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We analyzed variations in 90 mitochondrial DNA (mtDNA) D-loop and heat shock protein 70 (HSP70) gene sequences from
four populations of domesticated helmeted Guinea fowls (70 individuals) and 1 population of wild helmeted Guinea fowls (20
individuals) in Kenya in order to get information about their origin, genetic diversity, and traits associated with heat stress. 90
sequences were assigned to 25 distinct mtDNA and 4 HSP70 haplotypes. Most mtDNA haplotypes of the domesticated helmeted
Guinea fowls were grouped into two main haplogroups, HgA and HgB. The wild population grouped into distinct mtDNA
haplogroups. Two mtDNA haplotypes dominated across all populations of domesticated helmeted Guinea fowls: Hap2 and Hap4,
while the dominant HSP70 haplotype found in all populations was CGC. Higher haplotype diversities were generally observed.
The HSP70 haplotype diversities were low across all populations. The nucleotide diversity values for both mtDNA and HSP70
were generally low. Most mtDNA genetic variations occurred among populations for the three hierarchical categories considered
while most variations in the HSP70 gene occurred among individuals within population. The lack of population structure among
the domestic populations could suggest intensive genetic intermixing. The differentiation of the wild population may be due to
a clearly distinct demographic history that shaped its genetic profile. Analysis of the Kenyan Guinea fowl population structure
and history based on mtDNA D-loop variations and HSP70 gene functional polymorphisms complimented by archaeological and
linguistic insight supports the hypothesis that most domesticated helmeted Guinea fowls in Kenya are related to the West African
domesticated helmeted Guinea fowls. We recommend more molecular studies on this emerging poultry species with potential for
poverty alleviation and food security against a backdrop of climate change in Africa.

1. Introduction

The helmeted Guinea fowl (Numida meleagris) is a terrestrial
game bird that is widespread and abundant in Africa. It
is found in a wide range of sub-Saharan, open country
vegetation type [I, 2]. Guinea fowls are a ready source of

animal protein (meat and eggs) and income as well as a source
of manure for soil enrichment [3-5]. Their lean meat with
its characteristic flavor is relished by the local population in
Kenya [6].

The mitochondrial DNA (mtDNA) is a circular molecule
that is 16,726 base pairs in size in Guinea fowls [7] and
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has a maternal mode of inheritance [8]. It is relatively easy,
rapid, and inexpensive to sequence, and research work on
rapidly evolving loci provides sufficient variation to draw
inferences on the structure of populations [9-12]. The control
region, also referred to as D-loop, often mutates faster than
the rest of the mtDNA [12, 13] and appears to be highly
variable in birds [12, 14]. Analysis of polymorphism in the D-
loop region has proved to be informative in previous studies
on genetic variation, structure, and phylogeography in birds
[12, 15-19]. The study of the genealogical origin of Guinea
fowls was first undertaken by Kimball [20] who examined
the phylogenetic position of three species of peafowl in the
family Phasianidae in relation to the helmeted Guinea fowl in
the family Numididae, using mtDNA D-loop and cytochrome
b sequences. In their examination, Kimball [20] showed that
the three peafowl species formed a monophyletic clade and
that peafowl were genetically separated from Guinea fowls in
the phylogenetic tree. Additionally, work on mitochondrial
DNA variation of domesticated helmeted Guinea fowls in
Nigeria revealed a lack of genetic differentiation within most
Nigerian domesticated helmeted Guinea fowl which was
attributed to intensive genetic admixture [21].

Heat stress in birds is one of the main concerns in
poultry farming since it causes high mortality and low
productivity especially during the hottest seasons [22, 23].
In response to thermal stress in the tissues of living animals,
cells synthesize heat shock proteins (HSPs) of low molecular
weight that have specific functions in cell growth and in
reversing or preventing damage caused by stress [23]. Among
the HSPs, HSP70 shows the highest levels under stressful
conditions [23]. The HSP70 is therefore a useful molecular
marker for studying environmental stress inpoultry. Studies
on heat shock protein 70 genes in chicken revealed that
only the expression of HSP70 (NmHSPA2 in Guinea fowl) is
promoted by heat shock [24, 25]. Other findings on HSP70
in Japanese quail from Brazil revealed alterations in the DNA
sequences with the appearance of a possible polymorphism
[23]. Gaviol [23] suggested that there was need to study this
polymorphism to determine if it had any association with
heat resistance.

This study aimed to analyze variations in the mtDNA D-
loop and HSP70 gene of the helmeted Guinea fowl in Kenya
for the first time, in order to get some initial information
about their genetic diversity, possible genetic structure, and
functional polymorphisms in HSP70 that could be associated
with heat stress.

2. Materials and Methods

2.1. Sample Collection. This study received ethical clearance
from the Kenya Wildlife Service under permit number
KWS/BRM/5001 to sample wild Guinea fowls and a “no
objection for the research” from the Directorate of Veterinary
Services, Ministry of Agriculture, Livestock and Fisheries in
Kenya under permit number RES/POL/VOL.XXVII/162 to
sample domestic Guinea fowls. Blood samples were collected
from 90 unrelated adult individuals from five populations in
Kenya (Figure 1). Four of these populations are located in
Western Kenya: Teso North (n=18), Bungoma South (n=13),
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Bungoma West (n=18), and Mt. Elgon (n=21). The fifth
population (n=20) consisting of wild birds was sampled from
two sanctuaries in Laikipia: Mpala Research Centre and Mt.
Kenya Game Range. Genomic DNA was extracted from
air-dried blood preserved on FTA classic cards (Whatman
Biosciences) using the manufacturers’ protocol. To ascertain
the genetic affinities of the study population to helmeted
Guinea fowls from other African countries, 241 sequences
were downloaded from the Genbank and were included in
the analysis.

2.2. PCR Amplification and Sequencing. The first 700 bp of
the mtDNA D-loop region was amplified via PCR using
the forward primer AVIF2 and reverse primer CR1b [29].
PCR amplifications were carried out in 25 ul reaction vol-
umes containing 20 ng genomic DNA, 1 X PCR buffer
(10 mM Tris-HCI pH 8.3, 50mM KCl, 0.1% Triton X-100),
2.5mM of each dNTP, 10 pM of each primer, and 1 unit
of Taq DNA polymerase (Promega, Madison WI, USA).
Thermocycling conditions were as follows: 94°C (3 min), 35
cycles of 94°C (1 minute), 58°C (I min), 72°C (2 min), and
a final extension step at 72°C (10 min). The Gallus gallus
HSP70 ortholog in Numida meleagris, that is NmHSPA2, was
amplified via PCR using the forward primer HSP70-F 5'-
ATCATCGCCAATGACCAGGG-3' (20) and reverse primer
HSP70-R 5'-CATTCTTCTCTCCAGCCCGG-3' (20). PCR
amplifications were performed in a 10 ul reaction volume
containing 3.8 ul of double distilled water, 1ul of template
genomic DNA, 5 ul of Thermo Scientific™ DreamTaq™ Green
Master Mix (2X), and 0.2 yl of 20pM/ pl primer (forward and
reverse). The PCR was run under the following conditions:
One cycle of initial denaturation at 94°C (3 min), 30 cycles of
94°C for 30 seconds, 55°C for 30 seconds annealing, 72°C for
30 seconds for primer extension, and a final extension step at
72°C (7 min).

PCR products were purified using the Wizard® SV gel
and PCR Clean-Up Kit (Promega, Madison WI, USA).
Purified products were sequenced directly using the Big Dye®
Terminator v3.1 (Applied Biosystems, USA) on an ABI prism
3730 Avant DNA analyzer. The relevant PCR primers were
used for the sequencing reactions.

2.3. Data Analysis. The sequences generated were edited
manually using Chromas Lite version 2.1.1 [29]. The consen-
sus sequences were then aligned using ClustalX version 2.1
[30] against reference sequences from Genbank. Subsequent
analyses were restricted to the first 351-353bp of mtDNA D-
loop incorporating the first hyper variable segment (HVSI)
and a 508 bp promoter region of HSP70.

Construction of the haplotypes was done both manually
and by use of DnaSP v5.10 [31]. Genetic diversity indices
for each population were calculated using DnaSP v5.10 on
both mtDNA and HSP70 and ARLEQUIN v3.5.1.2 [32].
For demographic analysis, we computed the distribution
of the observed pairwise nucleotide differences (mismatch
distribution) and the expected values for no recombination
in growing-declining populations [33] using ARLEQUIN
v3.5.1.2. ARLEQUIN tests the goodness-of-fit to this model
by SSD test statistic (the sum of squared differences between



BioMed Research International

Hap 1 I:l Hap 16
Hap 2 Hap 17
Hap 3 . Hap 18
Hap 4 Hap 19
Hap 5 . Hap 20
Hap 6 Hap 21
Hap 7 Hap 22
Hap 8 Hap 23
Hap 9 Hap 24
Hap 10 Hap 25
Hap 11
Hap 12
Hap 13
Hap 14
Hap 15

FIGURE 1: Pie diagrams showing sampled areas and the distribution of mtDNA haplotypes in helmeted Guinea fowl populations in Kenya.
Different colors indicate specific haplotypes. Initials indicate the populations sampled; BW represents Bungoma West, TN Teso North, ME
Mt. Elgon, and W the wild Guinea fowls which were sampled in Laikipia (source: maphill.com).

the observed and the expected mismatch distributions).
DnaSP v5 calculates Tajimas D [34], Fu’s F [35], and R, [36]
statistics and estimates their significance using a coalescent
simulation algorithm. We used 1,000 replications in these
coalescent simulations.

The number of haplogroups was determined by con-
structing a median joining (M]) network [26] using NET-
WORK v5.0.0.0. For HSP70 gene, a phylogenetic tree involv-
ing the haplotypes observed was constructed using the
Maximum Likelihood algorithm as implemented in MEGA
v6.06 following 1,000 bootstrap replications [37]. To portray
the affinity of Kenyan mtDNA haplotypes to those observed

in other parts of Africa, an MJ network incorporating haplo-
types downloaded from Genbank (Table SI) was constructed.
The nomenclature of the haplogroups observed in this study
were compared to the study of Adeola et al. [21].

To infer the mtDNA maternal genetic structure of hel-
meted Guinea fowls across Kenya, analysis of molecular
variance (AMOVA) was performed using ARLEQUIN. To
assess the nonrandom association between genetic differen-
tiation (Fgr) and geographic distances between populations,
a Mantel test was used to plot the regression graph of
the genetic and geographic distances using GenAlEx v6.501
software [27] which is a Microsoft Excel add-in.
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TaBLE 1: Diversity indices of mtDNA D-loop in the helmeted Guinea fowl populations in Kenya.

Population n h k s

Bungoma South 13 0.897+0.067 5.64+2.89 0.0161+0.0093
Teso North 18 0.797+0.090 5.48+2.76 0.0156+0.0088
Bungoma West 18 0.889+0.053 5.26+2.66 0.0150+0.0085
Mt. Elgon 21 0.638+0.079 4.34+2.23 0.0124+0.0071
wild 20 0.858+0.054 8.39+4.05 0.0238+0.0128

h: haplotype diversity; k: mean number of pairwise differences; 7z: nucleotide diversity.

3. Results and Discussion

3.1. Mitochondrial DNA D-Loop Variation and Haplotype Dis-
tribution Pattern. We obtained partial 351-353 bp mitochon-
drial DNA D-loop sequences from samples of 90 Numida
meleagris individuals captured in Kenya. The sequences
were compared with those obtained from Genbank having
accession numbers KP218263-KP218503 [21] and AP005595
[7]. The vulturine Guinea fowl accession number NC_014180
[38] was included as an outgroup.

We identified 25 unique haplotypes (Hapl-Hap25) de-
fined by 41 polymorphic sites. For this study, the individual
haplotypes were abbreviated Hap followed by a Hindu-Arabic
numeral. These have been deposited into Genbank under
accession numbers MH703540- MH703564. We observed
an insertion in all individuals in the wild population and
a second insertion in two wild individuals. The frequencies
of the observed haplotypes in the various populations are
represented in a pie diagram (Figure 1) and also shown in
Table S2 in the Supplementary Materials provided separately.
In agreement with a previous study on Nigerian helmeted
Guinea fowls [21], we observed two major haplotypes, Hap4
and Hap2. The 16 haplotypes observed in the four populations
with domesticated individuals compare favorably with the
19 haplotypes identified in Nigerian domesticated helmeted
Guinea fowls [21]. Most of the Nigerian, Kenyan, and Chinese
domesticated helmeted Guinea fowls also belong to haplo-
types Hap2 and Hap4, which strongly suggests possibility
of a common origin of both the Kenyan domesticated
helmeted Guinea fowls and West African domesticated hel-
meted Guinea fowls derived from the West African Numida
meleagris galeata [39]. We also observed that the 9 haplotypes
identified in the wild helmeted Guinea fowls were not shared
by the domesticated helmeted Guinea fowls. Their unique
haplotype could be a consequence of unique demographic
histories that have shaped their haplotype profiles [21]. Using
microsatellite markers to compare genetic variation between
red jungle fowl and commercial chicken lines [40] and genetic
variation between wild and domesticated helmeted Guinea
fowl [41], it was shown that the wild populations genetically
differed from the domesticated populations.

The extent of haplotype sharing indicates the absence
of a population structure in Kenyas domesticated helmeted
Guinea fowls. Muchadeyi [42] and Mtileni [43] proposed that
large effective population sizes as well as continuous gene
flow may be the forces responsible for the lack of population
differentiation among the local chicken genotypes in their
studies. Similarly, Weimann [41] attributed the lack of a

clear population structure in domesticated helmeted Guinea
fowl populations to large population sizes and continuous
gene flow. It is interesting to note that a similar pattern of
lack of phylogeographic structure in poultry chicken, such
as domesticated helmeted Guinea fowl in Ghana [44] and
Nigeria [21], from East Africa [29] and Nigeria [45] has
been observed. This could likely be due to intensive genetic
intermixing between populations due to human migration
and trading [21, 46]. Hence the lack of genetic differentiation
in Kenyan domesticated helmeted Guinea fowl may likewise
be due to intensive genetic admixture. Adeola [21] however
noted that short DNA sequences with inadequate sample size
may result in insufficient genetic information to clearly infer
the population structure.

We calculated several diversity indices for the five popula-
tions as shown in Table 1. The lowest haplotype diversities (h)
are observed in the Mt. Elgon and Teso North populations.
The other populations show higher haplotype diversity val-
ues. The nucleotide diversity (7r) values are generally low, with
the wild population showing highest nucleotide diversity.
Avise [47] suggested that high levels of haplotype diversity
could be due to large population sizes. These results are
similar to those observed in Nigerian helmeted Guinea fowls
[21] where the lowest haplotype diversity was 0.529+0.095
and the highest haplotype diversity was 0.821+0.082. The
low nucleotide diversity values indicate that the observed
haplotypes were closely related [12]. The low haplotype
diversities observed in the Mt. Elgon and Teso North could
be attributed to recent domestication (<5,000 years ago) from
a small founder population [45]. Insufficient time may have
passed since domestication to allow for the accumulation
of mutations. Additionally, the rearing system in most of
the households keeping these poultry species encourages
inbreeding since they usually start with two related birds, a
male and female that are mostly siblings.

To reveal the historical population dynamics of the
studied helmeted Guinea fowl populations across Kenya,
we calculated observed and expected distributions of mis-
matches under the model of growing-declining populations
[33] as shown in Figure S1 in the Supplementary Materials.
The mismatch distribution pattern is multimodal. Table S3 in
the Supplementary Materials shows a summary of statistics
about the demographic history of helmeted Guinea fowl
populations in Kenya (simulated sum of squares differences
or SSD, Tajimas D and Fus F;). Our results show that
all the sampled populations except Bungoma West have
insignificant SSD values (P>0.05). Tajima’s D (with positive
values) and Fu's F; (with mostly negative values) were
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FIGURE 2: mtDNA of domesticated helmeted Guinea fowls in Nigeria, Kenya, and China [21] constructed using NETWORK v5.0.0.0 [26].
Pie diagrams show haplotypes, and colors indicate the populations sampled: yellow, Bungoma West; green, Teso North; red, Mt. Elgon; blue,
Bungoma South; pink, wild; deep blue, Nigerian reference sequences; grey, Kenyan reference sequences; brown, Chinese reference sequences.
Sizes of circles are proportional to frequencies and m is the number of mutation steps. mv is the median vector used to connect indirectly
related haplotypes. The vulturine Guinea fowl was included as an outgroup.

not significant (P>0.05). This could be due to the small
number of samples studied since Tajimas D has low power
in detecting population expansion when the sample size is
small [11]. Demographic and spatial expansion of the mtDNA
haplotypes in the various populations are also shown (Table
S4 in the Supplementary Materials). Harpending’s demo-
graphic expansion raggedness index “r” [48] of the mtDNA
haplotypes is significant for the Bungoma West (P=0.021)
and Mt. Elgon (P=0.011) populations supporting a model of
demographic expansion for these populations. However, the
spatial expansion raggedness index of the mtDNA haplotypes
is not significant (P>0.05) for all the five populations of
helmeted Guinea fowls in Kenya. Like in previous studies
that supported a model of demographic expansion over all
East African chicken populations [29], these results support
a model of demographic expansion of the Bungoma West
and Mt. Elgon Guinea fowls. We also noted that Guinea
fowls in Mt Elgon had the lowest number of haplotypes
and haplotype diversity in comparison to the other Guinea
fowls. Previous studies had shown low genetic diversity in
domesticated Guinea fowl outside their area of origin, and
this was attributed to a small founder population [21, 49] and

many years of inbreeding. However, the raggedness index,
Tajima’s D, and Fu’s F statistics do not support demographic
and spatial expansion for mtDNA haplotypes across the other
populations as previously suggested by Mwacharo [25].
Figure 2 shows a median joining network of the 90 hel-
meted Guinea fowl samples constructed using NETWORK
v5.0.0.0 [26]. The median joining network shows that most
of the domesticated helmeted Guinea fowls grouped into two
major haplogroups named HgA and HgB in a previous study
[21] clustered around Hap2 and Hap4. Most of the published
sequences of Nigerian, Kenyan, and Chinese domesticated
helmeted Guinea fowls [21] also group into haplogroups HgA
and HgB, indicating a most probable common origin of both
West African and Kenyan domesticated helmeted Guinea
fowls. The 20 wild helmeted Guinea fowls are grouped into
five distinct haplogroups named HgE, HgF, HgG, HgH, and
Hgl in this study. A very clearly distinct haplogroup Hgl
comprising two wild individuals was identified. The median
joining network seems to suggest that haplogroup Hgl has
a closer genetic relationship with domesticated helmeted
Guinea fowls than with other wild helmeted Guinea fowls.
We note that the Guinea fowls in this haplogroup were
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FIGURE 3: A regression graph showing the relationship between geographic and genetic distance matrices of helmeted Guinea fowls in Kenya,
constructed by plotting the regression graph of the genetic and geographic distances using GenAlEx v6.501 software [27] which is a Microsoft

Excel add-in.

sampled from farmers with close proximity to the forest;
hence there was evidently an interaction among domesticated
and wild Guinea fowls leading to gene flow between wild
and domesticated helmeted Guinea fowls. The median vec-
tors may represent either unsampled haplotypes, haplotypes
never introduced into Kenya, or haplotypes introduced into
Kenya but becoming extinct shortly upon arrival or later [25].
The star-like pattern exhibited in haplogroups HgA and HgB
is an evidence of rapid population expansion [21]. The extent
of haplotype sharing in the network between domesticated
populations indicates the absence of population structure in
Kenyan domesticated Guinea fowls as earlier discussed.

To infer the maternal genetic structure of helmeted
Guinea fowls across Kenya, we performed analysis of molec-
ular variance (AMOVA) as shown in Tables S5, S6, and S7 in
the Supplementary Materials. Considering the five sampled
regions as a hierarchical cluster, 51.54% of the genetic varia-
tion was observed among populations. This value, however,
increases to 70.74% when wild helmeted Guinea fowls as a
group are compared with the domesticated helmeted Guinea
fowls and decreases to 57.02% when three groups, that is,
Teso South and Mt. Elgon, Bungoma West and Bungoma
South, and the wild Guinea fowls, are considered. Results
from the three hierarchical categories therefore show that
among-region distribution of variation is higher than within-
region variation in the mitochondrial DNA D-loop region of
helmeted Guinea fowls in Kenya.

The nonrandom association between genetic differentia-
tion (Fgr) and geographic distances between sampled regions
was assessed using a Mantel test (Figure 3).

A strong and significant positive correlation (r = 0.9936,
P>0.05) is observed between genetic variations and the geo-
graphic location in helmeted Guinea fowls in Kenya just like
previously described by Mwacharo [25]. This contrasts with
the findings of Ommeh [50] that showed a slight negative
correlation between allele frequencies and the geographic
location in indigenous village chicken populations. The Man-
tel test revealed lack of a population structure within Kenya’s
domesticated helmeted Guinea fowl mtDNA haplotypes.

3.2. HSP70 Gene Functional Polymorphisms. We obtained
partial sequences of the helmeted Guinea fowl HSP70 gene
of 508 bp in length from samples of 90 individuals captured
in Kenya. Three of these sequences were of poor quality
and were not considered for further analysis. The sequences
are compared with HSP70 sequences of other related avian
species downloaded from Genbank. We observed four hap-
lotypes, TGC, TAC, TGT, and CGC, with three polymorphic
sites (all transitions) shown in Table S8 in the Supplementary
Materials. The haplotype sequences have been deposited into
Genbank under accession numbers MH703565- MH703568.

The relative frequencies of the observed haplotypes in
the various populations are shown in Table S9 in the
Supplementary Materials. Haplotype TGC is shared in all
the five populations. Unique mutations in the heat shock
protein 70 gene in the wild helmeted Guinea fowl population
(haplotypes TGT and CGC) are observed, which are not
evident in the domesticated helmeted Guinea fowls. Again,
an A/G transition (haplotype TAC) is observed in two
domesticated individuals in the Teso North population that
are not observed in all the other populations. A theoretical
relationship between Gallus gallus HSP70 genotype and heat
shock resistance (heat tolerance) has been proposed [51].
Individual variations in heat shock responses may be related
to DNA polymorphisms in the HSP70 gene in birds [24, 52].

We calculated several diversity indices for the five popula-
tions as shown in Table 2. All the populations had low values
of haplotype diversity (h) and nucleotide diversity (). The
wild population has the highest diversity indices.

Haplotype and nucleotide diversity values are generally
low. These lower values reinforce our hypothesis that the
observed haplotypes were closely related [12] and could be
attributed to recent domestication [45] from a small founder
population.

The phylogenetic relationship of the various helmeted
Guinea fowl haplotypes in Kenya is compared with HSP70
sequences of other avian species and shown in Figure 4.
Phylogenetic analysis of the four HSP70 haplotypes with
other avian HSP70 sequences downloaded from Genbank
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TaBLE 2: Diversity indices of HSP70 gene in the helmeted Guinea fowl populations in Kenya.

Population n Number of polymorphic sites h k U
Bungoma South 26 0 0.000+0.000 0.000+0.000 0.000+0.000
Teso North 32 1 0.222+0.062 0.222+0.267 0.00048+0.00063
Bungoma West 34 0 0.000+0.000 0.000+0.000 0.000+0.000
Mt. Elgon 42 0 0.000+0.000 0.000+0.000 0.000+0.000
Wild 40 5 0.451+0.051 0.476+0.418 0.00102+0.00099

h: gene diversity; k: mean number of pairwise differences; 71: nucleotide diversity.
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FIGURE 4: Phylogeny of the helmeted Guinea fowls constructed using Maximum Likelihood as implemented in MEGA v6.06 [7] with 1000
bootstrap replications. The model used was K2+G; gamma shape parameter is 0.1264. The rock pigeon was included as an outgroup.

shows that all the haplotypes clustered together. We also
observe that haplotype TAC seems to be more genetically
distant from the other haplotypes. The helmeted Guinea fowl
HSP70 phylogenetic tree reveals a strong relationship with
HSP70 sequences of other Galliformes.

The phylogenetic network diagrams produced using
SplitsTree were used to validate the haplotypes. The splits
decomposition network of the HSP70 haplotypes in Guinea
fowls and related avian species is shown in Figure 5.

The splits decomposition network also reveals that all the
haplotypes clustered together with haplotype TAC observed
to be genetically distant in relation to the other haplotypes.
The other avian species were also relatively distant from the
four Guinea fowl HSP70 haplotypes.

To infer the population genetic structure of HSP70
haplotypes of helmeted Guinea fowls across Kenya, analysis
of molecular variance (AMOVA) was performed (Tables
S10 and S11 in the Supplementary Materials). When wild
helmeted Guinea fowls as a group are compared against
the domesticated helmeted Guinea fowls, 49.64% of the
genetic variation was observed among individuals within
population. This value increases to 56.98% when three groups
are considered: Teso South and Mt. Elgon, Bungoma West
and Bungoma South, and the wild population. Results from

the two hierarchical categories show that most variations
occurred among individuals within population in the HSP70
gene of helmeted Guinea fowls in Kenya.

A Mantel test was used to assess the nonrandom asso-
ciation between genetic differentiation (Fgp) and geographic
distances between populations by plotting the regression
graph of the genetic and geographic distances (Figure 6).

From the results, a significant (P>0.05) and strong pos-
itive correlation is observed between genetic variation and
the geographic location in helmeted Guinea fowl populations
in Kenya as previously described by Mwacharo [25]. Again,
the Mantel test reveals lack of a population structure within
Kenyas domesticated helmeted Guinea fowl HSP70 haplo-
types just like the mtDNA data revealed.

3.3. Archaeological and Linguistic Insight into the Origin of
Helmeted Guinea Fowls. Previous analysis of Guinea fowl
DNA indicates a possible Numididae divergence from the
Phasianidae lineage some 38 million years ago [53]. Martinez
[53] went on to suggest that Guinea fowls could have
originated from the Savanna areas of Asia, having probably
evolved from a francolin-like phasianid that colonized Africa
around the middle to late Miocene with all the four Guinea
fowl genera having clearly differentiated by the Pleistocene.
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Although Ayorinde [54] agrees that Guinea fowls could have
evolved from a francolin-like Asiatic ancestor, he suggested
that their evolution to modern forms solely occurred in
Africa. Recent excavations of the footprint tuffs of the Laetolil
beds at Laetoli in Northern Tanzania have revealed the
presence of a large variety of footprints from the Pliocene
Epoch between 3.5 and 3.8 million years ago [55]. The
bird tracks found compare closely with tracks of the living
helmeted Guinea fowls common in the Laetoli area today.
Guinea fowl remains were also discovered at Shaqadud site
in the Sudan around the 4™ millennium bp and they do not
seem to differ from modern wild specimens [56-58].

Studies show that appearance of Guinea fowls in the
history of man’s activities is traced to the fifth Egyptian
dynasty about 2,400 B.C. when its figure was drawn in a
mural [7]. Early domestication is believed to have occurred in

Southern Sudan and West Africa [7, 39]. It is also suggested
that present day domesticated helmeted Guinea fowls were
probably all derived from the West African subspecies N.m.
galeata [1] which was then repeatedly introduced worldwide
[59-61]. According to Crowe [62], wild populations of N.
meleagris readily become commensals of man, increasing in
numbers and distribution because of the water, roosting, and
feed resources resulting from human activity. The process of
domestication probably continues even now.

Shillington [63] proposed that the languages of Kordofan,
west of the middle Nile in Sudan, are linked to the Niger-
Congo language family which includes all the Bantu speakers
in Africa. This has prompted some linguists and historians to
propose that Kordofan in Sudan may have been the original
ancestral home of the Niger-Congo language group that then
migrated westwards to West Africa. Other linguists, however,
feel it might have been the other way round, with Kordo-
fanian being a remote offshoot of Niger-Congo. Shillington
[63] also pointed out that by 3000 BCE, the Niger-Congo
people had already domesticated Guinea fowls. Based on the
Kordofanian proposition, we propose that in the course of
their westward expansion into West Africa, the Niger-Congo
peoples might have carried along the wild helmeted Guinea
fowls and later domesticated them. From West Africa, the
Bantu branch of the Niger-Congo expanded southwards and
eastwards into Southern, Central, and Eastern Africa. Results
from our mtDNA analysis also seem to point to a genetic
relationship between West African domesticated helmeted
Guinea fowls and most domesticated helmeted Guinea fowls
found in Kenya.

Again, it is also imperative to note that the Lugbara, a
Nilo-Saharan people of north-western Uganda, have tradi-
tionally reared Guinea fowls as one of their main economic
activity [64], although information on exactly when it was
domesticated is scarce. Considering that the Nilo-Saharan
peoples have their roots in Eastern Africa, it is possible that
some helmeted Guinea fowl continuously lived in Eastern



BioMed Research International

Westward migration of O

the Niger-Congo Movenent of the

peoples Nilo-Saharan
Q peoples

Bantu expansion

Kordofan

FIGURE 7: Possible migration routes of the domesticated helmeted Guinea fowls along with the movement of the Niger-Congo and Nilo-

Saharan peoples into Kenya (source: http://www.vinotique.com).

Africa since antiquity and has been utilized as an economic
resource by its people [65]

Also based on Western Bantu folklore, many Bantu
communities of Uganda and Western Kenya claim that their
origin is traced to Misri (the present day Egypt), through
Congo and Uganda [66]. On the basis of these claims, we
then hypothesize that Western Bantus arrived into Uganda
and Kenya with the domesticated Guinea fowls (perhaps from
Egypt or Sudan). The archaeolinguistic insight into the origin
and domestication of helmeted Guinea fowls in Africa is
summarized in Figure 7.

4. Conclusion

Just like in Nigeria, most domesticated helmeted Guinea
fowls in Kenya clustered into two mtDNA haplogroups:
HgA and HgB, indicating a genetic relationship between
Kenyan and West African Guinea fowls. The wild helmeted
Guinea fowls which belong to a different subspecies, are
grouped into distinct haplogroups. The lack of a population
structure in domesticated helmeted Guinea fowls could
suggest intensive genetic intermixing between the domestic
populations. The differentiation of the wild Guinea fowls
may be due to a clearly distinct demographic history that
shaped its genetic profile. All helmeted Guinea fowls in
Kenya group into 4 HSP70 haplotypes with two of the
haplotypes unique to the wild Guinea fowl. Probably, some
of these polymorphisms may be associated with certain

environmental adaptations, such as heat tolerance. Analysis
of the Kenyan helmeted Guinea fowl population structure
and history based on mtDNA variations complimented by
archaeological and linguistic insight clearly supports the
hypothesis that majority of domesticated helmeted Guinea
fowls are related to West African domesticated helmeted
Guinea fowls. This study provides initial information on
genetic variation across populations of the domesticated and
wild helmeted Guinea fowls in Kenya. This is expected to help
support the conservation efforts for helmeted Guinea fowls
and also develop breeding programs aimed at mitigating the
effects of climate change and improving food security.
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