sensitivity to paraquat-
induced oxidative stress. It has also been discovered that trx-1
deletion completely suppresses the lifespan increase of both
the eat-2 mutant and the dietary deprived regimen but only
partially affects the lifespan of the daf-2mutant. At the same
time trx-1 overexpression failed to further extend the long
lifespan of eat-2 mutant. Finally, trx-1 overexpression in the
ciliated sensory neurons (ASJ) of wild-type animals extends
adult lifespan but only under dietary deprivation [34].

Hansen and coworkers identified four genes extend-
ing the life span in daf-16 (the FOXO ortholog) but not
in eat-2 mutants: sams-1 (encoding S-adenosyl methionine
synthetase), rab-10 (encoding a Rab-like GTPase), drr-1
(dietary restriction response, of unknown function), and drr-
2 (encoding a putative RNA-binding protein). Expression of
all four genes is reduced in eat-2 mutant suggesting these
genes may be involved in longevity responses to CR [35].

More recently, Greer and Brunet proposed that spe-
cific pathways might respond to different dietary restriction
regimens [36]. Low-energy sensing AMP-activated protein
kinase AMPK/Aak-2 and the Forkhead transcription factor
Foxo/Daf-16 are necessary for longevity induced by a CR
regimen, while AMPK and Foxo are necessary for longevity
induced by some but not all CR regimens.

However, the role of specific nutrients as regulators of
longevity is consistent with other literature data. For example
O’Rourke and coworkers have recently attributed a role to
polyunsaturated fatty acids (PUFA) as regulators of longevity.
The underpinning mechanism involves autophagy activation
in response to PUFA supplementation [37], whereas malate
and fumarate supplementation increase worm lifespan likely
increasing respiration [38]. The role of amino acid supple-
mentation has also been confirmed into this organism. Pep-2
deletion, which reduces the uptake of peptides, determines
an increase in life span and stress tolerance and synergizes
with reduced insulin signaling [39]. In addition, metformin,
a common drug used to treat type II diabetes, increases the
worm lifespan through alteration of folate and methionine

metabolism [40] suggesting that amino acidmetabolismmay
have a role different from simply being energy source also in
this organism.

4. CR in Drosophila melanogaster

The idea that the effect of dietary restriction regimen on lifes-
pan relies on the reduced intake of calories [41] was strength-
ened by whole-genome transcripts profile experiments in
Drosophila. It has been observed that calorie restriction
reverts the transcriptional changes normally observed during
the aging process of flies and downregulates the expression of
genes involved in cell growth, metabolism, and reproduction
[42]. Recent experiments, however, challenged the idea that
calorie restriction owes its beneficial effects on the reduced
intake of calories suggesting that the depletion of specific
nutrients, rather than the reduction of the overall energy
intake, is responsible for the increased longevity observed in
calorie restricted animals [43, 44].

A growing body of evidence points to the ratio between
protein and carbohydrate (P : C), two major macronutrients,
as the most important regulator of lifespan and reproduction
in the fruit fly diet [45]. Higher ratio shortens lifespan
whereas lower ones do the opposite [46]. A P : C ratio = 1/16
prolongs Drosophila lifespan, while higher protein content
(P : C ratio 1/2) maximizes egg production and shortens the
lifespan [47]. But it is hard to distinguish between life span
extension due to protein restriction or to carbohydrate excess.
Probably, both carbohydrate excess and protein depletion
have crucial effects, since the longest lived flies are those
which are subjected to a quite high C : P ratio and have
an absolute high carbohydrate content. Because hydrolyzed
yeast, the common protein source of the fruit fly, consists
not only of proteins but also of vitamins, minerals, and
carbohydrates, casein was used as an alternative protein
source aiming at clarifying if other nutrient components
could have a role in the regulation of longevity. Using this
pure source of proteins overlapping results were obtained,
thus confirming the major role of proteins in the aging
process of this organism [48].However, while lowprotein and
high carbohydrate consumptionmaximizes lifespan a further
increase of carbohydrate content does the opposite [49],
probably because increasing the carbohydrate amount over a
certain threshold could have other additional effects. Indeed,
high carbohydrates consumption promotes obesity whereas
increased protein intake suppresses adiposity, (Skorupa and
coworkers). In addition, higher sucrose level enhanced the
influence of proteins on lifespan, suggesting that both pro-
teins and carbohydrates promote aging in a synergistic way
[50].

One by one nutrient replenishment to otherwise severely
calorie-restricted fruit fly demonstrates that only amino acids
addition is effective in decreasing the lifespan and increasing
fecundity, indicating that the amount of calories per se
does not affect the lifespan [47]. In addition, essential and
non-essential amino acids appear to have different roles in
regulating longevity, the former being capable to negatively
affect longevity, while the latter does not. The previously
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demonstrated tight link between longevity and fecundity is
weakening since methionine addition, one of the essential
amino acids, has been demonstrated to be sufficient to
increase fecundity at the same extent of full feeding but
had no influence on lifespan, raising the possibility that the
trade-off between fecundity and longevity is not a mandatory
scenario [47]. The latter observation has been confirmed
by chico mutants which have increased lifespan without
impairment in oogenesis [51].

Other experiments suggest methionine restriction, rather
than glucose depletion, as a prolongevity intervention sup-
porting the hypothesis that the amount of macronutrients
rather than the total amount of energy is the key to extend
the lifespan [52]. A very recent report limits the efficacy of
methionine restriction on longevity only when the overall
amino acid supplementation is low thus suggesting the exis-
tence of cross talk mechanisms between the various amino
acid response pathways [53].

At the molecular level, in spite of the many observations
relating single diet components to life span, the underpinning
molecular mechanisms have been poorly understood.

Insulin/IGF-like signaling pathway is central to control
longevity in all living organisms and Drosophila makes no
exception to this general rule.Mutations inChico protein, the
substrate of IGF1-receptor, extend fruit flymedian lifespan by
up to 48% in homozygotes and 36% in heterozygotes. Nev-
ertheless some evidences suggest the existence of pathways
alternative to insulin/IGF1 pathway by which nutrients can
exert their action. Indeed, chicomutants continue to respond
to CR suggesting that IIS and CR have only partially overlap-
ping mechanisms [54]. In addition, dFoxo overexpression in
thoracic and abdominal fat body increased longevity of 42%
when flies were maintained on restricted diet, but had only a
limited effect when flies were maintained on a high-yeast diet
(high protein content) [55]. In addition, because null dFoxo
mutants still respond to CR, dFoxo, even though its activity
canmodulate this response, is not the central mediator of diet
response [56]. Regarding the role of ROS on lifespan, protein
restricted diet, which increases lifespan in a Tor dependent
manner, reduces oxidative stress resistance probably through
the downregulation of antioxidant genes, while low sugar-
high protein diet does the opposite; on the other hand life
span increasing due to protein restriction with high sugar
level is suppressed by Sod1 reduction suggesting high sugar
level increases ROS production, while low protein level leads
to reduced Tor signaling and promotes longevity [57].

Finally, inhibition of fatty acid synthesis or oxidation
genes, in particular in the muscle tissue, inhibits lifespan
extension upon DR [58].

5. CR in Mammals

Calorie restriction extends the lifespan of rodents [1]. This
extension is accompanied with a lower incidence of most
chronic diseases and results in a more youthful metabolic
state [41, 59–61]. In addition, a significant proportion of
the calorie-restricted rodents reaches very old age without
any sign of disease [62]. CR protects from cancer [63, 64]

although the underlying mechanism is not fully understood
[65, 66].

One hypothesis is that energy restriction alters cell cycle
regulation, inhibiting cell proliferation and increasing apop-
tosis [67]. On the contrary increased levels of IGF-1 reverse
cancer prevention due to CR in mice probably stimulating
cell proliferation and inhibiting apoptosis [68]. Notably, ames
dwarf mice, which are deficient in IGF-1 production [69],
postpone the incidence of neoplastic disease [70]. Other
authors have reported that CR enhances the efficiency of
DNA repair mechanisms therefore reducing the oxidative
damage on DNA molecules [71, 72]; this is consistent with
the overall upregulation of cellular and molecular defense
systems during calorie restriction [73, 74].

CR attenuates aging-associated shrinkage of telomeres in
many mouse tissues and reduces the incidence of tumors in
mice that overexpress telomerase [75].

In male mice some of the effects of calorie restriction,
such as improved physical performance, increased insulin
sensitivity and reduced low-density lipoprotein as well as
cholesterol levels are similar to those induced by metformin,
a drug commonly used to treat type 2 diabetes. In fact,
the reduction of both oxidative damage and chronic inflam-
mation is associated with increased cellular protection [76]
during metformin treatment.

The first clues that protein intake and amino acid compo-
sition could regulate mammalian longevity are derived from
studies in mice and rodents. In these model systems CR
causes a 40% increase in lifespan whereas protein restriction
(PR) is capable of 20%, suggesting that about 50% of the CR
effect on lifespan relies on PR. In addition, mtROS decreases
during PR resulting in less DNA and protein oxidative
damage [77].

It has been suggested that methionine restriction (MetR)
could be responsible for the beneficial effects observed in
protein-restricted animals [76, 78] since MetR mice have
lower levels of serum IGF-1, insulin, glucose, and thyroid hor-
mone and reduced visceral fat deposition. Levels of hormones
such as leptin and adiponectin are increased in methionine-
restricted animals with respect to controls and independently
of overall energy restriction [79]. Furthermore, they show a
delay in developing cataract and age-related changes in T-
cell subclasses [80]. Conversely, methionine supplementation
produces different damages on cardiovascular system [81].
Mouse has been useful also as Alzheimer’s disease model.
A study conducted at the Los Angeles Longevity Institute
shows that periodic protein restriction cycles, without CR,
in mice already displaying significant cognitive impairment
and Alzheimer’s disease (AD)-like pathology can promote
changes in circulating growth factors (reduction of IGF-1 and
increase of IGFBP-1) as well as decrease of tau phosphoryla-
tion in the hippocampus with a consequent reduction of the
age-dependent impairment in cognitive performance [82].

Rats consuming no cysteine/cystine and low amount of
methionine (which are the limiting amino acids for GSH
synthesis) show an improvement in survival parameters and
no decrease in GSH levels [83], suggesting the existence of a
compensatory mechanism [84]. Likewise rats fed with 80%
methionine reduction show an increase of free GSH in blood
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according to a drop in oxidative stress biomarkers such as
plasma 8-hydoxydeoxyguanosine and 8-isoprostane, even if
the activities of GSH reductase and superoxide dismutase in
liver do not change [85].

Some possible mechanisms have been proposed: MetR,
like PR and CR, decreases the amount of mitochondrial
complex I, III, and IV in different rat tissues; excess ofmethio-
nine could impair gene expression because methionine is
a methyl groups donor during DNA methylation [86, 87];
furthermore, proteins rich in methionine are less resistant to
oxidative modification [88, 89]; MetR avoids the production
of methionine cycle metabolites like S-adenosyl-methionine,
S-adenosyl-homocysteine, and homocysteine that increase
the risk for degenerative diseases associated with aging and
free radicals [90, 91] and represents a thiol agent that enhance
mtROS production [92].

Methionine is not the only proaging amino acid in mice;
in fact tryptophan has been identified as another amino acid
capable of influencing the lifespan of mice and one-third
restriction of this amino acid extends maximum life span by
23% [87, 93, 94].

Also lipid metabolism seems to have an important role
in aging and it could be influenced by diet. Long lived
mammals have tiny amount of unsaturated fatty acids in
their cellular membranes, since these macromolecules are
the most susceptible to oxidative stress, their depletion result
in increased cellular protection against lipid peroxidation
[95–99]. Sphingolipids are a class of lipids important in
cellular processes for their bioactive role. Two classes of
them: ceramides and glycosphingolipids are implicated in
many kidney pathologies [100, 101], and sphingolipid levels
change during aging in brain and liver [102]. CR prevents
the accumulation of the long chain glycosphingolipids hex-
osylceramide and lactosylceramide (which are elevated also
in fibroblasts derived from elderly humans) in the kidneys
of mice during aging [103, 104]; this could be one of the
mechanisms that allow CR to maintain kidney function
during aging [105–111].

However, the effect of calorie restriction on primates
appears to be more controversial than it has been observed in
other model organisms. Two different studies on the effect of
calorie restriction on rhesus monkey are presently ongoing,
one at the Wisconsin National Primate Research Center
(WNPRC) and another one at the National Institute of Aging
(NIA). Regarding the safety of long-term calorie restriction
practice both studies agree that a 30% calorie restriction, even
for long term, is both feasible and safe for primates. Regarding
the effectiveness of this energy-based nutritional intervention
on longevity, the two studies differ since WNBRC indicates
a 50% decrease in the incidence of cancer, cardiovascular
diseases, type 2 diabetes, and glucose intolerance [112, 113]
for the calorie restricted versus the ad libitum fed rhesus
monkeys.

On the contrary, the NIA study did not find a significant
improvement in survival in the calorie-restricted group.
The different method used in the two studies to calculate
the nutritional demands has been claimed as a possible
explanation of such a discrepancy [114]. This may have led to
aminor calorie reduction in theNIA study or, as very recently

suggested, even the control group may have been maintained
under calorie restriction diet regimen thus masking the
beneficial effects of calorie restriction [115]. In addition, diet
composition is quite different in the two studies; WNBRC
is similar to a typical western diet whereas NIA looks more
like a Mediterranean/Japanese diet thus suggesting that diet
composition could underpin the different conclusions of the
two studies.

However, even if there are no definitive results about
the effect on human lifespan upon CR, it has been
reported that this intervention protects against many age-
associated pathologies in particular cardiovascular diseases
like atherosclerosis and hypertension and lowers risk factors
for obesity, insulin resistance, and inflammation [116, 117].
Short-term studies indicate that CR in humans lowers fasting
insulin, core body temperature, and DNA damage and
possibly decreases cancers [62, 118].

It has also been demonstrated that humans with growth
hormone receptor deficiency also exhibit a high reduction of
IGF-1 and insulin level resulting in a highly reduced incidence
of cancer and diabetes mortality [119]. Another study has
reported a similar protection from cancer development in
GHRD [120]. On the other hand, protein restriction or the
depletion of specific amino acid, namely, methionine and
tryptophan, from the diet has the potential to reduce the level
of the circulating IGF-1 and to increase the level of the IGF-
1 binding proteins [121–123]. Consequently, similar dietary
regimen inhibits tumor growth in human xenograft models
[124]. It is interesting to note that the observed association
between protein restriction and lower free IGF-1 is indepen-
dent from calorie intake and relies only on diet composition.
Recent epidemiological and cellular studies have confirmed
the association between protein consumption and IGF-1 level
in humans [125]. In addition, the group consuming a high
protein diet has a fourfold risk developing a cancer and a
75% enhanced risk of all causes of death. It must also be
noted that the detrimental effect of the high protein diet on
65 and younger is counterbalanced by a milder positive effect
on older people raising the possibility that aging should be
considered as a dynamic process and that each phase of this
process has different nutritional demands.

6. Conclusions

The usefulness of calorie restriction diet regimen has been
demonstrated in all the species tested from the simplest
unicellular eukaryotes to mammals. Even the discrepancies
between the two primate studies have recently been solved
confirming the efficacy of calorie restriction also in these
long-lived species. However, recent research articles suggest
that the effect of calorie restriction relies on the reduced
uptake of single component of the diet and not on the overall
energy uptake. Protein restriction and variations in the ratio
between macronutrients demonstrated their efficacy in sev-
eralmodel systems including humans.Methionine restriction
efficacy has been confirmed in most species although the
molecular mechanism is not yet fully understood.
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In addition, the molecular mechanism underlying the
effect of selected amino acids has recently been clarified in
simple model organisms suggesting their role as longevity
regulators. Human studies have also revealed that nutritional
intervention may have different outcomes at different ages
suggesting caution transferring the results obtained in model
systems to human.
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