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Tumor mutation burden (TMB) is considered to be an independent genetic biomarker that can predict the tumor patient’s response
to immune checkpoint inhibitors (ICIs). Meanwhile, microRNA (miRNA) plays a key role in regulating the anticancer immune
response. However, the correlation between miRNA expression patterns and TMB is not elucidated in HNSCC. In the HNSCC
cohort of the TCGA dataset, miRNAs that were differentially expressed in high TMB and low TMB samples were screened. The
least absolute contraction and selection operator (LASSO) method is used to construct a miRNA-based feature classifier to
predict the TMB level in the training set. The test set is used to verify the classifier. The correlation between the miRNA-based
classifier index and the expression of three immune checkpoints (PD1, PDL1, and CTLA4) was explored. We further perform
functional enrichment analysis on the miRNA contained in the miRNA-based feature classifier. Twenty-five differentially
expressed miRNAs are used to build miRNA-based feature classifiers to predict TMB levels. The accuracy of the 25-miRNA-
based signature classifier is 0.822 in the training set, 0.702 in the test set, and 0.774 in the total set. The miRNA-based feature
classifier index showed a low correlation with PD1 and PDL1, but no correlation with CTLA4. The enrichment analysis of these
25 miRNAs shows that they are involved in many immune-related biological processes and cancer-related pathways. The
miRNA expression patterns are related to tumor mutation burden, and miRNA-based feature classifiers can be used as
biomarkers to predict TMB levels in HNSCC.

1. Introduction

Head and neck squamous cell carcinoma (HNSCC) remains
the primary cause of cancer-related mortality in the world,
which is characterized by advanced diagnosis [1], poor prog-
nosis [2], low overall survival [3], and high recurrence [4].
HNSCC is regarded as the tenth most common cancer in
the world and the seventh most common cause of cancer
deaths. There are approximately 400,000 oral and pharyngeal
diseases, 160,000 laryngeal cancers, and 300,000 deaths
worldwide each year [5–7]. HNSCC is a common heteroge-
neous tumor that exists in the oral, pharyngeal, and larynx
lesions [8]. Risk factors for oral cancer may include mutant

oncogenes, the presence of extensive P53, and lower levels
of tumor hypoxia, smoke, alcohol, age factor (>65 years),
and HPV or EBV infection, but the mechanism remains to
be explored in detail. Existing treatments are deficient for
patients with locally advanced or distantly metastatic
HNSCC. Therefore, looking for a new treatment method is
currently urgent.

At present, tumor immunotherapy has been the main
driving force for personalized precision medicine, and efforts
are being made to use the immune system to treat advanced
or metastatic cancers [9–12]. The main categories of immu-
notherapy include monoclonal antibody immune checkpoint
inhibitors (ICIs), therapeutic antibodies, cancer vaccines,
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immune system regulators, cell therapy, and synthetic small
molecule inhibitors. In recent years, the most worth men-
tioning is that HNSCC has made a breakthrough in immuno-
therapy, especially in the discovery of inhibitors of the
immune pathway-related checkpoint, such as antipro-
grammed death 1 (anti-PD1) and anti-CTLA4, which have
important effects on the treatment of locally advanced meta-
static HNSCC [13–15].

Tumor mutation load (TMB) is a new type of biomarker
that predicts the effect of immunotherapy. Multiple studies
have investigated the prognostic role of TMB in immuno-
therapy for multiple cancer types [16–18]. The translation
of mutated genes into modified proteins requires posttran-
scriptional regulation, and microRNA (miRNA) is an impor-
tant molecule involved in posttranscriptional regulation.
Meanwhile, the abnormal expression of miRNAs was
involved in the occurrence of cancer, and it has attracted peo-
ple’s attention. Previous studies have shown that miRNA
may act as a prognostic indicator in many types of cancers
[19, 20]. Recently, people are paying more and more atten-
tion to the role of miRNA in regulating the anticancer
immune response [21, 22]. It has been clarified that miRNA
is involved in mediating and controlling various immune
and cancer cell interactions. Therefore, we hypothesized that
miRNA expression patterns can be used as biomarkers to
predict TMB levels. To verify our hypothesis, we downloaded
the data of the head and neck squamous cell carcinoma
(HNSCC) dataset from TCGA, including mutation annota-
tion files and miRNA expression profiles, and constructed
miRNA-based feature classifiers to predict TMB levels.

2. Materials and Methods

2.1. Data Acquisition and Processing. First, the mRNA and
miRNA profiling was downloaded from the TCGA database
by the GDC tool (https://portal.gdc.cancer.gov/ ), including
502 HNSCC patients and 44 adjacent-tumor samples. Then,
we excluded the adjacent-tumor samples and retained the
tumor samples. We also obtained the somatic mutation data

of all patients in the “Masked Somatic Mutation” category of
TCGA processed by VarScan software. Besides, clinical infor-
mation of each patient, including age, gender, TNM stage,
tumor grade, and survival time, is obtained through the
GDC portal.

In the end, a total of 501 samples with both miRNA
expression and mutation profiling were considered eligible
in this analysis. These samples were randomly assigned to
the training (60%) and test (40%) sets. The flowchart of this
study is exhibited in Figure 1.

2.2. Assessment of TMB for Each Patient and Prognostic
Analysis. Tumor mutational burden was defined as the num-
ber of somatic variants per megabase (MB) of the genome
[23]. We employed the Kaplan-Meier analysis with the log-
rank test to screen optimal TMB value. Then, the patients
were divided into the high and low TMB groups according
to the optimal cut-off point of the TMB value. Meanwhile,
the TMB levels from the TCGA cohort were merged with
corresponding survival data of each sample via merge func-
tion in R. Also, we further assess the relationship between
the TMB groups with several clinical variables. We used the
Wilcoxon rank-sum test to compare the clinical characteris-
tics of the two groups, while the Kruskal-Wallis test is used
for comparison between three or more groups.

2.3. Mutation Analysis. The mutation data in the MAF of
HNSCC patients were used in the TCGA dataset. The R
package “maftools” was used to display the mutation profile
of each group [24]. The maftools was also used to impute
the mutation rate of each gene and also identified significant
mutant genes in different subtypes (p < 0:05).

2.4. Identification of Differentially Expressed miRNAs. The
differentially expressed miRNAs between high TMB samples
and low TMB samples were conducted using the “limma”
package in R [25]. The differentially expressed miRNA of
datasets with ∣log2 fold change ∣ ≥1:0 and a p value less than

TCGA HNSC cohort

Train group Test group

Differentially
expressed
analysis

Variables screen
using LASSO model

Establishment
of LASSO
classifier

Split (60/40)

Functional
enrichment

analysis

Correlation
analysis with

ICIs

Validation

Figure 1: Flowchart delineates the study design and analysis process.
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0.01 was considered the selection criteria for subsequent
analysis. The heatmap plot was also exhibited.

2.5. Principal Component Analysis (PCA) and Least Absolute
Shrinkage and Selection Operator (LASSO) Analysis. The
expression values of differentially expressed miRNAs for
each HNSCC sample were extracted in the training set. The
LASSO logistic regression model was conducted using the
“glmnet” package in R, which has a powerful predictive value
and a low correlation between each other to prevent overfit-
ting and applied to select optimal features for the high-
dimensional data [26]. Before using the expression profiles
of all the differently expressed miRNAs for feature selection,
we first performed PCA to examine the distribution of sam-
ples. PCA was then performed using the expression profile
of the best differentially expressed miRNA. The PCA plot
was drawn across the first two principal components.

2.6. miRNA-Based Feature Classifier for Predicting TMB
Level. We used the LASSO method to build a prediction
model, selected nonzero regression coefficients to identify
the optimal miRNA set, and used the selected miRNA to
build a miRNA-based feature classifier to predict TMB levels.
The regression coefficients from the LASSO analysis were
used to create a classification index for each sample, and
the following formula was used to weigh the expression value
of the selected miRNA: The Prognostic Index = ðExp

miRNA1 ∗ Coef1Þ + ðExpmiRNA2 ∗ Coef2Þ + ðExp
miRNA3 ∗ Coef3Þ +⋯+ðExpmiRNAn ∗ CoefnÞ. The test
set is used to verify the robustness and portability of the clas-
sifier. The prognostic performance of the classifier was eval-
uated using receiver operating characteristic (ROC) curves
by comparing the sensitivity and specificity of the survival
prediction. The ROC curves were plotted using the “pROC”
package in R [27].

2.7. Association between the miRNA-Based Signature
Classifier Model and the Expression of Three Immune
Checkpoints. The correlation between the miRNA-based sig-
nature classifier index and the expression of three immune
checkpoints (PD1, PDL1, and CTLA4) was analyzed using
the Spearman rank correlation analysis. A p value of less than
0.05 was considered statistically significant.

2.8. Identification of Target Genes and Functional Enrichment
Analysis. starBase [28], TargetScan [29], and miRDB [30]
were used to check whether these three immune checkpoints
are target genes of any of these miRNAs. Besides, DIANA
mirPath web server was used to perform the KEGG pathway
and Gene Ontology (GO) enrichment analyses for these
miRNAs [31]. The “ggplot2” package was used to visualize
the enrichment results. The enrichment analysis was based
on the threshold of p value < 0.05.
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Figure 2: The Kaplan-Meier analysis was conducted to screen the optimal cut-off point. (a) The distribution of the p value and hazard ratio in
all groups, the p value at the position marked by the horizontal dotted line is 0.05, and the HRs marked by the two vertical dotted lines are 0.5
and 2. (b) Survival curve of the best group.
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2.9. Correlation between miRNA-Based Signature Classifier
and Pathways. Firstly, the gene set of the interested pathway
was downloaded from the KEGG (Kyoto Encyclopedia of
Genes and Genomes) dataset (http://www.genome.jp/kegg/
). Secondly, single-sample gene set enrichment analysis
(ssGSEA) was used to calculate the enrichment scores of
the pathway. Thirdly, the relationship between miRNA-
based signature classifier and pathways using the Spearman
rank correlation analysis was studied.

3. Results

3.1. Comparisons of Clinical Feature between High and Low
TMB Groups. We conducted the Kaplan-Meier analysis to
screen the optimal cut-off point (TMB: 3.236842105); the
survival plot is shown in Figures 2(a) and 2(b). Based on
the optimal cut-off point, the HNSCC patients were divided
into two groups: the high TMB and low TMB groups. We
compared the clinical difference between the high and low
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Figure 3: The clinical difference in age (a), gender (b), grade (c), TNM stage (d), T stage (e), N stage (f), and M stage (g) between the high
TMB and low TMB groups.
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TMB groups. The results indicated that the difference in
TNM stage, age, and T stage between the high TMB and
low TMB groups is observed in Figures 3(a)–3(g).

3.2. Comparisons of Gene Mutation between High and Low
TMB Groups. This study examined the association between

the high and low TMB groups and the count of somatic
mutation. Gene mutation profiles of these highly mutated
genes are shown in Figures 4(a) and 4(b). In the high TMB
group, TP53, TTN, and MUC16 were the most mutated
genes, while TP53, TTN, and FAT1 were the most mutated
genes in the low TMB group. MUC16 showed a higher
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Figure 4: Mutation analysis between the high TMB and low TMB groups in the TCGA dataset. (a, b) Gene mutation profiles of the following
highly mutated genes among the two subtypes. (c) The forest plots show the comparison results of gene mutations (∗p = 0:1, ∗∗p = 0:05, ns:
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Table 1: Summary of basic clinical feature.

Covariates Group Total numbers (%) Train numbers (%) Test p value

Age
≤65 324 (64.67%) 191 (63.46%) 133 (66.5%) 0.5466

>65 177 (35.33%) 110 (36.54%) 67 (33.5%)

Gender
Female 137 (27.35%) 81 (26.91%) 56 (28%) 0.8684

Male 364 (72.65%) 220 (73.09%) 144 (72%)

Grade

G1-2 360 (71.86%) 216 (71.76%) 144 (72%) 0.8565

G3-4 122 (24.35%) 75 (24.92%) 47 (23.5%)

Unknown 19 (3.79%) 10 (3.32%) 9 (4.5%)

Stage

Stage I-II 95 (18.96%) 60 (19.93%) 35 (17.5%) 0.5956

Stage III-IV 338 (67.47%) 201 (66.78%) 137 (68.5%)

Unknown 68 (13.57%) 40 (13.29%) 28 (14%)

T

T0-2 179 (35.73%) 108 (35.88%) 71 (35.5%) 1

T3-4 266 (53.09%) 161 (53.49%) 105 (52.5%)

Unknown 56 (11.18%) 32 (10.63%) 24 (12%)

M

M0 186 (37.13%) 114 (37.87%) 72 (36%) 1

M1 1 (0.2%) 1 (0.33%) 0 (0%)

Unknown 314 (62.67%) 186 (61.79%) 128 (64%)

N

N0 170 (33.93%) 114 (37.87%) 56 (28%) 0.0175

N1-3 237 (47.31%) 130 (43.19%) 107 (53.5%)

Unknown 94 (18.76%) 57 (18.94%) 37 (18.5%)

6 BioMed Research International



mutation rate in the high TMB group, and FAT1 exhibited a
higher mutation rate in the low TMB group with the cut-off
point less than 0.05 (Figure 4(c)).

3.3. The Screen of Differentially Expressed miRNAs. In both
the train and test groups, there are no statistically significant
disparities in basic clinical features in Table 1. The 206 sam-
ples with a high TMB level and 95 samples with a low TMB
level were included in the training group. We conducted dif-
ferentially expressed analysis in the training group that a total
of 65 differentially expressed miRNAs, including 55 upregu-
lated miRNAs and 10 downregulated miRNAs, were identi-
fied with the threshold of cut-off point (p < 0:01 and
∣log 2FC ∣ >1:0). The heatmap plot of differentially expressed
miRNAs is exhibited in Figure 5.

3.4. Feature Selection Using the LASSO Model. In order to
establish a miRNA-based feature classifier for prediction of
the TMB level in HNSCC, we performed the LASSO logistic
regression method to screen crucial miRNAs in the training
set. We calculated the 10-fold cross-validation and type
grouping classification. Measure = “auc” is used for two types
of logistic regression to obtain the AUC curve. In the LASSO
logistic regression method, twenty-five miRNAs as optimal

features were ultimately recognized, including hsa-miR-
195-5p, hsa-miR-141-5p, hsa-miR-195-3p, hsa-miR-10a-5p,
hsa-miR-33b-5p, hsa-miR-98-5p, hsa-miR-6842-3p, hsa-
miR-424-3p, hsa-miR-339-3p, hsa-miR-7-5p, hsa-miR-19b-
1-5p, hsa-miR-296-5p, hsa-miR-939-5p, hsa-miR-139-5p,
hsa-miR-96-5p, hsa-miR-9-3p, hsa-miR-3065-3p, hsa-miR-
301a-3p, hsa-miR-106b-3p, hsa-miR-497-5p, hsa-miR-98-
3p, hsa-miR-425-3p, hsa-miR-1247-5p, hsa-miR-18a-3p,
and hsa-miR-193a-3p (Figure 6(a)). We also performed prin-
cipal component analysis prior to and after the LASSO
method, and the results indicated that samples with different
TMB levels are more easily distinguished using the 25 miR-
NAs (Figures 6(b) and 6(c)).

We used the LASSO method to make a 10-fold cross-
validation and identified 25 miRNAs with nonzero regression
coefficients, and the value of lambda:min = 0:01222832. The
miRNA-based classifier index was calculated using the follow-
ing formula: hsa‐miR‐195‐5p ∗ ð−0:08518Þ + hsa‐miR‐141‐5
p ∗ 0:112407 + hsa‐miR‐195‐3p ∗ ð−0:1567Þ + hsa‐miR‐10a‐
5p ∗ 0:078228 + hsa‐miR‐33b‐5p ∗ 0:16082 + hsa‐miR‐98‐5
p ∗ 0:097853 + hsa‐miR‐6842‐3p ∗ 0:190134 + hsa‐miR‐424‐
3p ∗ ð−0:22954Þ + hsa‐miR‐339‐3p ∗ 0:041014 + hsa‐miR‐7‐
5p ∗ 0:139587 + hsa‐miR‐19b‐1‐5p ∗ 0:025402 + hsa‐miR‐
296‐5p ∗ 0:116113 + hsa‐miR‐939‐5p ∗ 0:117358 + hsa‐miR‐
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139‐5p ∗ ð‐0:10164Þ + hsa‐miR‐96‐5p ∗ 0:063381 + hsa‐miR
‐9‐3p ∗ 0:129871 + hsa‐miR‐3065‐3p ∗ 0:046985 + hsa‐miR‐
301a‐3p ∗ 0:114802 + hsa‐miR‐106b‐3p ∗ 0:003671 + hsa‐
miR‐497‐5p ∗ ð‐0:45308Þ + hsa‐miR‐98‐3p ∗ 0:452075 + hsa
‐miR‐425‐3p ∗ 0:121309 + hsa‐miR‐1247‐5p ∗ ð‐0:0321Þ +
hsa‐miR‐18a‐3p ∗ 0:114407 + hsa‐miR‐193a‐3p ∗ ð‐0:30399
Þ. The accuracy of the 25-miRNA-based classifier was 0.822 in
the training set, 0.702 in the test set, and 0.774 in the total set
(Figures 7(a)–7(c) and Table 2).

3.5. Correlation between the LASSO Classifier Index and
Three Immune Checkpoint Inhibitors.We calculate the classi-
fication index of all samples based on the classifier and calcu-
late the correlation of the classification index with TMB and
the expression of three immune checkpoints (PD1, PDL1,
and CTLA4) in the total set. Meanwhile, as a classifier for

predicting TMB, the miRNA-based classifier index is highly
correlated with TMB (Pearson R = 0:56, p < 0:001)
(Figure 8(a)). The miRNA-based classifier index showed a
low correlation with PD1 (Pearson R = −0:13, p = 0:0029,
Figure 8(b)), PDL1 (Pearson R = −0:16, p = 0:00046,
Figure 8(c)), and CTLA4 (Pearson R = −0:16, p = 0:00029,
Figure 8(d)).

According to starBase, TargetScan, and miRDB, only
PDL1 is targeted by hsa-miR-7-5p, while both PD1 and
CTLA4 are not targeted gene of these 25 miRNAs.

3.6. GO and KEGG Analyses. The enrichment analysis was
conducted to describe the biological function of the target
of 25 miRNAs. It revealed enrichment of 301 Gene Ontology
categories. The enrichment biological process is shown in
Figure 9(a). Several immune-related biological processes
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were observed, including epidermal growth factor receptor
signaling pathway, Toll-like receptor signaling pathway, leu-
kocyte migration, and immune system process. A total of 58
KEGG pathways were enriched by the target genes
(Figure 9(b)). Among these KEGG pathways, several
cancer-related pathways were identified, including the Wnt
signaling pathway, PI3K-AKT signaling pathway, P53 signal-
ing pathway, and TGF-beta signaling pathway.

3.7. Association between miRNA-Based Classifier Index and
Pathways. Single-sample gene set enrichment analysis
(ssGSEA) was employed to impute the enrichment scores
of interested pathways. The heatmap is exhibited in
Figure 10(a). Meanwhile, we found that the miRNA-based

classifier index was negatively correlated with the Wnt sig-
naling pathway, PI3K-AKT signaling pathway, and TGF-
beta signaling pathway Figure 10(b).

4. Discussion

Satisfactory results had been achieved in the immunotherapy
for the treatment of aggressive or advanced cancers [32–34].
The progress of the tumor depends on the evasion of
immune surveillance of cancer cells and the acquisition of
effective immune response traits. HNSCC is considered to
be an immunosuppressive disease. Its absolute lymphocyte
count is lower than those found in a healthy population; it
defects human leukocyte antigen (HLA), impairs the natural
killer (NK) cell activity, and has poor antigen presentation
function [35–37]. Impairment to tumor-infiltrating T lym-
phocytes has also been reported in HNSCC and other can-
cers, which has a great impact on the clinical outcome [38,
39]. Besides, inhibitory regulatory T cells (Tregs) are also
associated with the tumor progression [40, 41]; for example,
Treg secretes inhibitory cytokines, such as TGF-β and IL-10,
and expresses cytotoxic T lymphocyte-associated protein 4
(CTLA4). Therefore, immunomodulation therapy to
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Figure 7: Receiver operating characteristic curves for the 25-miRNA-based signature model. (a–c) The train, test, and total sets, respectively.

Table 2: Performance of 25-miRNA-based classifiers of tumor
mutation burden in HNSCC.

Cohort SE SP PPV NPV Accuracy AUC

Train 0.4211 0.9369 0.7547 0.7782 0.7741 0.8222

Test 0.3607 0.8633 0.5366 0.7547 0.71 0.702

Total 0.3974 0.9072 0.6596 0.769 0.7485 0.774
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overcome the immunosuppressive signal of HNSCC patients
has therapeutic prospects.

Although immunotherapy has shown satisfactory results
for tumor therapy, only a small percentage of patients can
benefit from it. Therefore, many studies have been designed
to find predictive biomarkers of the immune response. At
present, tumor mutational burden (TMB) is promising as
another effective predictive biomarker for treatment with
ICIs and independent of PDL1 expression [42, 43]. Multiple
studies have shown that TMB can be effectively measured
from liquid biopsy/blood, which may be an alternative
method for biopsy [44]. However, TMB assessment by liquid
biopsy must confront the problem that circulating DNA
derived from tumor cells is usually only a small part of the
DNA of noncirculating cells, and it does not reflect the true
situation of tumor TMB [45].

Because of the key role of miRNAs in tumor-related
immune responses, several studies reported that miRNA
was involved in the development of HNSCC [46]. However,
the association of miRNA expression patterns and TMB
was not previously described in HNSCC. In the present work,

the differentially expressed miRNAs between high TMB level
and low TMB level samples are identified, and their expres-
sion patterns can distinguish high TMB level and low-level
TMB samples. Using the LASSO model, a miRNA-based fea-
ture classifier was established in the training set and then ver-
ified in an independent test set. The accuracy of the 25-
miRNA-based classifier is 0.850 in the training set, 0.810 in
the test set, and 0.840 in the overall set. The miRNA-based
feature classifier can predict TMB levels well.

In HNSCC, the interaction between programmed death
receptor 1 (PD1) and its ligands PDL1 and PDL2 has been
shown to downregulate T cell activation in human models
[47]. Besides, PDL1 is often found overexpressed in >50-
60% of HNSCC patients [48]. Targeted immune checkpoint
receptors, including anti-CTLA4 and antiprogrammed death
1 (anti-PD1), provide further hope for patients to benefit
from immune modulation. In the study, we found that the
miRNA-based feature classifier is highly correlated with
SNCA (PD1), CD274 (PDL1), and CTLA4. It has been
widely speculated that high TMB levels leading to an increase
in tumor neoantigens may trigger the immune system to
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Figure 8: The correlation between the miRNA-based classifier index and TMB (a), PDL1 (b), PD1 (c), and CTLA4 (d).
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Figure 10: Association between miRNA-based classifier index and pathways. (a) Heatmap plot for the association between miRNA-based
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attack the tumor. This study shows that multiple cancer-
related miRNAs are differentially expressed among tumor
samples with different TMB levels. The enrichment analysis
for the miRNA-signature classifier suggested that the 25
miRNAs are involved in immune-related biological processes
and cancer-related KEGG pathways, such as the Toll-like
receptor signaling pathway, leukocyte migration, immune
system process, Wnt signaling pathway, P53 signaling path-
way, and TGF-beta signaling pathway.

In conclusion, HNSCC patients with different TMB levels
have different miRNA expression patterns. A miRNA-based
signature classifier was constructed and may be served as a
biomarker to predict TMB levels in HNSCC. As our study
results were derived from bioinformatic analysis, further
clinical studies are needed to confirm these results.
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