Research Article

The Diagnostic Value of MicroRNAs as a Biomarker for Hepatocellular Carcinoma: A Meta-Analysis

Yao Jiang 1, Jimin He 2, Yiqin Li 1, Yongcan Guo 3, and Hualin Tao 1

1Department of Clinical Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
2Department of Neurosurgery, Saining Central Hospital, Saining, China
3Clinical Laboratory of Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China

Correspondence should be addressed to Yongcan Guo; guoyongcan_2004@163.com and Hualin Tao; lzyxyjyx@163.com

Received 10 August 2019; Revised 15 October 2019; Accepted 5 November 2019; Published 29 November 2019

Academic Editor: Kosei Maemura

Copyright © 2019 Yao Jiang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Background. Recently, the role of microRNAs (miRNAs) in diagnosing cancer has been attracted increasing attention. However, few miRNAs have been applied in clinical practice. The purpose of this study was to evaluate the diagnostic efficacy of miRNAs for hepatocellular carcinoma (HCC) at early stages clinically. Methods. A literature search was carried out using PubMed, Web of Science, and EMBASE databases. We explored the diagnostic value of miRNAs in distinguishing HCC from healthy individuals. The quality assessment was performed in Review Manager 5.3 software. The overall sensitivity and specificity and 95% confidence intervals (CIs) were obtained with random-effects models through Stata 14.0 software. And heterogeneity was assessed using Q test and I^2 statistics. Meta-regression and subgroup analyses were conducted based on the sample, nation, quality of studies, and miRNA profiling. The publication bias was evaluated through Deeks’ funnel plot. Results. A total of 34 studies, involving in 2747 HCC patients and 2053 healthy individuals, met the inclusion criteria in the 33 included literature studies. In the summary receiver operating characteristic (sROC) curve, AUC was 0.92 (95% CI, 0.90–0.94), with 0.84 (95% CI, 0.79–0.88) sensitivity and 0.87 (95% CI, 0.83–0.90) specificity. There was no publication bias ($P > 0.48$). Conclusion. miRNAs in vivo can be acted as a potential diagnostic biomarker for HCC, which can facilitate the early diagnosis of HCC in clinical practice.

1. Introduction

Hepatocellular carcinoma (HCC) accounts for more than 90% of primary liver cancers. It is one of the most common malignant tumors in the world and the third leading cause of cancer-related death [1], with an increasing incidence rate in the United States [2]. However, HCC is often diagnosed at an advanced stage, leading to limited treatment [3, 4] and poor prognosis, with a median overall survival of 6–20 months and 5-year survival rate of 3% [5].

HCC is often confirmed by pathological biopsy [6] and immunohistochemistry [7]. However, these methods have high invasiveness, leading to limited clinical application for early HCC screening. The alpha-fetoprotein (AFP) is the most common serum marker in the clinic for HCC routinely screening. However, it is not accurate for the diagnosis of HCC [4]. Given the cutoff value of AFP was 20 μg/L [8], less than 400 μg/L [9], the AFP has limited diagnostic efficacy.

Besides, the imaging techniques are also usually used to early screen HCC patients, including ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI) [10]. However, the diagnostic accuracy of the imaging techniques mainly relies on the size of the nodules, and these techniques are insensitive to small HCC nodules [10]. Because of the limited diagnostic value in the previous methods, it is urgent to discover a biomarker for the diagnosis of early HCC. Recently, many studies were focused on the role of microRNAs (miRNAs) in HCC.

miRNAs are highly conservative noncoding RNA, with 19–25 nucleotides [11, 12], resulting in mRNA degradation or inhibiting transcript through combining with mRNA [13, 14], which play an essential role in the formation mechanism of tumor [12, 15, 16]. Moreover, it is characterized by stable in serum or plasma [17], laying a foundation for serum/plasma miRNAs in the diagnosis of tumors. In recent years, miRNAs have higher diagnostic accuracy in
2. Materials and Methods

2.1. Study Search Strategies. We searched the related studies about the diagnosis of miRNAs for HCC in the Web of Science, EMBASE, and PubMed databases. There was no limit to the published time, languages, and sample source, with the deadline of searching articles (October 08, 2019). To verify the effectiveness of the study, we also manually searched the review papers and other relevant references. The search terms were found in the website of http://fmrs.metstr.com/index.aspx. “Carcinoma, hepatocellular,” “microRNAs,” and “diagnosis” were inputted in http://mesh.metstr.com/, where the entrance words were obtained for literature retrieval.

2.2. Study Selection. Inclusion and exclusion criteria to screen the literature were developed. A study can be included if it met the following criteria: (1) the studies were focused on the expression of miRNAs between HCC patients and healthy controls (HCs); (2) the difference in miRNA expression levels was statistically significant; (3) the data in studies must be complete, including sample size of two groups and sensitivity and specificity evaluation indexes to calculate the value of true positive (TP), false positive (FP), false negative (FN), and true negative (TN) or TP, FP, FN, and TN were directly given in the studies; (4) the purpose of studies was related to the diagnosis of HCC. In addition, the exclusion criteria were described below: (1) the studies were review, systematic evaluation, or meta-analysis; (2) the studies were duplicate; (3) the studies were focused on animal studies and cell culture, without case-control groups of humans; (4) the studies were the abstract of literature, letter to editors, or meetings; (5) the studies lacked complete information; and (6) the papers concentrated only on the survival, treatment, and prognosis of HCC, without involving in the diagnosis of HCC.

2.3. Quality Assessment. The qualitative evaluation of quality assessment was performed using QUADAS-2 tools for diagnostic studies, which included four domains: Patient Selection, Index Test, Reference Standard, and Flow and Timing [29, 30]. And two reviewers (Yao Jiang and Yiqin Li) performed the assessment separately. When encountering the divergence on the same literature, we invited a third individual (Jimin He) to discuss and solve the problem together.

2.4. Data Extraction. The data were extracted by two reviewers (Yao Jiang and Yiqin Li). The following contents need to be extracted: the first author, publication year, country, sample size, age ± standard deviation (SD), proportion of males, miRNAs categories, area under the curve (AUC), sensitivity, specificity, detection method, internal reference, and cutoff value. Besides, we pooled multiple groups of miRNAs in a single study using Meta-disc 1.4 software (https://meta-disc.software.informer.com/1.4/). Finally, the data were obtained in each study on the basis of the same specimen source, including the value of TP, FP, FN, and TN.

2.5. Statistical Analysis. Meta-disc 1.4 and Stata 14.0 software were used for all statistical analysis. And P value less than 0.05 was considered statistically significant. Pooled sensitivity and specificity statistical indicators were analyzed using a random-effects model. The overall diagnostic efficacy was evaluated by the summary receiver operating characteristic (sROC) curve. The threshold effect was investigated based on the Spearman correlation coefficient and P value. And the heterogeneity was assessed using I^2 and chi-square test. When the value of $I^2 > 50\%$ and P value < 0.05, the heterogeneity exits. The value of I^2 is 0–40%, 40–70%, and 70–100%, which indicate the low, medium, and high heterogeneity, respectively [31]. In addition, meta-regression and subgroup analyses were further applied to explore the potential sources of heterogeneity. The AUC was an index of diagnostic efficacy, the values ranging from 1.0 to 0.5. The closer the AUC is to 1.0, the better the diagnostic efficacy. At last, Deeks' funnel plot was used to analyze the potential publication bias [32, 33].

3. Results

3.1. Study Selection. A total of 2410 related studies were found through literature retrieval, 477 of which were duplicated literature. Ultimately, 33 papers were selected for meta-analysis according to the inclusion and exclusion criteria. The flowchart of study selection is shown in Figure 1.

3.2. Study Characteristics. The 33 papers included 34 eligible studies, which were published between 2010 and 2019. The data involved in 2747 patients with HCC and 2053 HCs. All the studies were published in English. The characteristics of the included studies are shown in Table 1. And the diagnostic efficacy of miRNAs for HCC in the included studies is shown in Table S1.
3.3. Quality Assessment. According to the QUADAS-2 tools, we provided an overview of the quality assessment for these studies. In the Index Test aspect, there existed a high risk of bias and applicability concern due to presetting the threshold. Figure 2 shows the details of the quality assessment form.

3.4. Comprehensive Analysis. The threshold effect was evaluated by the Spearman correlation coefficient (−0.537), with the P value of 0.001, showing that the threshold effect existed. Then we analyzed the pooled sensitivity and specificity of miRNAs, with 0.84 (95% CI, 0.79–0.88) sensitivity, 0.87 (95% CI, 0.83–0.90) specificity (Figure 3), and 0.92 (95% CI, 0.90–0.94) AUC in sROC curve (Figure 4). Heterogeneity was found, with I² of 88.13% in sensitivity and 82.22% in specificity, indicating that the heterogeneity was significant. Subsequently, subgroup analyses were conducted to explore the possible sources of heterogeneity.

3.5. Subgroup Analyses. We divided these studies into four subgroups, including sample, nation, quality, and miRNA profiling. In the nation subgroup, we divided the studies into three groups: China, non-China, and Egypt groups. We found the studies on the Egypt people had superior diagnostic efficacy, with 0.91 (95% CI, 0.79–0.96) sensitivity, 0.92 (95% CI, 0.84–0.97) specificity, 0.97 (95% CI, 0.95–0.98) AUC, 12.0 (95% CI, 5.2–27.5) positive likelihood ratio (PLR), 0.10 (95% CI, 0.04–0.24) negative likelihood ratio (NLR), and 119 (95% CI, 24–592) diagnostic odds ratio (DOR), showing miRNAs had better diagnostic ability for HCC in Egypt. The studies were divided into low- or high-quality subgroup according to the result of quality assessment. Figures 5(a)–5(j) show the diagnostic effect in China, non-China, Egypt, serum, plasma, low-quality, high-quality, single miRNA, multiple miRNAs, and miRNA panel subgroups. The diagnostic efficacy of serum- and plasma-derived miRNAs was the same, with 0.93 AUC (95% CI, 0.90–0.95). And the high-quality subgroup had 0.90 (95% CI, 0.86–0.94) sensitivity, 0.91 (95% CI, 0.85–0.94) specificity, 93 (95% CI, 40–214) DOR, and 0.96 (95% CI, 0.94–0.97) AUC, higher than low-quality subgroup. And miRNA panel had better diagnostic efficacy than single miRNA and multiple miRNAs subgroup, with sensitivity of 0.86 (95% CI, 0.79–0.91), specificity of 0.93 (95% CI, 0.85–0.97), PLR of 12.2 (95% CI, 5.7–27.0), NLR of 0.15 (95% CI, 0.10–0.23), DOR of 81 (95% CI, 28–236), and AUC of 0.95 (95% CI, 0.92–0.96). Table 2 shows the detailed results of subgroup analyses.
<table>
<thead>
<tr>
<th>Study</th>
<th>Year</th>
<th>Country</th>
<th>Specimen size</th>
<th>Age ± SD (years)</th>
<th>Male (%)</th>
<th>Method</th>
<th>Internal reference</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali, H. E. A.</td>
<td>2017</td>
<td>Egypt</td>
<td>34</td>
<td>na</td>
<td>76.50</td>
<td>qRT-PCR</td>
<td>miR-16</td>
<td>[34]</td>
</tr>
<tr>
<td>Ali, M. A.</td>
<td>2018</td>
<td>Egypt</td>
<td>105</td>
<td>na</td>
<td>66.70</td>
<td>qRT-PCR</td>
<td>RNA U6</td>
<td>[35]</td>
</tr>
<tr>
<td>Amr, K. S.</td>
<td>2017</td>
<td>Egypt</td>
<td>39</td>
<td>58.00 ± 12.00</td>
<td>78.57</td>
<td>qRT-PCR</td>
<td>miR-39</td>
<td>[37]</td>
</tr>
<tr>
<td>Chen, X.</td>
<td>2019</td>
<td>China</td>
<td>120</td>
<td>na</td>
<td>81.67</td>
<td>qRT-PCR</td>
<td>miR-16</td>
<td>[38]</td>
</tr>
<tr>
<td>Chen, Y.</td>
<td>2015</td>
<td>China</td>
<td>47</td>
<td>na</td>
<td>93.62</td>
<td>qPCR</td>
<td>miR-16</td>
<td>[39]</td>
</tr>
<tr>
<td>Dai, M.</td>
<td>2019</td>
<td>China</td>
<td>50</td>
<td>48.60 ± 11.90</td>
<td>70.00</td>
<td>RT-qPCR</td>
<td>U6</td>
<td>[40]</td>
</tr>
<tr>
<td>El Mahdy, H.</td>
<td>2019</td>
<td>Egypt</td>
<td>60</td>
<td>na</td>
<td>94.70</td>
<td>qRT-PCR</td>
<td>U6RNA</td>
<td>[45]</td>
</tr>
<tr>
<td>Han, J.</td>
<td>2019</td>
<td>China</td>
<td>155</td>
<td>58.20 ± 10.50</td>
<td>81.94</td>
<td>qRT-PCR</td>
<td>U6 snRNA/Cel-miR-39</td>
<td>[42]</td>
</tr>
<tr>
<td>Li, L. H.</td>
<td>2012</td>
<td>China</td>
<td>86</td>
<td>54.00 ± 11.00</td>
<td>75.25</td>
<td>qRT-PCR</td>
<td>U6 snRNA</td>
<td>[43]</td>
</tr>
<tr>
<td>Li, L. M.</td>
<td>2010</td>
<td>China</td>
<td>55</td>
<td>52.83 ± 7.85</td>
<td>83.64</td>
<td>qRT-PCR</td>
<td>miR-168</td>
<td>[44]</td>
</tr>
<tr>
<td>Luo, J.</td>
<td>2013</td>
<td>China</td>
<td>85</td>
<td>53.60 ± 12.00</td>
<td>82.40</td>
<td>qPCR</td>
<td>U6 RNA</td>
<td>[45]</td>
</tr>
<tr>
<td>Lv, Z. H.</td>
<td>2018</td>
<td>China</td>
<td>75</td>
<td>52.80 ± 9.70</td>
<td>94.70</td>
<td>qRT-PCR</td>
<td>RNU-6</td>
<td>[47]</td>
</tr>
<tr>
<td>Lv, Z. H.</td>
<td>2018</td>
<td>China</td>
<td>75</td>
<td>na</td>
<td>74.30</td>
<td>qPCR</td>
<td>RNU-6</td>
<td>[47]</td>
</tr>
<tr>
<td>Nig, S.</td>
<td>2019</td>
<td>China</td>
<td>30</td>
<td>50.70 ± 10.56</td>
<td>60.00</td>
<td>qPCR</td>
<td>miR-16</td>
<td>[48]</td>
</tr>
<tr>
<td>Shaheen, N. M. H.</td>
<td>2018</td>
<td>Egypt</td>
<td>40</td>
<td>58.00 ± 8.60</td>
<td>65.00</td>
<td>qPCR</td>
<td>cel-miR-39</td>
<td>[49]</td>
</tr>
<tr>
<td>Shaker, O.</td>
<td>2019</td>
<td>Egypt</td>
<td>36</td>
<td>59.92 ± 7.47</td>
<td>77.78</td>
<td>RT-qPCR</td>
<td>SNORD68</td>
<td>[50]</td>
</tr>
<tr>
<td>Shen, J.</td>
<td>2013</td>
<td>New York</td>
<td>49</td>
<td>61.10 ± 11.70</td>
<td>84.00</td>
<td>qRT-PCR</td>
<td>U6 snRNA</td>
<td>[51]</td>
</tr>
<tr>
<td>Shen, X.</td>
<td>2018</td>
<td>China</td>
<td>70</td>
<td>na</td>
<td>65.71</td>
<td>RT-qPCR</td>
<td>U6</td>
<td>[52]</td>
</tr>
<tr>
<td>Tan, Y.</td>
<td>2014</td>
<td>China</td>
<td>103</td>
<td>52.01 ± 10.21</td>
<td>73.80</td>
<td>qRT-PCR</td>
<td>miRNA-24</td>
<td>[53]</td>
</tr>
<tr>
<td>Tomimaru, Y.</td>
<td>2012</td>
<td>China</td>
<td>126</td>
<td>63.00 ± 10.00</td>
<td>78.60</td>
<td>qRT-PCR</td>
<td>miR-16</td>
<td>[54]</td>
</tr>
<tr>
<td>Wang, F.</td>
<td>2016</td>
<td>China</td>
<td>76</td>
<td>na</td>
<td>86.84</td>
<td>qRT-PCR</td>
<td>cel-miR-39</td>
<td>[55]</td>
</tr>
<tr>
<td>Wang, Y.</td>
<td>2018</td>
<td>China</td>
<td>50</td>
<td>56.32 ± 9.71</td>
<td>80.00</td>
<td>qPCR</td>
<td>U6 snRNA</td>
<td>[56]</td>
</tr>
<tr>
<td>Xie, Y.</td>
<td>2014</td>
<td>China</td>
<td>67</td>
<td>51.69 ± 10.43</td>
<td>85.10</td>
<td>qRT-PCR</td>
<td>cel-miR-39</td>
<td>[57]</td>
</tr>
<tr>
<td>Xu, L. J.</td>
<td>2018</td>
<td>China</td>
<td>100</td>
<td>54.90 ± 13.10</td>
<td>74.00</td>
<td>qRT-PCR</td>
<td>U6RNA</td>
<td>[58]</td>
</tr>
<tr>
<td>Yang, L.</td>
<td>2016</td>
<td>China</td>
<td>156</td>
<td>na</td>
<td>84.30</td>
<td>qPCR</td>
<td>RNA U6</td>
<td>[59]</td>
</tr>
<tr>
<td>Yin, J.</td>
<td>2015</td>
<td>China</td>
<td>78</td>
<td>56.30 ± 6.70</td>
<td>37.18</td>
<td>qRT-PCR</td>
<td>U6 snRNA</td>
<td>[60]</td>
</tr>
<tr>
<td>Yu, F.</td>
<td>2015</td>
<td>China</td>
<td>120</td>
<td>58.00 ± 10.40</td>
<td>62.5</td>
<td>qRT-PCR</td>
<td>miR-16</td>
<td>[61]</td>
</tr>
<tr>
<td>Zhang, Z.</td>
<td>2014</td>
<td>China</td>
<td>95</td>
<td>54.21 ± 6.95</td>
<td>63.16</td>
<td>qRT-PCR</td>
<td>U6</td>
<td>[62]</td>
</tr>
<tr>
<td>Zhou, J.</td>
<td>2011</td>
<td>China</td>
<td>196</td>
<td>53.00 ± 12.00</td>
<td>85.00</td>
<td>qRT-PCR</td>
<td>miR-1228</td>
<td>[63]</td>
</tr>
<tr>
<td>Zhu, H. T.</td>
<td>2017</td>
<td>China</td>
<td>121</td>
<td>na</td>
<td>84.30</td>
<td>qPCR</td>
<td>na</td>
<td>[64]</td>
</tr>
<tr>
<td>Zhu, S.</td>
<td>2018</td>
<td>China</td>
<td>33</td>
<td>54.00 ± 11.00</td>
<td>81.82</td>
<td>RT-qPCR</td>
<td>U6 snRNA</td>
<td>[65]</td>
</tr>
<tr>
<td>Zhuo, D.</td>
<td>2016</td>
<td>China</td>
<td>90</td>
<td>54.70 ± 9.80</td>
<td>75.56</td>
<td>RT-qPCR</td>
<td>RNA U6</td>
<td>[66]</td>
</tr>
</tbody>
</table>

HCC: hepatocellular carcinoma; HC: healthy control; Ref: reference; na: not available.
3.6. Meta-Regression Analysis. Meta-regression analysis was used to investigate the possible sources of heterogeneity in Meta-Disc 1.4 software. Since all of I^2 in sensitivity, specificity, PLR, NLR, and DOR were more than 70% (Figure S2), we explored the source of heterogeneity. The P values were 0.0410, 0.9808, 0.3906, and 0.5372 in quality, sample, nation, and miRNA profiling subgroups, respectively. We also separately analyzed the impact of quality on the meta-analysis. The variable of quality had a P value with 0.0093, demonstrating the quality of studies was the main source of heterogeneity (Table 3). Meanwhile, we also performed meta-regression analysis using Stata 14.0 software. However, the difference in quality was not statistically significant in Figure 6.

3.7. Publication Bias. In order to evaluate the underlying publication bias, Deeks’ funnel plot was designed in Stata 14.0 software. The P value was 0.48, indicating the probability of publication bias was fairly small (Figure 7).

4. Discussion

Early HCC patients are usually asymptomatic [67], which made the diagnosis of HCC more difficult. When the HCC patients have obvious symptoms, such as liver pain, jaundice, refractory ascites, progressive weight loss, fever, cachexia, or very serious complications (hepatic encephalopathy), indicating that early HCC may progress into advanced stages [68, 69], then the treatments will be limited. The radical hepatic resection in early HCC is one of the most effective treatments [70]. However, only 30% to 40% of HCC patients can perform radical treatment at the time of diagnosis [63]. Therefore, the early diagnosis of HCC is rather important for improving the five-year survival rate of HCC patients. In recent years, miRNAs have been found to be potential biomarkers for the diagnosis of HCC [44, 63]. However, the conclusions are inconsistent. Therefore, we conducted this study to evaluate whether miRNAs can be used as diagnostic biomarkers for early HCC.

In this study, the overall sensitivity, specificity, and AUC were 0.84, 0.87, and 0.92, respectively, indicating that the overall accuracy was high using the circulating miRNAs as diagnostic biomarkers for HCC. In addition, the 6.5 PLR showed better diagnostic efficacy for distinguishing HCC patients from healthy individuals. The 0.18 NLR showed miRNAs had the probability of excluding the participants without HCC. The value of DOR (36, 95% CI: 20–64) showed high diagnostic efficacy in 34 studies. Subsequently, we analyzed the main source of heterogeneity and divided these studies into four subgroups. It was reported that the circulating miRNA concentrations might be associated with different ethnic groups [71]. Then, we found the studies in Egypt had better diagnostic accuracy than China. And Shaker et al. found the incidence of HCC in Egypt is overall increasing, from 4% in 1993 to 7.3% in 2003 [67]. Besides, the incidence rate of HCC among the cirrhosis patients in Egypt was approximately 21% [41], which might play an important role in the diagnosis of HCC. In addition, Yang, Y et al. found the miRNAs had higher diagnostic efficacy in Asians with 22 DOR than Caucasians [72]. Therefore,
Sensitivity (95% CI) Q = 277.90, df = 33.00, p = 0.00
I² = 88.13 [84.93–91.32]

Specificity (95% CI)

Figure 3: The forest plot of miRNAs for overall diagnostic efficacy in HCC. The solid squares represent the point estimates for the sensitivity and specificity of each study. Error bars indicate 95% confidence interval (CI).

Figure 4: The summary receiver operator characteristic (sROC) curve of miRNAs for the diagnosis of HCC. The numerical value in each circle represents the number of the included studies in the meta-analysis. And the regression sROC curve indicates overall diagnostic accuracy.
Observed data

(a) Observed data
Summary operating point
SENS = 0.82 [0.77–0.86]
SPEC = 0.85 [0.81–0.89]

sROC curve
AUC = 0.91 [0.88–0.93]
--- 95% confidence contour
----- 95% prediction contour

(b) Observed data
Summary operating point
SENS = 0.89 [0.77–0.95]
SPEC = 0.91 [0.85–0.95]

sROC curve
AUC = 0.96 [0.94–0.97]
--- 95% confidence contour
----- 95% prediction contour

(c) Observed data
Summary operating point
SENS = 0.91 [0.79–0.96]
SPEC = 0.92 [0.84–0.97]

sROC curve
AUC = 0.97 [0.95–0.98]
--- 95% confidence contour
----- 95% prediction contour

(d) Observed data
Summary operating point
SENS = 0.86 [0.79–0.90]
SPEC = 0.87 [0.82–0.90]

sROC curve
AUC = 0.93 [0.90–0.95]
--- 95% confidence contour
----- 95% prediction contour

(e) Observed data
Summary operating point
SENS = 0.78 [0.71–0.83]
SPEC = 0.84 [0.79–0.88]

sROC curve
AUC = 0.88 [0.85–0.91]
--- 95% confidence contour
----- 95% prediction contour

(f) Observed data
Summary operating point
SENS = 0.67 [0.60–0.74]
SPEC = 0.80 [0.75–0.85]

sROC curve
AUC = 0.78 [0.75–0.81]
--- 95% confidence contour
----- 95% prediction contour

Figure 5: Continued.
multiple-central studies are needed to verify our findings. Furthermore, the miRNAs were reported that they were differentially expressed in plasma and serum [73]. Then we explored the diagnostic efficacy of miRNAs in serum and plasma for HCC. Intriguingly, the serum and plasma subgroup had the same AUC and 95% CI. Like our study, Yang et al. also found the diagnostic efficacy was not statistically significant in the two sample types through a meta-analysis [72]. We speculated that serum- or plasma-derived miRNAs might have little difference on the diagnosis of HCC. However, due to the lack of consensus on whether plasma or serum is more suitable for sample detection, there exist limitations to analyzing the expression level of miRNAs in both plasma and serum [74]. Subsequently, we found the high-quality studies had better diagnostic efficacy than low-quality studies, showing the quality of studies

Figure 5: sROC curve for subgroup analyses. sROC curve describes the diagnostic performance of miRNAs in discriminating HCC in (a) China, (b) non-China, (c) Egypt, (d) serum, (e) plasma, (f) low-quality, (g) high-quality, (h) single miRNA, (i) multiple miRNAs, and (j) miRNA panel subgroups from healthy individuals, and each solid circle represents a included study in our meta-analysis.

Observed data
- Summary operating point
 - SENS = 0.90 [0.86–0.94]
 - SPEC = 0.91 [0.85–0.94]
- sROC curve
 - AUC = 0.96 [0.94–0.97]
- 95% confidence contour
- 95% prediction contour

Summary operating point
- SENS = 0.84 [0.77–0.89]
- SPEC = 0.88 [0.83–0.92]
- sROC curve
 - AUC = 0.93 [0.90–0.95]
- 95% confidence contour
- 95% prediction contour

Observed data
- Summary operating point
 - SENS = 0.84 [0.75–0.90]
 - SPEC = 0.86 [0.80–0.90]
- sROC curve
 - AUC = 0.91 [0.89–0.94]
- 95% confidence contour
- 95% prediction contour

Observed data
- Summary operating point
 - SENS = 0.86 [0.79–0.91]
 - SPEC = 0.93 [0.85–0.97]
- sROC curve
 - AUC = 0.95 [0.92–0.96]
- 95% confidence contour
- 95% prediction contour
was one of the most essential factors influencing the overall heterogeneity. And in the meta-regression, we found the difference in quality was statistically significant using Meta-disc 1.4 software, with \(P \) value < 0.05. Besides, we also showed that miRNA panel had a higher diagnostic value than multiple miRNAs or single miRNA subgroup. Hung et al. showed that miRNA panel had 84.8% sensitivity and 50.0% specificity, better than single miRNA (miR-122 and let-7b) [75]. Zhou et al. also reported that miRNA panel (miR-122, miR-192, miR-21, miR-223, miR-26a, miR-27a, and miR-801) can distinguish early HCC from healthy individuals with 82.5% sensitivity, 83.5% specificity, and 0.888 AUC [63]. And Zhang et al. also showed that 3-miRNA panels (miR-92a-3p, miR-107, and miR-3126-5p) had better diagnostic accuracy with 0.975 AUC [76]. Ning et al. also demonstrated miRNA panel (miR-155, miR-96, and miR-99a) had 0.931 AUC, higher than single miRNA [48]. Meanwhile, Pascut et al. provided comprehensive profiling of miRNome in HCC patient blood and serum, which provided useful molecular markers for the diagnosis of HCC [77].

Our study had some advantages compared with previous studies. Firstly, we integrated multiple single miRNAs or

<table>
<thead>
<tr>
<th>Subgroup</th>
<th>Sensitivity (95% CI)</th>
<th>Specificity (95% CI)</th>
<th>PLR (95% CI)</th>
<th>NLR (95% CI)</th>
<th>DOR (95% CI)</th>
<th>AUC (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>0.86 (0.79, 0.90)</td>
<td>0.87 (0.82, 0.90)</td>
<td>6.5 (4.6, 9.1)</td>
<td>0.17 (0.11, 0.25)</td>
<td>39 (19, 78)</td>
<td>0.93 (0.90, 0.95)</td>
</tr>
<tr>
<td>Plasma</td>
<td>0.82 (0.70, 0.89)</td>
<td>0.89 (0.82, 0.94)</td>
<td>7.8 (4.0, 14.9)</td>
<td>0.20 (0.12, 0.36)</td>
<td>38 (12, 117)</td>
<td>0.93 (0.90, 0.95)</td>
</tr>
<tr>
<td>Nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>0.82 (0.77, 0.86)</td>
<td>0.85 (0.81, 0.89)</td>
<td>5.7 (4.1, 7.8)</td>
<td>0.21 (0.16, 0.28)</td>
<td>27 (15, 48)</td>
<td>0.91 (0.88, 0.93)</td>
</tr>
<tr>
<td>Non-China</td>
<td>0.89 (0.77, 0.95)</td>
<td>0.91 (0.85, 0.95)</td>
<td>10.3 (5.3, 20.1)</td>
<td>0.12 (0.05, 0.27)</td>
<td>89 (22, 236)</td>
<td>0.96 (0.94, 0.97)</td>
</tr>
<tr>
<td>Egypt</td>
<td>0.91 (0.79, 0.96)</td>
<td>0.92 (0.84, 0.97)</td>
<td>12.0 (5.2, 27.5)</td>
<td>0.10 (0.04, 0.24)</td>
<td>119 (24, 592)</td>
<td>0.97 (0.95, 0.98)</td>
</tr>
<tr>
<td>Quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-quality</td>
<td>0.78 (0.71, 0.83)</td>
<td>0.84 (0.79, 0.88)</td>
<td>4.9 (3.5, 6.9)</td>
<td>0.27 (0.19, 0.37)</td>
<td>18 (10, 34)</td>
<td>0.88 (0.85, 0.91)</td>
</tr>
<tr>
<td>High-quality</td>
<td>0.90 (0.86, 0.94)</td>
<td>0.91 (0.85, 0.94)</td>
<td>9.7 (6.0, 15.9)</td>
<td>0.11 (0.07, 0.16)</td>
<td>93 (40, 214)</td>
<td>0.96 (0.94, 0.97)</td>
</tr>
<tr>
<td>miRNA profiling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single miRNA</td>
<td>0.84 (0.77, 0.89)</td>
<td>0.88 (0.83, 0.92)</td>
<td>6.9 (4.6, 10.4)</td>
<td>0.18 (0.12, 0.27)</td>
<td>39 (18, 83)</td>
<td>0.93 (0.90, 0.95)</td>
</tr>
<tr>
<td>Multiple miRNAs</td>
<td>0.84 (0.75, 0.90)</td>
<td>0.86 (0.80, 0.90)</td>
<td>5.9 (3.9, 8.9)</td>
<td>0.19 (0.11, 0.31)</td>
<td>32 (13, 75)</td>
<td>0.91 (0.89, 0.94)</td>
</tr>
<tr>
<td>miRNA panel</td>
<td>0.86 (0.79, 0.91)</td>
<td>0.93 (0.85, 0.95)</td>
<td>12.2 (5.7, 27.0)</td>
<td>0.15 (0.10, 0.23)</td>
<td>81 (28, 236)</td>
<td>0.95 (0.92, 0.96)</td>
</tr>
</tbody>
</table>

PLR: positive likelihood ratio; NLR: negative likelihood ratio; DOR: diagnostic odds ratio; AUC: area under the curve.

Table 3: The meta-regression of covariates.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient</th>
<th>Standard error</th>
<th>(P) value</th>
<th>RDOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1: the variables are quality, sample, nation, and miRNA profiling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cte.</td>
<td>2.358</td>
<td>1.1800</td>
<td>0.0555</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>0.123</td>
<td>0.2919</td>
<td>0.6768</td>
<td>—</td>
</tr>
<tr>
<td>Quality</td>
<td>0.641</td>
<td>0.2993</td>
<td>0.0410</td>
<td>1.90 (1.03, 3.51)</td>
</tr>
<tr>
<td>Sample</td>
<td>0.012</td>
<td>0.5037</td>
<td>0.6746</td>
<td>—</td>
</tr>
<tr>
<td>Nation</td>
<td>0.320</td>
<td>0.3668</td>
<td>0.3906</td>
<td>1.38 (0.65, 2.92)</td>
</tr>
<tr>
<td>miRNA profiling</td>
<td>-0.335</td>
<td>0.5356</td>
<td>0.5372</td>
<td>0.72 (0.24, 2.14)</td>
</tr>
<tr>
<td>Model 2: the variables are quality, nation, and miRNA profiling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cte.</td>
<td>2.336</td>
<td>0.9455</td>
<td>0.0196</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>0.122</td>
<td>0.2838</td>
<td>0.6746</td>
<td>—</td>
</tr>
<tr>
<td>Quality</td>
<td>0.642</td>
<td>0.2872</td>
<td>0.0334</td>
<td>1.90 (1.06, 3.42)</td>
</tr>
<tr>
<td>Sample</td>
<td>0.316</td>
<td>0.3519</td>
<td>0.3762</td>
<td>1.37 (0.67, 2.82)</td>
</tr>
<tr>
<td>Nation</td>
<td>0.332</td>
<td>0.5243</td>
<td>0.5316</td>
<td>0.72 (0.25, 2.10)</td>
</tr>
<tr>
<td>miRNA profiling</td>
<td>-0.332</td>
<td>0.5243</td>
<td>0.5316</td>
<td>0.72 (0.25, 2.10)</td>
</tr>
<tr>
<td>Model 3: the variables are quality and nation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cte.</td>
<td>1.89</td>
<td>0.627</td>
<td>0.0052</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>0.11</td>
<td>0.2798</td>
<td>0.6981</td>
<td>—</td>
</tr>
<tr>
<td>Quality</td>
<td>0.643</td>
<td>0.2830</td>
<td>0.0304</td>
<td>1.90 (1.07, 3.39)</td>
</tr>
<tr>
<td>Nation</td>
<td>0.301</td>
<td>0.3465</td>
<td>0.3921</td>
<td>1.35 (0.67, 2.74)</td>
</tr>
<tr>
<td>Model 4: the variable is quality</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cte.</td>
<td>2.155</td>
<td>0.5404</td>
<td>0.0004</td>
<td>—</td>
</tr>
<tr>
<td>S</td>
<td>0.09</td>
<td>0.2765</td>
<td>0.7473</td>
<td>—</td>
</tr>
<tr>
<td>Quality</td>
<td>0.728</td>
<td>0.2626</td>
<td>0.0093</td>
<td>2.07 (1.21, 3.54)</td>
</tr>
</tbody>
</table>

RDOR: relative diagnostic odds ratios. \(P \) value < 0.05 showing the significant difference.
miRNA panels into a single miRNA in a study for improving the diagnostic efficacy of miRNAs. Secondly, we evaluated the diagnostic performance of circulating miRNAs in serum or plasma for early HCC patients. Thirdly, we combined the Stata 14.0 software, Review Manager 5.3 [78], and Meta-Disc 1.4 software to perform the meta-analysis. And we also analyzed the difference of diagnosis for HCC among single miRNA, multiple miRNAs, and miRNA panel. Ultimately, our results were promising and implied that miRNAs might be potential noninvasive biomarkers for the diagnosis of early HCC.

Nevertheless, there existed several limitations to the present study. First of all, there existed a threshold effect, which might be related to the cutoff values. For example, Hea et al. set the cutoff value of miR-126 and miR-21 to 0.462 and 4.26, respectively [34]. Secondly, the subgroup classifications of HCC based on the different background, such as chronic hepatitis B, chronic hepatitis C, other types of nonviral hepatitis, and liver cirrhosis, were not conducted because some studies lack the detailed information. Furthermore, these studies lacked united internal reference in RNA quantification [79]. In the included articles, most of the studies used RNA U6 (also called snRNA U6 or U6), while some studies used miR-16, miR-39, or other miRNAs as internal reference.

In conclusion, our results have shown miRNAs in vivo can be acted as a potential diagnostic biomarker for HCC, which can promote the diagnosis of early HCC in clinical practice. Additionally, we also found miRNA panel in serum or plasma may have better diagnostic efficacy than single miRNA. In addition, more high-quality and multiple-central studies are needed to verify our findings.

Figure 6: Meta-regression for subgroups. Univariate meta-regression and subgroup analyses of sensitivity and specificity. *, **, and *** show the statistically significant difference.
Data Availability

The data used to support the findings of this study are included within the article.

Disclosure

Hualin Tao and Yongcan Guo contributed equally to this work. The funding agencies had no role in study design, analysis, interpretation of results, decision to publish, or preparation of the manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funding agency.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This research was supported by a Key Project of Health and Family Planning Commission of Sichuan Province (no. 16ZD036) and a Research Project of Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University funded research project (no. 2016-JYT009). The authors would like to appreciate Shaozhi Fu, PhD, and Zhihua Zuo, MD, who carefully revised our manuscript.

Supplementary Materials

Table S1: the diagnostic efficacy of miRNAs in the included studies (Supplementary Material 1). Figure S2: the pooled (a) sensitivity, (b) specificity, (c) PLR, (d) NLR, and (e) DOR were obtained using Meta-disc 1.4 software (Supplementary Material 2). (Supplementary Materials)

References

