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10-Hydroxy-2-decenoic acid (10-HDA), also known as royal jelly acid, has a variety of physiological functions, and recent studies
have shown that it also has anticancer effects. However, its anticancer mechanisms have not been clearly defined. In this study, we
investigated the underlying mechanisms of 10-HDA in A549 human lung cancer cells. We used Cell Counting Kit-8 assay, scratch
wound healing assay, flow cytometry, and western blot analysis to investigate its apoptotic effects and underlying mechanism. Our
results showed that 10-HDA inhibited the proliferation of three types of human lung cancer cells and had no significant toxic effects
on normal cells. Accompanying reactive oxygen species (ROS), 10-HDA induced A549 cell apoptosis by regulating mitochondrial-
associated apoptosis, and caused cell cycle arrest at the G0/G1 phase in a time-dependent manner. Meanwhile, 10-HDA also
regulated mitogen-activated protein kinase (MAPK), signal transducer and activator of transcription 3 (STAT3), and nuclear
factor kappa B (NF-κB) signaling pathways by increasing the expression levels of phosphorylated c-Jun N-terminal kinase,
p-p38, and I-κB, and additionally, by decreasing the expression levels of phosphorylated extracellular signal-regulated
kinase, p-STAT3, and NF-κB. These effects were blocked by MAPK inhibitors and N-acetyl-L-cysteine. Furthermore, 10-HDA
inhibited cell migration by regulating transforming growth factor beta 1 (TGF-β1), SNAI1, GSK-3β, E-cadherin, N-cadherin, and
vimentin. Taken together, the results of this study showed that 10-HDA induced cell cycle arrest and apoptosis in A549 human
lung cancer cells through ROS-mediated MAPK, STAT3, NF-κB, and TGF-β1 signaling pathways. Therefore, 10-HDA may be a
potential therapy for human lung cancer.

1. Introduction

Lung cancer is a very serious illness, and its morbidity and
mortality rank first among all cancer types [1]. In China, it
ranks first in mortality, accounting for 24.41% of cancer-
related deaths, and its mortality rate has shown an increasing
trend [2]. The clinical manifestations of lung cancer are com-

plex; the presence, severity, and appearance of symptoms and
signs depend on the location of the tumor, the type of pathol-
ogy, the presence or absence of metastases and complica-
tions, and the patient’s response and tolerance [3]. At
present, the main treatment methods for lung cancer include
surgery, chemotherapy, radiation therapy, and molecular tar-
geted therapy [4]. However, the mortality rate remains high,
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and these therapies often have side effects [5]. Therefore, it is
urgent to find a natural anticancer drug that is safe and has
high efficiency and low toxicity.

At present, the primary way for various active ingredients
to exert anticancer activity is by triggering the apoptotic
pathway in cancer cells, which leads to cell death [6–8]. Apo-
ptosis is a programmed cell death mechanism controlled by
genes and proteins, usually manifested as nuclear condensa-
tion, wrinkling, membrane foaming, and DNA fragmenta-
tion [9]. It is not a passive process, but is an active process
that involves the activation, expression, and regulation of a
series of intracellular proteins and complex signaling path-
ways [10–12]. Apoptosis occurs in the human body all the
time, and the ultimate executor of apoptosis is caspase, which
transmits signals from the point of origin to the various path-
ways of the cell, so that the cell reaches a globally consistent
state of apoptosis, and finally decomposes the cell into small
fragments [13]. Many studies have shown that some signal-
ing pathways help promote cancer cell apoptosis, including
MAPK, STAT3, and NF-κB signaling pathways, and these
pathways play key roles in cell apoptosis through the activa-
tion or inhibition of ROS [14, 15].

Recently, natural products have attracted the attention of
many researchers for their potential anticancer properties
[16]. 10-HDA, also known as royal jelly acid, is an organic
acid compound extracted from royal jelly and is one of the
main active ingredients [17, 18]. It has a variety of physiolog-
ical functions such as antibacterial, anti-inflammatory, blood
lipid lowering, immunity enhancing, and anticancer effects
[19–24]. However, its pharmacodynamic effect and pharma-
cological mechanism of action in cancer remain unknown.

The main goal of this study was to reveal the target and
pharmacological mechanism of 10-HDA in A549 lung can-
cer cells. Specifically, we measured its effects on cell viability,
cell cycle, apoptosis, intracellular ROS production, inhibition
of cell migration, potential molecular mechanisms, and
related signaling pathways in lung cancer cells.

2. Materials and Methods

2.1. Chemicals and Reagents. 10-HDA (Herbourify Co., Ltd.,
Chengdu, China) and 5-fluorouracil (5-FU; MedChemEx-
press, Princeton, NJ, USA) were dissolved in 100% dimethyl
sulfoxide (Sigma-Aldrich, St. Louis, MO, USA) to obtain a
20mM stock solution, and stored at -20°C before use. 2′,7′
-Dichlorofluorescein diacetate (DCFH-DA; Merck Chemi-
cals Shanghai Co., Ltd., Shanghai, China), an Apoptosis and
Necrosis Assay Kit, an Annexin V-FITC Apoptosis Detection
Kit, a Mitochondrial Membrane Potential Assay Kit with JC-
1, and N-acetyl-L-cysteine (NAC) were purchased from
Beyotime Institute of Biotechnology (Shanghai, China). The
DNA Content Quantitation Assay (Cell Cycle) and Cell
Counting Kit-8 (CCK-8) were purchased from Solarbio (Bei-
jing, China). All of the antibodies were purchased from Santa
Cruz Biotechnology, Inc. (Dallas, TX, USA). Other chemicals
were of analytical grade.

2.2. Cell Lines and Cell Culture. Human lung cancer cell lines
(A549, NCI-H460, and NCI-H23) and IMR90 human nor-

mal lung fibroblasts were purchased from the American Type
Culture Collection (ATCC; Manassas, VA, USA). L-02 nor-
mal liver cells and GES-1 normal gastric cells were obtained
from Saiqi Biological Engineering Co., Ltd. (Shanghai,
China). A549, NCI-H460, andNCI-H23 cell lines were cultured
in DMEM (Gibco, Waltham, MA, USA). IMR90, L-02, and
GES-1 cell lines were cultured in RPMI-1640 (Gibco). All of
the medium was supplemented with 10% heat-inactivated fetal
bovine serum (Gibco), 100U/mL penicillin, and 100μg/mL
streptomycin (Gibco). The cells were maintained in a humidi-
fied atmosphere with 5% carbon dioxide at 37°C.

2.3. CCK-8 Assay. Cells were seeded onto cell slides in 96-well
plates (1 × 104 cells/well) for 24h. Then, the cells were
serum-starved in medium containing 1% FBS for 2 h. Then,
the cells were treated with different concentrations (1, 3, 10,
30, and 100μM) of 5-FU (a common positive control of anti-
tumor drugs) or 10-HDA for 24h and treated with 30μM 5-
FU or 10-HDA for different time periods (3, 6, 12, 24, and
36 h). At the indicated time points after transfection, 100μL
culture medium containing 10% CCK-8 reagent (Solarbio)
was added. The cells were subsequently incubated for 1 h at
37°C. Absorption intensity was analyzed using an automatic
microplate reader (BioTek Instruments Inc., Winooski, VT,
USA) at 450nm. The half-maximal inhibitory concentration
(IC50) was calculated using GraphPad Prism 5.0 software
(GraphPad Software, Inc., San Diego, CA, USA).

2.4. Cell Apoptosis Analysis. A549 cells were seeded onto cell
slides in 6-well plates (1 × 105 cells/well) and treated with
30μM 10-HDA for different time periods (3, 6, 12, and
24 h). After washing twice with phosphate-buffered saline
(PBS), cells were resuspended in 195μL binding buffer, and
dual staining was performed with 3μL Hoechst 33342 and
2μL propidium iodide (PI). The staining solution was evenly
distributed by shaking and incubated at 37°C for 3–5min.
The change in fluorescence intensity was observed using
the EVOS FL Auto Cell Imaging System (Thermo Fisher Sci-
entific, Waltham, MA, USA) at a magnification of 400x.
Meanwhile, the effects of 10-HDA on the apoptosis of A549
cells were quantified using the Annexin V-FITC Apoptosis
Detection Kit. A549 cells were treated with 30μM 10-HDA
for different time periods (3, 6, 12, and 24h). A549 cells were
resuspended in 195μL Annexin V-FITC binding solution
followed by the addition of 3μL Annexin V-FITC and 2μL
PI and gentle mixing. Then, cells were incubated at 4°C for
30min, and the cell suspension was transferred to a flow cyt-
ometer (Beckman Coulter, Brea, CA, USA) for quantitative
apoptosis detection.

2.5. Analysis of the Mitochondrial Membrane Potential. A549
cells were plated in 6-well plates and treated with 30μM 10-
HDA for different time periods (3, 6, 12, and 24 h), and col-
lected in 10% DMEM. The cells were incubated with JC-1
working solution at 37°C for 20min. Then, the supernatant
was discarded, and the cells were washed twice with 1x JC-
1 staining buffer solution. The cell suspension was trans-
ferred to a flow cytometer for detection of cellular MMP
changes.

2 BioMed Research International



2.6. Analysis of ROS Generation. A549 cells were treated with
30μM 10-HDA for different time periods (3, 6, 12, and 24 h).
The ROS inhibitor NAC was added 30min before treatment
with 10-HDA. Cells were centrifuged at 5,000 rpm for 5min
and washed twice with PBS. DCFH-DA was used to treat
cells for 30min at 37°C, and then washed twice with PBS.
The cell suspension was transferred to a flow cytometer for
detection of intracellular ROS levels.

2.7. Cell Cycle Analysis. A549 cells were treated with 30μM
10-HDA for different time periods (3, 6, 12, and 24 h). Cells
were trypsinized and fixed in 70% ethanol for 12 h after
washing with 1mL PBS. Cell suspensions were incubated
with 100μL RNase A and 400μL PI for 30min without bright
light at 37°C. The cell suspension was transferred to a flow
cytometer for detection of cellular DNA content.

2.8. Cell Migration Analysis. A549 cells were seeded onto cell
slides in 6-well plates (1 × 105 cells/well). When the cells were
completely fused, a wound was made by a 10μL pipette tip
and washed twice with 1mL PBS to remove cellular debris.
Culture medium and 10-HDA (30μM) were added to con-
tinue the culture (3, 6, 12, and 24h); then, the A549 cells were
observed using the EVOS FL Auto Cell Imaging System at a
magnification of 100x.

2.9. Western Blot Analysis. Collected cells were lysed using
protein lysis solution. Equal amounts of proteins (30μg)
were separated using 8–12% sodium dodecyl sulfate poly-
acrylamide gel electrophoresis and were subsequently trans-
ferred to nitrocellulose membranes (Millipore, Billerica,
MA, USA). Then, the membranes were blocked in 5% skim
milk for 2 h at 37°C. Next, the membranes were incubated
for 12 h at 4°C with the following primary antibodies (all
from Santa Cruz Biotechnology): mouse monoclonal anti-
bodies against α-tubulin, B-cell lymphoma 2 (Bcl-2), Bcl-2-
associated X protein (BAX), cleaved caspase-3 (caspase-3),
cleaved poly(ADP ribose) ribose (PARP), cytochrome c
(cyto-c), phosphorylated c-Jun N-terminal kinase (p-JNK),
JNK, p-p38, p-extracellular signal-related kinase (p-ERK),
p-STAT3, STAT3, NF-κB (p65), inhibitor of NF-κB alpha
(I-κB), TGF-β1, SNAI1, GSK-3β, E-cadherin, N-cadherin,
and vimentin; and rabbit polyclonal antibodies against
cyclin-dependent kinases 2/4/6 (CDK2/4/6), cyclin D1/E,
p21, p27, ERK2, and p38α/β. Membranes were incubated
with horseradish peroxidase-conjugated AffiniPure goat
anti-mouse or goat anti-rabbit secondary antibodies
(ZSGB-Bio, Inc., Beijing, China). Proteins were detected by
enhanced chemiluminescence (Thermo Fisher Scientific)
and imaged using the Amersham Imager 600 (GE Health-
care, Fairfield, CT, USA), and α-tubulin was used as the
internal control.

2.10. Statistical Analysis. All experiments were repeated
three times. The data were analyzed using SPSS 21.0 and
expressed as the mean ± standard deviation (SD). Differ-
ences between groups were analyzed by one-way ANOVA.
∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 indicated statisti-
cally significant differences.

3. Results

3.1. 10-HDA Inhibits the Proliferation of Human Lung
Cancer Cells. As shown in Table 1 and Figures 1(a) and
1(c), 10-HDA inhibited the growth of all three human lung
cancer cell lines in time- and concentration-dependent man-
ners. Compared with the positive control 5-FU, the differ-
ence was statistically significant. The IC50 values were
44.72μM for 5-FU and 22.68μM for 10-HDA in A549 cells;
62.89μM for 5-FU and 44.03μM for 10-HDA in NCI-H460
cells; and 61.09μM for 5-FU and 44.79μM for 10-HDA in
NCI-H23 cells. The A549 cell line was more sensitive to 10-
HDA than the NCI-H460 and NCI-H23 cell lines. Mean-
while, we chose IMR90 human normal lung fibroblasts, L-
02 normal liver cells, and GES-1 normal gastric cells as con-
trols to directly reflect the toxic effects in the toxicity study.
As shown in Figures 1(b) and 1(d), compared with 5-FU,
the cytotoxic effects of 10-HDA on normal cells were less
than those of 5-FU. These results indicated that 10-HDA
has an excellent toxicity profile in human lung cancer cells.

3.2. 10-HDA Induces Apoptosis in A549 Human Lung Cancer
Cells. As shown in Figure 2(a), the cells became rounded, and
the dead cells floated to the surface of the medium in the 10-
HDA treatment groups. Meanwhile, as shown in Figure 2(b),
the flow cytometry results showed that with an increase in
10-HDA treatment time, the number of early and late apo-
ptotic cells increased to varying degrees, from 6.17% to
54.79%. In addition, when cell apoptosis occurred, the mito-
chondrial membrane potential (MMP) disappeared, mem-
brane permeability changed, and a series of changes
occurred. As shown in Figure 2(c), with increased treatment
time, the fluorescence intensity of the cells continuously
increased, and the proportion of depolarized cells was
increased from 13.84% to 38.52%. As shown in Figure 2(d),
the results indicated that 10-HDA treatment led to the down-
regulation of Bcl-2 and upregulation of BAX, cyto-c, caspase-
3, and PARP in A549 cells. These results suggested that 10-
HDA inhibits the proliferation of A549 human lung cancer
cells through mitochondrial-dependent apoptosis.

3.3. 10-HDA Induces Apoptosis by Regulating MAPK, STAT3,
and NF-κB Signaling Pathways in A549 Human Lung Cancer
Cells. As shown in Figure 3(a), the results indicated that 10-
HDA treatment led to the upregulation of p-p38, p-JNK,
and I-κB and the downregulation of p-ERK, p-STAT3, and
NF-κB in A549 cells. As shown in Figure 3(b), when a JNK
inhibitor (SP600125) and a p38 inhibitor (SB203580) were
added, the inhibitory effect of 10-HDA was alleviated and
p-STAT3 and NF-κB were upregulated. There was a limited
activation effect of 10-HDA and a limited downregulation

Table 1: IC50 values of 10-HDA in lung cancer cells.

Cell name 5-FU (μM) 10-HDA (μM)

A549 44:72 ± 2:01 22:68 ± 1:08
NCI-H460 62:89 ± 2:33 44:03 ± 1:52
NCI-H23 61:09 ± 1:89 44:79 ± 1:77
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Figure 1: Continued.
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of p-JNK, p-p38, I-κB, and caspase-3. The ERK inhibitor
(FR180204) enhanced the inhibitory effect of 10-HDA and
the downregulation of p-ERK, p-STAT3, and NF-κB, but it
enhanced the upregulation of I-κB. It also increased the acti-
vation ability of 10-HDA and the upregulation of caspase-3.
These data suggested that 10-HDA induced apoptosis in
A549 human lung cancer cells through regulating theMAPK,
NF-κB, and STAT3 signaling pathways.

3.4. 10-HDA Induces Apoptosis by Regulating Intracellular
ROS Generation in A549 Human Lung Cancer Cells. As
shown in Figure 4(a), with 10-HDA treatment, intracellular
ROS levels in the human lung cancer cells were significantly
increased from 40.94% to 70.16% in a time-dependent man-
ner, and intracellular ROS levels in IMR90 human normal
lung cancer cells were significantly decreased from 59.08%
to 34.39% in a time-dependent manner. As shown in
Figure 4(b), after incubation with 10-HDA+NAC, compared
with 10-HDA treatment alone, the number of apoptotic cells
was significantly reduced from 42.49% to 25.27%. Mean-
while, as shown in Figure 4(c), compared with the control
group, 10-HDA significantly led to the upregulation of p-
p38, p-JNK, I-κB, and caspase-3 in a time-dependent man-
ner, and it also led to the downregulation of p-ERK, p-
STAT3, and NF-κB. NAC treatment alone also showed no
significant changes compared to the control group. However,
after incubation with 10-HDA+NAC, compared with 10-
HDA treatment alone, scavenging of ROS by NAC signifi-
cantly blocked MAPK, STAT3, and NF-κB signaling path-
ways and decreased the caspase-3 levels. These results
suggested that 10-HDA increased the levels of ROS in A549
cells, leading to apoptosis.

3.5. 10-HDA Triggers G0/G1 Phase Cell Cycle Arrest in A549
Human Lung Cancer Cells. As shown in Figure 5(a), with

increased 10-HDA treatment time, the percentage of cells
in the G0/G1 phase increased over time, from 62.97% to
80.54%. As shown in Figure 5(b), 10-HDA treatment led to
the downregulation of AKT, CDK2/4/6, and cyclin D1/E,
and it also led to the upregulation of p21 and p27 in A549
cells. As shown in Figure 5(c), upon treatment with 10-
HDA alone, compared to incubation with 10-HDA+NAC,
the percentage of cells in the G0/G1 phase decreased, from
80.01% to 70.57%. As shown in Figure 5(d), compared with
the control group, 10-HDA significantly led to the downreg-
ulation of p-AKT, CDK2/4/6, and cyclin D1/E, and it also led
to the upregulation of p21 and p27. NAC treatment alone
also showed no significant changes compared to the control
group. After incubation with 10-HDA+NAC, compared with
10-HDA treatment alone, 10-HDA+NAC induced increased
expression of p-AKT, CDK2/4/6, and cyclin D1/E, and it also
induced decreased expression of p21 and p27. These results
demonstrated that 10-HDA induced cell cycle arrest by regu-
lating cell cycle-associated protein expression in A549 cells.

3.6. 10-HDA Inhibits Cell Migration by Regulating TGF-β1
Signaling Pathways in Human Lung Cancer A549 Cells. As
shown in Figure 6(a), compared with the control group, the
human lung cancer cell intracellular migration was inhibited
obviously under 10-HDA treatment in a time-dependent
manner. As shown in Figure 6(b), the expression levels of
TGF-β1, SNAI1, GSK-3β, N-cadherin, and vimentin were
decreased, and the expression level of E-cadherin was also
increased. These results indicated that 10-HDA can inhibit
the migration of human lung cancer cells.

4. Discussion

10-HDA has garnered wide attention in recent years because
of its various biological and pharmacological activities. In
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Figure 1: Effects of 10-HDA on the viability of human lung cancer cells. (a) A549, NCI-H460, and NCI-H23 human lung cancer cells were
treated with different concentrations (1, 3, 10, 30, and 100 μM) of 10-HDA and 5-FU for 24 h. (b) IMR90 human normal lung fibroblasts, L-02
human normal liver cells, and GES-1 human gastric epithelial mucosa cells were treated with different concentrations (1, 3, 10, 30, and
100μM) of 10-HDA and 5-FU for 24 h. (c) A549, NCI-H460, and NCI-H23 human lung cancer cells were treated with 30μM 10-HDA
and 5-FU for different time periods (3, 6, 12, 24, and 36 h). (d) IMR90 human normal lung fibroblasts, L-02 human normal liver cells, and
GES-1 human gastric epithelial mucosa cells were treated with 30 μM 10-HDA and 5-FU for different time periods (3, 6, 12, 24, and 36 h).
Cell viability was assessed by the CCK-8 assay. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the 5-FU group.
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Figure 2: Effects of 10-HDA on the apoptosis of A549 human lung cancer cells. (a) A549 cells were treated with 30μM10-HDA and 5-FU for
different time periods (3, 6, 12, and 24 h), stained with Hoechst 33342 and PI, and observed by fluorescence microscopy. The scale bar is
100μm. (b) A549 cells were treated with 30μM 10-HDA for different time periods (3, 6, 12, and 24 h), and measured by flow cytometry.
(c) A549 cells were treated with 30μM 10-HDA for different time periods (3, 6, 12, and 24 h), and MMP was detected by flow cytometry.
(d) A549 cells were treated with 30 μM 10-HDA for different time periods (3, 6, 12, 24, and 36 h), and the expression levels of apoptotic
proteins (BAX, Bcl-2, cyto-c, caspase-3, and PARP) were detected by western blot analysis and were normalized to α-tubulin. The
expression levels of proteins were analyzed by ImageJ software. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group.
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Figure 3: Continued.
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this study, we investigated the effects of 10-HDA on inhibit-
ing cell proliferation, cell cycle arrest, and the induction of
apoptosis in lung cancer cells. We evaluated the cytotoxic
effects of 10-HDA on human lung cancer A549, NCI-H460,
and NCI-H23 cells and found that 10-HDA significantly
inhibited the proliferation of A549, NCI-H460, and NCI-
H23 cells and had little cytotoxicity in normal IMR90, L-02,
and GES-1 cells.

Apoptosis is process of programmed cell death with
spontaneous characteristics. There are two ways to activate
apoptosis: through intrinsic and extrinsic pathways [25].
Millions of cells in the human body undergo programmed
cell death every hour; at the same time, millions of new pro-
liferating cells replace these apoptotic cells, allowing tissues
and organs to maintain their physiological functions for a

long time. During the apoptotic process, it is mediated by
the antiapoptotic protein Bcl-2 and proapoptotic protein
BAX, which increases membrane permeability. Cyto-c is
released into the cytosol and subsequently participates in
the process leading to caspase-9 and caspase-3 activation
[26]. Our results showed that after 10-HDA treatment of
A549 human lung cancer cells, the expression level of antia-
poptotic protein Bcl-2 decreased, and the expression of proa-
poptotic proteins BAX, cyto-c, caspase-3, and PARP
increased in a time-dependent manner. These results suggest
that 10-HDA can regulate the expression of Bcl-2 and BAX,
and induce caspase-3-dependent apoptosis via the mitochon-
drial pathway.

Studies have reported that there is a wide range of inter-
action mechanisms between the MAPK STAT3 and NF-κB
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Figure 3: Effects of 10-HDA on MAPK, NF-κB, and STAT3 signaling pathways in human lung cancer cells. (a) A549 cells were treated with
30μM 10-HDA for different time periods (3, 6, 12, 24, and 36 h), and then the expression levels of p38, JNK, ERK, NF-κB, I-κB, and STAT3
were detected by western blot analysis and were normalized to α-tubulin. (b) The cells were pretreated with 10μM of the JNK inhibitor
(SP600125), p38 inhibitor (SB203580), and ERK inhibitor (FR180204) for 30min, and then treated with 10-HDA for 24 h. The expression
levels of p-JNK, p-p38, p-ERK, p-STAT3, NF-κB, I-κB, and caspase-3 were analyzed by western blotting and were normalized to α-
tubulin. The expression levels of proteins were analyzed by ImageJ software. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group
and the NAC+10-HDA group.
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Figure 4: Effects of ROS generation and apoptosis after treatment of human lung cancer cells with 10-HDA. (a) A549 cells and IMR90 human
normal lung fibroblasts were treated with 30μM 10-HDA after 24 h. ROS levels were examined by flow cytometry. (b) A549 cells were
cultured with 30μM 10-HDA or 0.25 μM (20 μL/mL) NAC for 24 h, and cell apoptosis was detected by flow cytometry analysis. (c) A549
cells were pretreated with 0.25 μM (20 μL/mL) and NAC for 30min, followed by treatment with 10-HDA for 24 h. The expression levels
of MAPK, STAT3, NF-κB, and caspase-3 were detected by western blot analysis and normalized to α-tubulin. The expression levels of
proteins were analyzed with ImageJ software. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group and the NAC+10-HDA group.

9BioMed Research International



(a)

0 3 6 12 24 (h)

CDK4

CDK6

Cyclin E

CDK2

p21

p27

𝛼-Tubulin 

AKT

p-AKT

Cyclin D1

0

1.3

2.6

3.9

p-AKT p21 p27 CDK2

Re
la

tiv
e i

nt
en

sit
y 

of
pr

ot
ei

n 
le

ve
ls

Re
la

tiv
e i

nt
en

sit
y 

of
pr

ot
ei

n 
le

ve
ls

⁎

⁎⁎
⁎ ⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

⁎⁎⁎

⁎⁎⁎
⁎⁎⁎

⁎⁎⁎

⁎
⁎⁎

⁎⁎
⁎⁎⁎

0

1

2

3

CDK4 CDK6 Cyclin D1 Cyclin E

⁎⁎

⁎⁎

⁎⁎⁎⁎⁎⁎

⁎⁎

⁎⁎⁎

⁎⁎⁎ ⁎⁎⁎

⁎⁎⁎

⁎

⁎⁎
⁎⁎

⁎⁎
⁎⁎⁎

⁎⁎⁎⁎⁎⁎

0 h
3 h
6 h

12 h
24 h

(b)

(c)

Figure 5: Continued.
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signaling pathways [27, 28]. The MAPK family involves three
major subgroups including ERK1/2, JNK, and p38 kinase.
ERK1/2 is activated primarily by mitogenic stimuli such as
growth factors leading to cell growth and survival [29, 30].
Here, we showed that 10-HDA increased the phosphoryla-
tion of p38 and JNK, and decreased the phosphorylation of
ERK in A549 cells in a time-dependent manner. These results
confirm that 10-HDA activates the p38 and JNK signaling
pathways through protein phosphorylation, and inhibits the
ERK signaling pathway, further inhibiting STAT3 and NF-
κB activity, resulting in cell apoptosis.

ROS, as a natural by-product of aerobic respiration, is
closely related to cell apoptosis, cell cycle, signal transduction
cascade, protein phosphorylation, and cytoskeleton forma-
tion [31, 32]. Increased ROS stimulates the cancer-related
signal transduction pathway and enhances the survival and
proliferation of cancer cells [33]. ROS can also be used as a
signaling molecule to transduce extracellular stimulus sig-
nals, directly inducing apoptosis or indirectly participating
in intracellular signal transduction [34]. In this study, 10-
HDA induced the generation of ROS in A549 cells and inhib-

ited the generation of ROS in normal cells, both in a time-
dependent manner. However, when the cells were treated
with NAC and 10-HDA, NAC had no effect on the control
group, but had a strong inhibitory effect on the 10-HDA
group. Thus, 10-HDA stimulated ROS after entering the
cells. It mediated the pathways of MAPK, STAT3, and NF-
κB to inhibit A549 cell proliferation and control the growth
and metastasis of cells, thereby achieving anticancer effects.

The uncontrolled proliferation of cancer cells is closely
related to the regulatory mechanism of cell cycle progression,
and it is also a significant feature of accelerating tumor
growth [35]. In the present study, we demonstrated that 10-
HDA induced G0/G1 cell cycle arrest in A549 cells by flow
cytometry, as well as the molecular mechanisms underlying
the regulation of the cell cycle processes. The cyclin D1 gene,
which is tightly correlated with cancerous cell proliferation,
has been considered a marker molecule [36]. Similarly, cyclin
E and CDK2/4/6 also play key roles in the G0/G1 transition
in the cell cycle [37–40]. Furthermore, p21 and p27 act by
binding CDK in the G1 phase of the cell cycle, leading to
inhibition of the phosphorylation of other proteins such as
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Figure 5: Effects of 10-HDA on cell cycle distribution and cell cycle checkpoint-related proteins of human lung cancer cells. (a) The cells were
treated with 10-HDA for different time periods (3, 6, 12, and 24 h). A549 cells were stained with 100 μL RNase A and 400 μL PI; DNA content
was analyzed for cell cycle phase distribution by flow cytometry. (b) Western blotting with antibodies against p-AKT, AKT, p21, p27,
CDK2/4/6, and cyclin D1/E was normalized to α-tubulin. (c) A549 cells were cultured with 30μM 10-HDA or 0.25μM (20 μL/mL) NAC
for 24 h and detected by flow cytometric analysis. (d) A549 cells were pretreated with 0.25μM (20 μL/mL) and NAC for 30min, followed
by treatment with 10-HDA for 24 h. The expression levels of p-AKT, AKT, p21, p27, CDK2/4/6, and cyclin D1/E were normalized to α-
tubulin. The expression levels of proteins were analyzed by ImageJ software. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group
and the NAC+10-HDA group.
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retinoblastoma, which is necessary for cell cycle progression
[41, 42]. In our study, protein analysis showed the decreased
expression of cyclin D1/E and CDK2/4/6, and increased
expression of p21 and p27 proteins. However, 10-HDA
cotreatment with NAC led to the decrease in Akt. These
results suggest that ROS generation can inhibit the phos-
phorylation of Akt, thereby activating formation of the
CDK2/4/6 and cyclin D1/E kinase complex [43]. These
results indicated that 10-HDA triggered cell cycle arrest at
the G0/G1 phase in A549 human lung cancer cells by down-
regulating the expression of Akt, CDK2/4/6, and cyclin D1/E
and also by upregulating p21 and p27.

It is well known that inhibiting cancer cell migration
has important significance for the treatment of cancer.
The TGF-β1 signaling pathway has been confirmed to
modulate numerous physiologic processes, including pro-
liferation, migration, and invasion of tumors [44, 45].
Activation of TGF-β1 signaling may affect the crucial role
in cells through activating downstream factors (GSK-3β)

[46, 47]. Furthermore, TGF-β1 signaling was the most
enriched pathway by ectopic expression of Akt and MAPK
pathways, all of which were engaged in cell proliferation and
migration, and some studies also found that the inhibition of
cell migration induced by the TGF-β1 signaling pathway pre-
sumably attributed to the suppression of ROS-dependent
mechanisms [48, 49]. In our study, we found that the expres-
sion level of E-cadherin was upregulated, and those of TGF-
β1, SANI 1, GSK-3β, N-cadherin, and vimentin were
decreased to different extents. These results showed that 10-
HDA regulated the signal transduction pathways in A549
cells, so that the cells could not proliferate normally and limit-
ing their range of activities, thereby inhibiting the migration of
lung cancer cells.

In the present study, we demonstrated that 10-HDA
induces ROS-mediated apoptosis in A549 human lung can-
cer cells by regulating the MAPK, STAT3, NF-κB, and
TGF-β1 signaling pathways. The effects of 10-HDA demon-
strated in vivo should be evaluated in future studies.
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Figure 6: Effects of cell migration after treatment of human lung cancer cells with 10-HDA. (a) A549 cells were treated 3, 6, 12, and 24h with 10-
HDA, using the EVOS FL Auto Cell Imaging System at a magnification of 100x to observe. (b) A549 cells were treated with 10-HDA for 3, 6, 12,
and 24h to detect the levels of apoptotic proteins (TGF-β1, SNAI1, GSK-3β, E-cadherin, N-cadherin, and vimentin) and were normalized to α-
tubulin. The expression levels of proteins were analyzed by ImageJ software. ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. the control group.
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5. Conclusion

In conclusion, 10-HDA induced apoptosis and cell cycle
arrest of A549 human lung cancer cells through ROS-
mediated modulation of the MAPK, STAT3, NF-κB, and
TGF-β1 signaling pathways, and it also induced eventual
mitochondrial-dependent apoptosis (Figure 7). These find-
ings indicate that 10-HDA may be a potential therapy for
human lung cancer.
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