Research Article

Biological Production of an Integrin $\alpha v\beta 3$ Targeting Imaging Probe and Functional Verification

Mi-Hye Hwang,1 Jung Eun Kim,1 Sang-Yeob Kim,2 Senthilkumar Kalimuthu,1 Shin Young Jeong,1 Sang-Woo Lee,1 Jaetae Lee,1 and Byeong-Cheol Ahn1

1 Department of Nuclear Medicine, Kyungpook National University School of Medicine, 50 Samduk-dong 2-ga, Jung Gu, Daegu 700-721, Republic of Korea
2 Department of Biochemistry and Cell Biology, Kyungpook National University School of Medicine, Daegu 700-842, Republic of Korea

Correspondence should be addressed to Byeong-Cheol Ahn; abc2000@knu.ac.kr

Received 14 July 2014; Revised 30 October 2014; Accepted 30 October 2014

Academic Editor: Dominic Fan

The aim of the present study is to establish a bacterial clone capable of secreting an integrin $\alpha v\beta 3$ targeting probe with bioluminescent and fluorescent activities, and to verify its specific targeting and optical activities using molecular imaging. A bacterial vector expressing a fusion of secretory Gaussia luciferase (sGluc), mCherry, and RGD (sGluc-mCherry-RGDX3; GCR), and a control vector expressing a fusion of secretory Gaussia luciferase and mCherry (sGluc-mCherry; GC) were constructed. The GCR and GC proteins were expressed in E. coli and secreted into the growth medium, which showed an approximately 10-fold higher luciferase activity than the bacterial lysate. Successful purification of GCR and GC was achieved using the 6X His-tag method. The GCR protein bound with higher affinity to U87MG cells than CHO cells in confocal microscopy and IVIS imaging, and also showed a high affinity for integrin $\alpha v\beta 3$ expressing tumor xenografts in an in vivo animal model. An E. coli clone was established to secrete an integrin $\alpha v\beta 3$ targeting imaging probe with bioluminescent and fluorescent activities. The probe was produced feasibly and at low cost, and has shown to be useful for the assessment of angiogenesis in vitro and in vivo.

1. Introduction

The formation of new blood vessels in a process termed angiogenesis is essential for the growth and metastasis of a tumor. Early in tumorigenesis, an “angiogenic switch” triggered by hypoxia results in the activation of oncogenes and/or metabolic stress [1]. Integrin $\alpha v\beta 3$, which plays a pivotal role in angiogenesis, is overexpressed in activated endothelial cells during angiogenesis, whereas it is absent in quiescent endothelial cells and normal tissues [2]. The restricted expression of integrin $\alpha v\beta 3$ in tumors makes it a suitable receptor for tumor targeting. Antiangiogenic agents reduce blood flow and vascular permeability and are therefore important in the treatment of cancer [3]. Many preclinical studies and clinical trials have demonstrated that inhibition of angiogenesis is an effective method to control tumor growth, supporting the development of antiangiogenesis therapeutics [4].

The therapeutic use of the integrin $\alpha v\beta 3$ targeting motif RGD (Arg-Gly-Asp) is an effective method for regressing tumor masses without harmful effects to normal tissues [5]. In the past decade, the efficacy of several RGD-containing molecular imaging tracers monitored and tumor integrin $\alpha v\beta 3$ expression has been evaluated using single photon emission computed tomography, positron emission tomography, magnetic resonance imaging (MR), optical imaging, and ultrasonography imaging [6]. Noninvasive determination of integrin $\alpha v\beta 3$ expression can be used to evaluate the efficiency of antiangiogenic drug candidates [7].

Integrin $\alpha v\beta 3$ targeting molecular imaging tracers consist of two functional domains, a targeting moiety with affinity to integrin $\alpha v\beta 3$ and a signaling component such as a radiotrace, fluorophore, or microbubble. The use of this molecular imaging strategy to investigate the process of angiogenesis or to assess the effect of antiangiogenic drugs requires the preparation of tracers at every time point of the experiment, which involves laborious and extensive experimental steps. Thus, there is a pressing need for feasible methods for the production of angiogenesis-targeting probes.
Gaussia luciferase (Gluc, 185 aa, and 19.9 kDa) was derived from the marine copepod Gaussia princeps, which emits light at a peak of 480 nm when interacting with the appropriate substrates [8]. This secreted protein produces a bioluminescent signal inside and outside cells without requiring ATP [9]. This study hypothesized that a fusion protein consisting of Gluc and RGD may be effective for targeting and visualizing the expression of integrin αvβ3. In the present study, we constructed a bacterial plasmid vector expressing an integrin αvβ3 targeting peptide probe with optical reporter activity and verified its potential as an optical probe specifically targeting integrin αvβ3.

2. Materials and Methods

2.1. Construction of the Expression Vector for Fusion Protein in E. coli Cells. The secretory Gaussia luciferase gene (Gaussia luciferase with a secretory sequence; sGluc) was kindly provided by professor Jung-Jun Min (Chonnam National University, Republic of Korea). The sGluc cDNA was amplified from plasmid pcDNA3.1-sGluc using the forward primer 5'-CAGGATCTCTAGGAGTCAAAAGTTGTTT-3' and reverse primer 5'-CGGAATTCCTACTGAGACCAGATCTACCGTACCCACCCGCCCCTTGATCT-3'. Amplification products were subcloned downstream of the internal T7 promoter between the EcoR I and BamH I sites of the pRSET vector (Invitrogen, Carlsbad, CA, USA) to produce pRSET-sGluc. The mCherry fluorophore attached to three copies of Arg-Gly-Asp (RGDX3) was subcloned behind the T7 promoter between the KpnI and Xhol sites of pRSET-sGluc to produce pRSET-sGluc-mCherry-RGDX3 (GCR). A control vector expressing a fusion protein of sGluc and mCherry without the RGD motif (sGluc-mCherry; GC) was also constructed. Isolated plasmids were analyzed for the presence of inserts, and positive clones were confirmed by the presence of the insert based on fragment size using restriction enzyme analysis and by DNA sequencing.

2.2. Expression and Purification of the GCR and GC Fusion Proteins from E. coli Cells. The GCR or GC expression vector was transformed into competent JM109 E. coli cells and synthesis of the GCR or GC fusion protein was induced with isopropyl-β-thiogalactopyranoside (IPTG). The seed culture of E. coli cells containing the expression vectors pRSET-GCR and pRSET-GC were grown overnight at 37°C in LB medium. The luciferase activity of the medium and the cells were measured separately. The luciferase activity of cells was determined in cell lysates using a microplate luminometer (Molecular Devices, Sunnyvale, CA, USA) with the Renilla luciferase reporter assay system (Promega, Madison, WI, USA) according to the manufacturer's guidelines. The luciferase activity was expressed as relative luminescence units (RLU) and normalized to the protein concentration determined by the BCA method.

2.5. In Vitro Integrin αvβ3 Binding Study: Confocal Imaging. U87MG-EGFP and CHO-EGFP cells were grown in collagen-coated 35 mm glass-base dishes (Asahi technol glass, Tokyo, Japan) for 24 h in growth medium. Subsequently, the cells were washed with PBS and fixed with 4% paraformaldehyde at 4°C for 30 min. The cells were then incubated with the purified GCR or GC fusion proteins (2 μg) at 37°C for 1 h and washed two times with PBS. Confocal scanning laser microscopy was performed with a Zeiss LSM 510 instrument (Carl Zeiss, Oberkochen, Germany) with a 40x objective. The images were processed using Aim Image Examiner software (Carl Zeiss, Oberkochen, Germany).

2.6. In Vitro Integrin αvβ3 Binding Study: Bioluminescent Imaging. One day before bioluminescent imaging, CHO and U87MG cells were seeded in 24-well plate (1 × 10⁶ cells per well) and then incubated with 2 μg of the purified protein (GCR or GC) for 1 h at 37°C. After washing with PBS, coelenterazine (1 μg in 200 μL of PBS) (Promega, Madison, WI, USA) was added into the wells and the plate was imaged with IVIS Lumina II. An ROI was drawn manually over each well. The size of the ROI was kept constant and a bioluminescent signal was obtained and expressed as photons/sec/cm²/sr.
2.7. In Vivo Bioluminescence Imaging. All animal experimental protocols were approved by the Committee for the Handling and Use of Animals of Kyungpook National University. An in vivo imaging study was performed with 20 mice and separated into four groups. Each group containing 5 mice used the following procedures: U87MG and CHO cells (5 × 10^6 cells/100 μL) were subcutaneously injected in the right thigh of BALB/c nude female mice (n = 5; Japan SLC Inc.). After 14 days, GCR or GC protein (20 μg in 100 μL of saline) was injected into tumor-bearing mice via the tail vein and 1 h after the injection coelenterazine (20 μg in 100 μL of saline) was injected, and subsequently bioluminescent imaging (Promega, Madison, WI, USA) was done by using IVIS Lumina II. Regions of interest were drawn manually over xenograft tumors, and bioluminescent signal intensity was measured and expressed as photons/sec/cm^2/sr.

2.8. Statistical Analysis. All numerical data were expressed as the mean ± standard deviation. Intergroup differences were assessed using a two-tailed Student’s t-test. P values < 0.05 were considered statistically significant.

3. Results

3.1. Construction of the Expression Vector for Fusion Proteins. A bacterial expression vector with the fusion genes of Gluc, mCherry, RGD motif (pRSET-GCR) and Gluc, mCherry, without RGD motif (pRSET-GC), was constructed (Figure 1(a)) and transformed into E. coli JM109 to produce the GCR and GC proteins, which were secreted into the growth medium. The luciferase activity of the growth medium containing the GCR and GC proteins was approximately 10- and 16-fold higher, respectively, than that of the bacterial lysate (* p < 0.05). GCR, sGluc-mCherry-RGDX3; GC, sGluc-mCherry; sGluc, secretory Gaussia luciferase; RGD, Arg-Gly-Asp.

3.2. Purification of GCR and GC Fusion Proteins from E. coli Cells. GCR and GC protein expression was induced with IPTG and the 6X His-tagged proteins were purified by immobilized metal affinity chromatography on Ni-NTA columns. The purified products were analyzed by SDS-PAGE (Figure 2(a)), which detected bands of 48 kDa for the GCR and GC proteins. The luciferase activities of the purified proteins increased with protein concentration (Figure 2(b)).

3.3. In Vitro Binding of GCR Protein to Integrin αvβ3 Positive Cells. The in vitro binding affinity of the fusion proteins to the integrin αvβ3 receptor was tested on integrin αvβ3 positive U87MG cells and negative CHO cells. In the presence of the GCR protein, the mCherry signal was detected on the cell membrane of integrin αvβ3 expressing U87MG-EGFP cells whereas no or negligible signal was detected in CHO-EGFP cells under the same conditions (Figure 3(a)). U87MG-EGFP and CHO-EGFP cells incubated with the GC protein did not show a detectable fluorescent signal (Figure 3(b)).

Luciferase activity was 3-fold higher in U87MG cells than in CHO cells after incubation with the GCR protein for 1 h, and negligible signals were detected in both CHO and U87MG cells after 1 h incubation with the GC protein (Figure 4).
3.4. In Vivo Bioluminescent Imaging. In vivo imaging experiments were performed by intravenous injection of the GCR and GC proteins into U87MG and CHO tumor-bearing mice. The tumor targeting specificity of the GCR protein was confirmed by bioluminescent imaging after injection of coelenterazine. Similar to our in vitro results showed that the high affinity of GCR for integrin αvβ3-positive tumor cells, systemically administered GCR protein produced a considerably stronger bioluminescent signal in integrin αvβ3-positive U87MG tumors than in integrin αvβ3-negative CHO tumors (Figure 5(a)). The total photon counts in GCR treated U87MG and CHO tumors were $1.7 \times 10^6 \pm 2.7 \times 10^5$ and $2.87 \times 10^5 \pm 8.97 \times 10^4$ photons/sec/cm2/sr, respectively, and those in GC treated U87MG and CHO tumors were $7.8 \times 10^4 \pm 4.8 \times 10^4$ and $6.0 \times 10^4 \pm 2.5 \times 10^4$ photons/sec/cm2/sr, respectively (Figure 5(b)).

4. Discussion

Angiogenesis is a complex process consisting of the formation of new capillary blood vessels, and it is regulated by pro- and antiangiogenic factors [10]. Tumors require a constant supply of oxygen and nutrients to support growth and angiogenesis is therefore one of the hallmarks of cancer [11]. Inhibition of angiogenesis is a promising strategy for the treatment of cancer and its clinical application has been investigated extensively [12]. Several molecular angiogenic markers that are overexpressed in tumors, such as integrin, particularly αvβ3, endostatin, and vascular endothelial growth factor receptor 2 are potential targets for early cancer detection [13–15]. Integrin αvβ3 is highly expressed in activated tumor endothelial cells and plays critical roles in the proliferation and movement of vascular endothelial cells, angiogenesis, and tumor growth [16]. The RGD peptide recognizes the integrin αvβ3 receptor and is an effective and specific targeting probe for imaging tumor growth and survival, angiogenesis, and metastasis [17]. Over the past decade, most studies which aimed at identifying candidate therapeutic agents relied on in vitro angiogenesis assays that assess the effects of drugs on endothelial cell migration, proliferation, apoptosis, and tube formation [18]. Targeting probes can be used to screen antiangiogenic drugs and determine the efficacy of selected antiangiogenic drugs in comparison with conventional chemotherapy in vivo [19].

Recently, several investigators have reported the use of various RGD ligand-containing molecular probes for MR, nuclear imaging, and optical imaging. The use of MR imaging for monitoring therapeutic responses in integrin αvβ3 positive tumor-bearing mice has been reported [20]. Zhang et al. recently performed MR imaging of integrin αvβ3 using RGD-conjugated magnetic particles termed USPIOs [21]. An 18F-galacto-RGD probe was developed for positron emission tomography imaging of angiogenesis with high sensitivity [22]. Despite their value, the use of RGD-conjugated...
Figure 3: (a) Endogenous integrin expression using immunostaining in CHO and U87MG cells. (b) Confocal fluorescence microscopy images of cells with or without integrin αvβ3. U87MG-EGFP and CHO-EGFP cells were incubated with 2 μg of GCR or GC protein at 37°C for 1h. Confocal microscopy imaging following treatment with the GCR protein revealed fluorescent signals from U87MG-EGFP cells but no signals from CHO-EGFP cells. Confocal microscopy following treatment with the GC protein revealed no fluorescent signals from U87MG-EGFP or CHO-EGFP cells. Scale bar corresponds to 10 μm. U87MG, human glioblastoma-astrocytoma, epithelial-like cells; CHO, Chinese hamster ovary cells; EGFP, enhanced green fluorescent protein.
Figure 4: After incubation with the GCR protein, U87MG cells showed 3-fold higher luciferase activity than CHO cells (* P < 0.05). Negligible signals were detected for both U87MG and CHO cells after incubation with the GC protein.

nanoparticles or radioisotopes is limited by the laborious and expensive processes involved in their production and quality control. In an effort to solve these problems, we have developed a feasible, cost effective, and convenient system for the production of integrin αvβ3 targeting optical probes.

Yan et al. fused three copies of the RGD sequence to truncated tissue factor (tTF) to produce the fusion protein (RGD)3/tTF for specific binding to integrin αvβ3 in vitro and they demonstrated that the addition of RGD binding motifs to tTF increases the binding ability of RGD/tTF to integrin αvβ3 in vitro, thus improving the targeting of angiogenic sites [23]. They speculated that the fusion protein might localize to target sites more effectively and rapidly in an in vivo environment; however, they did not provide in vivo data. Imaging signal producing proteins with the RGD motif can be developed as effective probes for the delivery of proteins to angiogenic sites in in vivo studies. Therefore, we fused the optical reporter protein Gluc to RGD peptides to generate an imaging probe and visualized the in vivo distribution and specific delivery of the fusion protein to angiogenic sites without animal sacrifice.

In the present study, we constructed a plasmid vector expressing a noble fusion protein composed of three copies of the RGD sequence, and a fluorescent and luminescent protein was successfully produced in genetically engineered bacteria. The benefits of Gluc include its enhanced brightness and stability over other luciferases. In addition, Gluc uses substrate coelenterazine whereas firefly luciferase (Fluc) uses D-luciferin, allowing simultaneous monitoring of tumors labeled with Fluc [24]. The fluorescent protein mCherry was also included in the probe to achieve cellular level resolution of images. Our results indicated that Gluc and mCherry may be used for signal detection in in vitro microscopic and in vivo macroscopic experiments. We verified the integrin αvβ3 targeting efficacy of the probe by using in vitro molecular imaging techniques such as the luciferase assay, confocal microscopy, and bioluminescence imaging. We obtained high resolution confocal microscopy images to examine integrin αvβ3-RGD clusters in the cell membrane, which was further confirmed by bioluminescence imaging. As shown in Figure 4, bioluminescence imaging clearly demonstrated that the RGD motif fusion protein showed 3-fold higher binding specificity to integrin αvβ3 positive (U87MG) than negative cells. The activity and binding properties of the fusion protein probe were evaluated in vivo in a mouse xenograft model, which showed that the total photon counts after treatment with the GCR protein were significantly higher in integrin αvβ3 expressing U87MG tumors than in integrin αvβ3-negative CHO tumors (Figure 5(b)). This result can be attributed to the fact that GCR can preferentially interact with
Figure 5: (a) In vivo bioluminescent imaging of xenografts with or without integrin αvβ3. U87MG tumors expressing integrin αvβ3 were visualized after systemic injection of GCR protein and coelenterazine, whereas CHO cell xenografts without integrin αvβ3 were not detectable. Both tumor xenografts showed no signals after injection of GC protein and coelenterazine. (b) The total photon counts at the ROIs of U87MG and CHO tumor xenografts were measured and compared (*P < 0.05). Black arrow shows tumor site. ROI, region of interest.

In the present study, we describe a feasible bacterial production system for integrin αvβ3 targeting probes, which has the following advantages: first, a low production cost compared with labeling of nuclear, MR, or fluorophore signaling component to RGD and second, the availability and easy collection of the probe from the bacterial medium. The bacterial system described in this study for the production of noble optical imaging probes will enable the evaluation of angiogenesis in vitro and in vivo.

5. Conclusion

We established an E. coli clone that secretes an integrin αvβ3 targeting imaging probe containing bioluminescent and fluorescent activities. The probe was produced at low cost and
feasibly and could be useful for evaluating angiogenesis in *in vitro* and *in vivo* studies.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgments

This research was supported by a grant from the Medical Cluster R&D Support Project of Daegu Gyeongbuk Medical Innovation Foundation, Republic of Korea (2013), grants from the National Nuclear R&D Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (nos. 2012M2A2A7014020, 2009-0078234), and grants from the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs, Republic of Korea (A111345).

References

Submit your manuscripts at
http://www.hindawi.com