Phylogenetic and In Silico Functional Analyses of Thermostable-Direct Hemolysin and \textit{tdh}-Related Encoding Genes in \textit{Vibrio parahaemolyticus} and Other Gram-Negative Bacteria

Sushanta K. Bhowmik, Gururaja P. Pazhani, and Thandavarayan Ramamurthy

National Institute of Cholera and Enteric Diseases, P-33, CIT Road, Scheme XM, Beliaghata, Kolkata 700010, India

Correspondence should be addressed to Thandavarayan Ramamurthy; tramu@vsnl.net

Received 20 January 2014; Revised 26 May 2014; Accepted 12 June 2014; Published 8 July 2014

Copyright © 2014 Sushanta K. Bhowmik et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Emergence and spread of pandemic strains of \textit{Vibrio parahaemolyticus} have drawn attention to make detailed study on their genomes. The pathogenicity of \textit{V. parahaemolyticus} has been associated with thermostable-direct hemolysin (TDH) and/or TDH-related hemolysin (TRH). The present study evaluated characteristics of \textit{tdh} and \textit{trh} genes, considering the phylogenetic and in silico functional features of \textit{V. parahaemolyticus} and other bacteria. Fifty-two \textit{tdh} and \textit{trh} genes submitted to the GenBank were analyzed for sequence similarity. The promoter sequences of these genes were also analyzed from transcription start point to \(-35\) regions and correlated with amino acid substitution within the coding regions. The phylogenetic analysis revealed that \textit{tdh} and \textit{trh} are highly distinct and also differ within the \textit{V. parahaemolyticus} strains that were isolated from different geographical regions. Promoter sequence analysis revealed nucleotide substitutions and deletions at \(-18\) and \(-19\) positions among the pandemic, prepandemic, and nonpandemic \textit{tdh} sequences. Many amino acid substitutions were also found within the signal peptide and also in the matured protein region of several TDH proteins as compared to TDH-S protein of pandemic \textit{V. parahaemolyticus}. Experimental evidences are needed to recognize the importance of substitutions and deletions in the \textit{tdh} and \textit{trh} genes.

1. Introduction

\textit{Vibrio parahaemolyticus} is a Gram-negative bacterium, which is a part of the normal flora of marine and estuarine waters. Despite its halophilic nature, this pathogen has also been isolated from fresh water and freshwater fishes. Genetically and by serology, \textit{V. parahaemolyticus} strains are very diverse. During February 1995, an unusual incidence of \textit{V. parahaemolyticus} belonging to serovar O3:K6 was recorded among acute diarrheal cases in the Infectious Diseases Hospital, Kolkata [1]. Since 1996, this O3:K6 serovar has been associated with several outbreaks in different countries and hence designated as the pandemic strain [1]. The O3:K6 and its genetically related serovars of \textit{V. parahaemolyticus} are now documented as a pandemic clonal complex and have been related to its global spread [1].

The pandemic serovars of \textit{V. parahaemolyticus} are now considered as an emerging pathogen in Asia and coastal regions of the United States [2] due to several episodes of large seafood-associated infections. This pathogen has been frequently detected in shellfish than in sediment or water samples [3]. Apart from gastroenteritis, wound infections and septicemia are the other major clinical manifestations caused by pathogenic strains of \textit{V. parahaemolyticus}. This Vibrio causes infections in human due to consumption of raw or undercooked seafood or the wounds exposed to warm seawater. Patients with chronic liver diseases and leukemia are predisposed to septicemia caused by \textit{V. parahaemolyticus}, which is sometimes fatal [4]. Gastroenteritis is caused by diverse serovars of \textit{V. parahaemolyticus}; however, strains of O3:K6 with unique \textit{toxRS} gene sequence are distributed throughout the world as a pandemic serovar. The O3:K6 serovars that lacked the \textit{toxRS} sequence isolated before 1996 are known as prepandemic strains of \textit{V. parahaemolyticus}. Serovar O3:K6 continued to exist in the environment, con-
fronting several ecological and immunological changes in the population resulting in progression of several other new pandemic serovars.

Enterotoxins of this pathogen is attributed to the extracellular production of a putative virulence factor, the thermostable-direct hemolysin (TDH). TDH has been phenotypically shown as the β-type hemolysin on Wagasuma agar, which is also known as the Kanagawa phenomenon (KP). Apart from the KP-test, the purified TDH has been tested in myocardial cells [5], rabbit ileal loops [6], and enzyme-linked immunosorbent assay. The purified TDH caused a dose-dependent increase in intracellular free calcium in both Caco-2 and IEC-6 as detected by microspectrofluorimetry [7]. Significant lethal activity of TDH was also demonstrated in the murine infection model [8]. Sometimes, the KP-negative strains of _V. parahaemolyticus_ produce a TDH-related hemolysin (TRH). The TRH has similar physicochemical properties like TDH, but it is liable at temperature 60°C [9]. The pathogenic strains of _V. parahaemolyticus_ that harbor only the _tdh_ and express KP were found to be associated with acute diarrheal infection and epidemics [10]. The environmental strains that cause extraintestinal infections may differ in this virulence profile [11]. Generally, the detection rate of _trh_ in clinical strains is very less but comparatively more in environmental strains. However, high frequencies of _tdh_ and _trh_ genes positive strains have been detected recently in a pristine estuary of US [12]. Considering their importance, detection of these virulence marker genes is important to differentiate pathogenic strains from nonpathogenic _V. parahaemolyticus_.

TDH is associated with type-three secretion systems (T3SSs) [13, 14]. _V. parahaemolyticus_ has two sets of T3SS genes on chromosomes 1 and 2 (T3SS1 and T3SS2, resp.). The T3SS1 can induce cytotoxicity [14], whereas the T3SS2 can induce cytotoxicity in Caco-2 cells and also plays an important role in fluid secretion in the ileal loops [15]. Comparative genomic analysis confirmed that the T3SS2-containing PAI was conserved in KP-positive strains [16]. _V. parahaemolyticus_ that lacks typical _tdh_ and _trh_ may phenotypically express hemolytic activity due to the presence of its variant forms. These variants have considerable homology with established prototypes of _tdh/trh_. In this study, we assessed molecular diversity of _tdh_ and _trh_ gene sequences in order to understand the phylogenetic relationship and _in silico_ functionality among _V. parahaemolyticus_ and other Gram-negative strains reported from different geographical areas. In _V. parahaemolyticus_, five _tdh_ alleles have been identified, namely, _tdh1_ to _tdh5_, with similar biological activities [17]. These alleles have >96.7% sequence identity. However, expression of these alleles varied due to the defect in their promoter activities [18].

2. Materials and Methods

A total of 5 diverse bacteria with fully sequenced hemolysin genes (_tdh, trh_, and other hemolysin genes of _V. parahaemolyticus_) were selected and aligned for phylogenetic analyses (maximum parsimony and neighbor-joining methods) using MEGA software version 5.2 [19]. Nucleotide sequence length of 570 bp and alignment score of 13 were sustained to include majority of hemolysin encoding genes and aligned accurately from diverse bacterial strains. Considering these criteria, hemolysin genes represented by 52 strains, including 47 _V. parahaemolyticus_ (37 _tdh, 8 trh_, and 2 of hemolysin III and a delta _tdh_ genes), 2 _V. cholerae_ (one of each of _V. cholerae_ non-O1, non-O139 (NAG), and serotype O1), and one of each of _V. mimicus_ (_tdh_), _Vibrio hollisae_ (_tdh_), and _Listonella anguillarum_ (_trh_), were included in this analysis. A phylogenetic tree was constructed by bootstrap analysis through 1000 replicates. In addition to phylogenetic analysis, promoter regions of _tdh_ genes harboring _Vibrio_ spp. and their amino acids were analyzed.

3. Results and Discussion

Hemolysin is a potential virulence factor in many bacterial pathogens. It is well known that the TDH has a combination of biological actions including hemolysin, cardiotoxicity, and enterotoxicity. The severity of diarrheal illness caused by this bacterium is closely related to the presence of two types of _tdh_ and _tdh-_-related genes [20]. Depending on the environmental conditions, these virulence genes also play an important role in the stress tolerance in _V. parahaemolyticus_ [21]. The results of phylogenetic analysis of _tdh_ and _trh_ genes are shown in Figure 1. In the phylogenetic tree, three distinct clades (A to C) were identified. In clade A, _tdh_ gene from diverse serogroup of _Vibrio_ spp. had 85 to 100% sequence similarity within the coding region. Clade A contained more of _V. parahaemolyticus_ nonpandemic strains (91%) than pandemic strains (8%). Clade B had the _trh_ sequences of _V. parahaemolyticus_ and _Listonella anguillarum_. Clade C contained mostly the nonpandemic strains of _V. parahaemolyticus_.

So far, five _tdh_ genes have been identified in plasmids and chromosomes of _Vibrio_ spp. [22] and their sequence displayed >96.7% identity with similar biological activity [18]. These _tdh_ genes not only are restricted to _V. parahaemolyticus_ alone but also have been documented in other _Vibrio_ species such as _V. hollisae_, _V. mimicus_, and _V. cholerae_ [22]. Typical hemolysin-producing _V. parahaemolyticus_ strains carry two copies of _tdh_ genes (_tdh1_ and _tdh2_) in their chromosomes [22]. Strains that harbor any one of these genes have been associated with weak or negative hemolytic activity. The gene _tdh2_ holds 97.2% homology with _tdh1_ and was found primarily responsible for the phenotypic expression of hemolytic activity [22]. These two genes are designated as _tdhA_ and _tdhS_ [23] and detected in a gene cluster known as _tdh_ pathogenicity island (_tdh-PAIs_) of pandemic serovars [24]. These _tdh-PAIs_ are very similar in many epidemic strains of _V. parahaemolyticus_ but are absent in a prepandemic strain AQ4037 [24]. Although this PAI has been detected in another prepandemic strain of AQ3810, the _tdhS_ gene orientation was reversed [24]. The difference in the presence of _tdh-PAIs_ in the pandemic strains and positioning of _tdh_ genes among prepandemic strains indicated that these genes have been acquired by lateral gene transfer in _V. parahaemolyticus_. This hypothesis was supported by differences in the G+C content of the _tdh-PAI_ and the rest of the genome [25].
Figure 1: Neighbor-joining phylogenetic tree obtained by the analysis of tdh and trh genes. Bootstrap values are presented next to the tree nodes. The branch of the tree is not proportional to evolutionary distance. The bar represents 0.02 nucleotide substitution per site.
In the phylogenetic analysis, the pandemic and prepan-
demic strains were placed in A and C clades. The size of
the typical tdh coding sequence was 570 bp. However,
in this analysis, we have included only the published full
length sequences. The trh gene from Aeromonas veronii
biovar Veronii sequences has also been analyzed for this
study. Since all the three trh sequences are identical, we
have considered one to examine its relation to the
trh of V. parahaemolyticus.

The trh sequences of Aeromonas spp. are highly diverse and their bootstrap values remained less
than 50%. Clades A and C are the two clusters in which
diverse hemolysin encoding genes have been grouped. Clade
A contained tdh of pandemic and nonpandemic strains. The
tdh sequence of pandemic serovars exhibited 86–99% bootstrap
homology with nonpandemic serovars and trh gene of the V. parahaemolyticus ATCC strain 17802 (serovar OI:K1)
[26]. In addition, the tdh also showed 86% homology with
trh of Listonella anguillarum, which is a member in the
family Vibrionaceae. In clade A, tdhA of RIMD2210633 had
86% sequence homology with a Peruvian pandemic strain
Peru-466 and the tdhS had 64% homology with tdhS of
Indian pandemic strain K5030 [24]. This genetic comparison
demonstrates that pandemic isolates isolated from several
geographical areas displayed sequence dissimilarity within
the tdh coding region. However, clade A contained tdh genes of V. parahaemolyticus from US, Bangladesh, and Russia.
The pandemic serovars from US and Bangladesh had 93% sequence homology [27] but the information on the types
of Russian serovars is not available.

In this study, tdh of V. cholerae non-O1 and non-O139, V.
mimicus, and V. hollisae showed sequence homology with tdh
of V. parahaemolyticus. However, the bootstrap similarities
are distinct (Figure 1). Although these organisms had some
sequence similarities within the coding regions of hemolysin
encoding genes, a comparative analysis showed that they had
different flanking regions as compared to V. parahaemolyticus
[22]. Honda et al. [28] reported the presence of plasmid-
encoded TDH in some of the environmental strains of V.
cholerae non-O1 and non-O139 (also called nonagglutinable
(NAG) vibrio) strains. Type-III secretion system (T3SS)
located in ~49.7 kb genomic island has been identified in
NAG strains, which has a strong homology with T3SS2 of
V. parahaemolyticus. The TDH and TRH encoding genes in
NAG strains have been identified either within [29] or outside
[30] the T3SS genomic island. Although V. hollisae strains had
T3SS2 island, TDH/TRH was not reported as a part of this
island [31].

It has already been established that the expression of tdh
and trh genes different due to defect in the promoter regions
[18, 27]. In V. parahaemolyticus, changes in the promoter
sequences of different tdh genes have shown considerable
variation in the expression of KP [18]. It was shown that the
nucleotide sequence positions from −35 to −10 of tdh
gene promoter act as a hotspot and nucleotide substitution at
−34 from A to G affects the expression of hemolytic activity
[18]. This −34 position corresponds to −35 in our realigned
sequence comparison (Figure 2). In a recent finding, it was
revealed that, in the absence of any substitution or an
additional mutation at position −3 (substitution of G to A)
relative to −10, sequence of promoter region could change
the expression of hemolysin [32]. This information facilitated
analyzing the nucleotide sequences of promoter regions
from transcription start point to −35 position of tdhS of
RIMD2210633 with other available 23 promoter sequences of
tdh from the GenBank (except tdhS, which was not available
in the database). The gene tdhS is highly transcribable under
the influence of the promoter region, which was associated
with stronger KP [18]. However, in the comparative analysis,
Table 1: Comparison of the deduced amino acid sequences of the products of the tdh genes taken from GenBank.

<table>
<thead>
<tr>
<th>Particulars of tdh genes</th>
<th>Positions of signal peptide</th>
<th>Positions of mature protein sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pandemic strains</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>gi</td>
<td>21326604</td>
<td>1998 (O3:K6)</td>
</tr>
<tr>
<td>gi</td>
<td>21326600</td>
<td>2002 (O4:K68)</td>
</tr>
<tr>
<td>gi</td>
<td>21326602</td>
<td>2002 (O1:KUT)</td>
</tr>
<tr>
<td>gi</td>
<td>38044800</td>
<td>2011</td>
</tr>
<tr>
<td>Nonpandemic strains</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>gi</td>
<td>48478</td>
<td>1992</td>
</tr>
<tr>
<td>gi</td>
<td>155291</td>
<td>1993</td>
</tr>
<tr>
<td>gi</td>
<td>21326608</td>
<td>1980 (O3:K6)</td>
</tr>
<tr>
<td>gi</td>
<td>217197</td>
<td>1985</td>
</tr>
<tr>
<td>gi</td>
<td>30171235</td>
<td>ATCC 17803, 2003</td>
</tr>
<tr>
<td>gi</td>
<td>21326594</td>
<td>2001 (O4:K8)</td>
</tr>
<tr>
<td>gi</td>
<td>37580917</td>
<td>2011</td>
</tr>
<tr>
<td>gi</td>
<td>21326598</td>
<td>2001 (O5:K15)</td>
</tr>
<tr>
<td>gi</td>
<td>21326596</td>
<td>2001 (O4:K13)*</td>
</tr>
<tr>
<td>gi</td>
<td>155295</td>
<td>V.m-TDH, 1991</td>
</tr>
<tr>
<td>gi</td>
<td>39748669</td>
<td>2003</td>
</tr>
<tr>
<td>gi</td>
<td>217193</td>
<td>1990</td>
</tr>
<tr>
<td>gi</td>
<td>38044805</td>
<td>2011</td>
</tr>
<tr>
<td>gi</td>
<td>48483</td>
<td>1990</td>
</tr>
<tr>
<td>gi</td>
<td>155240</td>
<td>VcNAG-TDH, 1991</td>
</tr>
</tbody>
</table>

*Truncated tdh sequence; Vm, V. mimicus; VcNAG, V. cholerae non-O1 and non-O139; Bang, Bangladesh; RIMD, RIMD2210633. Known serovars are mentioned in parentheses.

instead of substitution at −3 position, we have detected nucleotide changes at −2 (C for T), −4 (T for C), −5 (A for G), −6 (C for A), −8 (A for G), −15 (T for C/A/G), and −17 (A for G) in tdhS of RIMD2210633, which is a pandemic serovar O3:K6. Site-directed mutagenesis experiments are required to address the importance of these substitutions. In addition to nucleotides, positions −18 and −19 relative to the −10 were found to be altered among nine tdh genes, which are intact, mostly in pandemic serovars such as O3:K6, O4:K68, and O1:KUT (K antigen untypable) (Figure 2). However, these changes were absent in four tdh genes sequenced from strains of ATCC 17803 (gi|30171234|, T4750 (gi|217196|), and Bangladesh-1980 (serovar O3:K6) (gi|21326607|) and in sequence gi|21326595| (from serovar O4:K13) (Figure 2).

Among the 10 tdh genes, a nucleotide deletion at position −18 was found among pandemic, pre-pandemic, and one of each of V. cholerae non-O1 and non-O139 and V. mimicus strains. We also analyzed protein sequences in the promoter region of all the strains. The TDH consists of 189 amino acids, of which first 24 amino acid residues belonged to signal peptide. A site-directed mutagenesis study on the remaining 165 amino acids residues has shown that Trp^{65} and Leu^{66} are very important in the hemolytic activity of TDH and any change in these residues could reduce its activity [33]. In addition to these residues, Arg^{64}, Gly^{81}, Thr^{87}, Gly^{88}, Glu^{116}, and Glu^{138} were also shown to be vital for the hemolysis [33, 34]. TDH has one intramolecular disulphide bond between Cys^{151} in β10 and Cys^{161} in the 310 helix [35]. This contiguous positioning of Cys^{151} and Cys^{161} suggests the formation of side channels and influences the hemolytic activity of TDH. These two Cys residues were also found to be highly conserved in all the TDH. However, mutations in other positions were detected when comparing TDH sequences of RIMD2210633 with others (Table 1). TDH-A of RIMD2210633, TDH3, TDH4, V. mimicus TDH, V. cholerae non-O1 and non-O139-TDH, and other pre-pandemic strains of V. parahaemolyticus had amino acid substitutions within the signal peptide at positions 3 (tyrosine for histidine), 4 (glutamine for arginine), and 23 (phenylalanine for serine) as compared to RIMD2210633. Interestingly, these groups of TDH amino acids do not have histidine in the signal peptide, which is essential in the protein active or binding sites. In a V. mimicus (VnTDH),
substitution at position 4 was absent. Except in one, all tdh sequences that contained double deletion in the promoter sequence at −18 and −19 gained Gly99 in the place of aspartic acid (Asp99). The significance of this mutation needs to be evaluated.

It has been reported that trh gene has two alleles, namely, trhl and trh2. The sequences of trhl and trh2 share 84% and 68% similarity with tdh2, respectively [36]. In the initial studies, it was thought that downstream inverted repeat sequence (IRS) from −35 to −10 of trhl and trh2 may have some association with low expression of TRH [37, 38]. In the subsequent finding, it was reported that the promoter-bearing region was responsible for the low expression trh transcription rather than the role of IRS [36].

The trh harboring V. parahaemolyticus strains universally carries a urease gene (urek); V. parahaemolyticus strains isolated from Asian countries always exhibit a strong correlation between the ureK gene and trh positivity [39]. However, the association between these two genes is not related in the transcription of trh [36]. In a clinical perspective, urease-positive phenotype is considered for elevated virulence in V. parahaemolyticus [40]. We did not find any differences in the promoter sequence between trh and tdhS of RIMD2210633, as reported before [36]. Recently, the whole-genome of Oceanomonas (strain GK1) belonging to the family Aeromonadaceae has been sequenced and a tdh gene has been detected in the chromosome [41]. The protein sequence of TDH matched with a TDH of Aeromonas spp., but not with the TDH of V. parahaemolyticus. Among the Vibrio species, only V. alginitolyticus carried tdh and trh genes. The trh of gene of V. alginitolyticus also shared considerable homology with trh of V. parahaemolyticus (data not shown). trh genes of V. parahaemolyticus and Listonella anguillarum have been placed in clade B (Figure 1).

Phylogenetic analysis suggested that there is a high level of sequence diversity in tdh and trh among V. parahaemolyticus strains and in other vibrios. Since these genes are carried by the transposon, they have been detected in many Vibrio spp. [42]. The reason for selective uptake of these genes only in Vibrio species needs to be investigated. Using this in silico approach, differences in promoter sequences were identified among the pandemic and nonpandemic strains of V. parahaemolyticus. Such differences are probably associated with differential transcription in V. parahaemolyticus strains. More experimental evidences may prove the importance of mutations detected in this study.

Conflict of Interests
The authors declare that there is no conflict of interests regarding the publication of this paper.

References

