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Background. An increasing number of studies have indicated that the abnormal expression of certain long noncoding RNAs
(lncRNAs) is linked to the overall survival (OS) of patients with myeloma. Methods. Gene expression data of myeloma patients
were downloaded from the Gene Expression Omnibus (GEO) database (GSE4581 and GSE57317). Cox regression analysis,
Kaplan-Meier, and receiver operating characteristic (ROC) analysis were performed to construct and validate the prediction
model. Single sample gene set enrichment (ssGSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were
used to predict the function of a specified lncRNA. Results. In this study, a seven-lncRNA signature was identified and used to
construct a risk score system for myeloma prognosis. This system was used to stratify patients with different survival rates in the
training set into high-risk and low-risk groups. Test set, the entire test set, the external validation set, and the myeloma subtype
achieved the authentication of the results. In addition, functional enrichment analysis indicated that 7 prognostic lncRNAs may
be involved in the tumorigenesis of myeloma through cancer-related pathways and biological processes. The results of the
immune score showed that IF_I was negatively correlated with the risk score. Compared with the published gene signature, the
7-lncRNA model has a higher C-index (above 0.8). Conclusion. In summary, our data provide evidence that seven lncRNAs
could be used as independent biomarkers to predict the prognosis of myeloma, which also indicated that these 7 lncRNAs may
be involved in the progression of myeloma.

1. Introduction

Multiple myeloma (MM) is a blood malignant tumor caused
by abnormal proliferation of plasma cells, which is mainly
characterized by abnormal proliferation and accumulation
of multifocal clonal plasma cells in bone marrow, and the
production of a large number of monoclonal immunoglobu-
lin (Ig G, Ig A, Ig D, or Ig E) or its fragments (M protein) [1].
At present, the global incidence of MM is about 4/100,000,
and the incidence of MM in China is 2-3/100,000, which
has surpassed acute leukemia and become the second most
common hematologic malignancy; the incidence is still on

the rise in China and the world [2]; this may be related to
the deterioration of environmental factors, the aging of the
population, and the improvement of a diagnostic level.

Long noncoding RNA (lncRNA) is a type of RNA with
more than 200 nucleotides and cannot synthesize proteins
[3]. These lncRNAs are involved in posttranscriptional regu-
lation and are abnormally expressed in several solid tumors
and hematopoietic malignancies [4–6]. Abnormal expression
of several lncRNAs in MM has been reported, and their clin-
ical significance, biological function, and potential molecular
mechanism have also been reported [7]. Immunoregulatory
drugs (such as lenalidomide and pomamide), proteasome
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inhibitors (such as bortezomib and carfilzomib), and mono-
clonal antibodies have significantly improved survival in MM
patients over the past decade. However, the treatment of
recurrent and some refractory patients remains challenging.
Part of the reason is that the pathogenesis and progression
of MM involve complex and heterogeneous genomic changes
that are significant, including the effects of lncRNA [8].

Some lncRNAs play an important role in the progression
of MM and can be used as a prognostic indicator in MM
patients. For example, metastatic-associated lung adenocarci-
noma transcript 1 (MALAT1) is overexpressed in MM tissues
and various MM cell lines, and upregulation of MALAT1 is
significantly associated with poor prognosis in MM [8, 9].
Nuclear paraspeckle assembly transcript (NEAT1) also plays
a key role in promoting MM, and its increased expression is
closely related to poor prognosis [10]. Colon cancer-
associated transcript 1 (CCAT1) is closely associated with
poor MM prognosis [11]. Despite the large number of mem-
bers of the lncRNA family, only a few are associated with the
prognosis of MM. In addition, the predictive power of a single
indicator is limited, so a prognostic model composed of mul-
tiple indicators is needed in clinical practice for the compre-
hensive clinical evaluation of tumor prognosis. Prognostic
models combining several prognostic indicators have been
used in a variety of other tumors [12, 13]. However, MMprog-
nostic model with multiple lncRNAs has not been reported.

Therefore, in this study, gene microarray with MM prog-
nostic data was firstly screened; lncRNA closely related to the
prognosis was statistically analyzed to construct the MM
prognostic model. We applied the prognostic model to mul-
tiple datasets and molecular subtypes to confirm the prog-
nostic performance of the model and to compare it with
published models. The prognostic model of MM is expected
to provide a new direction for the clinical application of MM.

2. Material and Methods

2.1. Data Source. Based on the Affymetrix-GPL570 platform,
the expression of the probe, gene expression data, and sam-
ples of follow-up information were derived from the
national center for biotechnology information Gene Expres-
sion Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/).
Datasets GSE4581 (n = 256) and GSE57317 (n = 55) were
used for myeloma network analysis. Among them, the
GSE4581 is randomly divided into a training set (127 sam-
ples) and an internal validation set (128 samples) according
to the ratio of 1 : 1. The GSE57317 as an external validation
set contains 55 samples. The specific distribution of survival
state, median survival time, and molecular subtypes in the
two sets of datasets is shown in Table 1. The work flow chart
is shown in Figure 1.

2.2. lncRNA Reannotated. lncRNAs were annotated using a
large number of probes from the Affymetrix HG-U133 Plus
2.0 microarray. Briefly, Affymetrix probe sequences were
downloaded from the website (http://www.affymetrix.com)
and mapped precisely to the human genome (hg38) via Bow-
tie. The chromosomal positions of the probes were matched
to the chromosomal positions of the lncRNAs to obtain

lncRNA-specific probes according to the annotation of GEN-
CODE (release 32) [14]. By using BEDTools (http://code
.google.com/p/bedtools) [15], we selected probes that fell
completely into the lncRNA exon without overlapping with
protein-coding genes. The expression value of one lncRNA
gene detected by at least 5 probes was kept. The expression
level of the lncRNA is indicated by the median expression
value of multiple probes mapped to the same lncRNA. The
expression data from each cohort were log2 transformed
and normalized using a quantile normalization method.
Finally, two corresponding lncRNA expression datasets were
constructed, containing 4094 lncRNAs.

2.3. Univariate Cox Survival Analysis. Univariate Cox analy-
sis was performed using the R package survival coxph func-
tion [16] to select prognostic lncRNA. p < 0:05 was
considered statistically significant. Prognostic lncRNAs are
divided into protective factors and risk factors.

2.4. Prognostic Survival Model. Based on these prognostic
lncRNAs, the best prognostic lncRNA group was selected
by using a robust likelihood-based survival model using the
R package rbsurv [17]. The software package selects
survival-related genes by separating two groups of survival-
related genes as a cross-validation technique with large vari-
ability. It uses forward selection to generate a number of gene
models and selects the optimal model according to the
Abscissa Information Criteria (AIC). Briefly, 75% of all sam-
ples in the training set were randomly selected using three-
fold cross-validation. The maximum number of genes was
selected to be 30, and the analysis was repeated 1000 times.
Then, the selected key lncRNAs were included in multivari-
ate Cox analysis, and a risk score formula was constructed:

Risk score = 〠
n

k=1
Expk ∗ eHR

k, ð1Þ

where N is the number of prognostic lncRNAs, Expk is
the expression value of prognostic lncRNAs, and eHR

k is the
estimated regression coefficient of lncRNAs in the multivar-
iate Cox regression analysis.

2.5. ROC Curve Construction. The performance of prognostic
models was tested using the timeROC package in the R soft-
ware [18], which calculates receiver-operator characteristic
(ROC) curves [19]. Area under the curve (AUC) was plotted
to evaluate the prognostic value.

2.6. Functional Enrichment Analysis. Gene Set Enrichment
Analysis (GSEA) was proposed in 2005 to analyze the expres-
sion of a group of functionally related genes based on gene
expression profile data [20]. ssGSEA (single sample gene
enrichment analysis) is an extension of the GSEA algorithm.
The ssGSVA algorithm is implemented by the R software
package GSVA [21]. Gene sets with a p value less than 0.05
after performing 1000 permutations were considered to be
significantly enriched.
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Table 1: Clinical information of two datasets.

Characteristic Training datasets (n = 127) Validation datasets (n = 128) p GSE57317 (n = 55)

Survival status
Living 92 94

0.969
43

Dead 35 34 12

Survival time
High risk 31.73 26.02 17

Low risk 37.53 34.69 23.47

Mol. subtype

CD-1: CCND1/CCND3 (group 5) 11 11

0.882

5

CD-2: CCND1/CCND3 (group 6) 21 21 13

HY: hyperdiploid 28 38 13

LB: low bone disease 16 15 6

MF: MAF/MAFB 12 9 2

MS: MMSET 23 21 3

PR: proliferation 16 13 13

GEO multiple myeloma TT2 (n = 255)
GPL570

Training set (n = 127)

lncRNA reannotation
Seqmap

Univariate Cox analysis
p < 0.01

Validation set

Validation set 1 (n = 128)

Validation set 2 (n = 55)

Pathway enrichment analysis
(ssGSEA KEGG)

Clinical characteristics
(subtype)

Comparison of other
models

7-lncRNA singature

Subgroup and sensitivity
analysis

1000 rbsurv frequency >300
and >median (SD)

Comparison of immune
gene expression

Figure 1: Work chart.
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2.7. Immune Score. According to the method published by
Safonov et al. [22], the scores of 13 immune factors were cal-
culated and the differences of immune factor scores in the
high/low samples of the training set were compared. The cor-
relation between the significantly different immune factors
and risk score was further compared.

2.8. Comparison with Published Models. We select 2 pub-
lished related risk models, one of which is a 16-gene signature
[23] and the other is a 6-gene signature [24], which was com-
pared with our 7-lncRNA signature. The ROC and Kaplan-
Meier (KM) survival curves of the published models in the
training set and the C-index of the three models are plotted
to compare the optimal models.

2.9. Statistical Analysis. The KM curve was plotted when the
median risk score in each dataset was used as a cutoff to com-
pare the risk of survival between the high-risk group and the
low-risk group. Multivariate Cox regression analysis was per-
formed to test whether lncRNA markers were independent
prognostic factors. Significance was defined as p < 0:05. A
heat map was drawn using the R package pheatmap. All anal-
yses used default parameters except for special instructions,
which are performed in the R software version 3.4.3.

3. Results

3.1. Identification of lncRNA with a Significant Prognosis in
Myeloma. First, we performed a univariate Cox proportional
hazards regression model on 4094 reannotated lncRNA
expression levels and survival data in the training set samples
using the R package survival coxph function, p < 0:01 as the
threshold. We finally obtained 72 probes with a significant
prognosis, of which the most significant top 20 lncRNAs
are shown in Table 2.

3.2. Identification of a 7-lncRNA Signature Risk Model and
Survival Analysis. Prognostic lncRNAs were further selected;
rbsurv analysis was performed on 75% samples randomly
selected from the training set samples. The frequency of each
probe in the 1000 rbsurv analysis showed that the frequency
of most probes was around 10%, suggesting that the influence
of these probes on prognosis was not stable in different sam-
ple sets (Figure 2(a)). The standard deviation of these
lncRNA probes was calculated. lncRNAs with a standard
deviation greater than the median standard deviation of
all probes and frequency greater than 300 were selected,
including 11 lncRNAs (Figure 2(b)). First, KM curve anal-
ysis showed that only AC092718.4, AC093673.1, and
AC234582.2 could not be divided into two groups with
high and low risk, and only the group with low expression
of miR194-2HG had poor prognosis (Figure S1). Eight
lncRNAs with p < 0:05 in the KM curve were analyzed
by multivariate Cox survival analysis, and the 7 lncRNAs
with the lowest AIC value (AIC = 266:62) were retained as
the final model (Table 3). The model is shown as follows: risk
score = 0:002 ∗AC092718:2 + 0:005 ∗AC108002:2 + 0:001 ∗
AL033530:1 + 0002 ∗ AL589765:7 + 0:003 ∗ C5orf17‐0:004
∗miR194‐2HG + 0:003 ∗ TSPOAP1‐AS1.

According to the expression levels of 7 lncRNAs in the
training set samples, the risk scores of each sample were calcu-
lated, respectively, and the risk score of the samples was plot-
ted. The survival samples showed that the number of deaths of
samples with high-risk scores was significantly higher than
those with low-risk scores. The expression of 7 lncRNAs in
the samples showed that the high expression of C5orf17,
AC092718.2, AC108002.2, AL033530.1, AL589765.7, and
TSPOAP1-AS was associated with high risk, which was a risk
factor; the high expression of miR194-2HG was associated
with low risk, which was a protective factor (Figure 2(c)). Fur-
ther, we used the R software package timeROC to conduct
ROC analysis on risk score and analyzed the prognostic classi-
fication efficiency of 1 year, 3 years, and 5 years, respectively.
The results showed that the model had a high AUC line area
and AUC > 0:79 (Figure 2(d)). Next, we conducted z-score
on risk score and divided the samples with risk score greater
than zero into the high-risk group, with a total of 53 samples,
and those with a risk score less than zero into the low-risk
group, with a total of 74 samples. The KM prognostic survival
curve indicated that there was a significant difference between
the two groups (Logrank p < 0:0001, HR = 6:617 (2.899-
15.15) (Figure 2(e))).

3.3. Robustness of a 7-lncRNA Signature. In order to deter-
mine the robustness of the model, we use the same model
and the same coefficients as the training set in the internal
validation set GSE4581, the entire dataset GSE4581, and the
external validation set GSE57317. We also calculate the risk
score of each sample according to the expression level of
the sample and draw the risk score distribution of the sample.

Table 2: Top 20 most significant lncRNA probes.

Symbol p value HR Low 95% CI High 95% CI

AL033530.1 8:11E − 06 1.002 1.001 1.003

TSPOAP1-AS1 1:16E − 05 1.005 1.003 1.008

AC108002.2 2:74E − 05 1.005 1.003 1.007

AC109322.1 4:53E − 05 1.003 1.001 1.004

AC092718.2 5:02E − 05 1.003 1.001 1.004

AL589765.7 9:32E − 05 1.000 1.000 1.001

AL078590.2 0.000136561 0.993 0.990 0.997

C5orf17 0.000149994 1.004 1.002 1.005

AP004608.1 0.000342609 1.004 1.002 1.006

AC092718.4 0.000345437 1.003 1.001 1.004

AC067852.2 0.000546518 0.996 0.994 0.998

AC022784.3 0.000777743 1.012 1.005 1.019

AC108488.1 0.000816299 1.005 1.002 1.009

AC234582.2 0.000935172 1.001 1.000 1.001

CRNDE 0.001129051 1.000 1.000 1.001

AC025048.4 0.001531354 1.003 1.001 1.004

AP000777.3 0.001565427 1.000 1.000 1.001

AC096734.2 0.001779434 1.003 1.001 1.005

MIR503HG 0.001782226 1.004 1.002 1.007

LINC00507 0.001784471 1.015 1.005 1.024
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Figure 2: Continued.
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The OS with the higher risk score is significantly smaller
than the one with the lower risk score. Similarly, high
expressions of C5orf17, AC092718.2, AC108002.2,
AL033530.1, AL589765.7, and TSPOAP1-AS were associ-
ated with high risk, as a risk factor. High expression of
miR194-2HG is related to low risk as a protective factor
(Figures 3(a), 3(d), and 3(g)). ROC curve analysis shows that
the five-year AUC is higher than 0.7 (Figures 3(b), 3(e), and
3(h)). Finally, the KM prognosis analysis was performed,

and the data showed that there were significant differences
between high- and low-risk groups (Figures 3(c), 3(f), and
3(i)). These results indicate that the 7-lncRNA signature
has good robustness.

3.4. Identification of the Relationship between Risk Score and
Function. The R software package GSVA was used to calcu-
late the score of each sample on different functions, the cor-
relation between these functions and the risk score was
calculated, and the function with a correlation greater than
0.3 was selected. The results showed that most of the func-
tions were negatively correlated with the risk score of the
sample, and a few were positively correlated with the risk
score (Figure 4(a)). 18 KEGG pathways, with a correlation
greater than 0.3, were selected for clustering analysis; it is
obvious that among these 18 pathways, DNA replication, cell
cycle, ether lipid metabolism, etc. increase with the rise of the
risk score and non-small-cell lung cancer, thyroid cancer,
NOTCH signaling pathway, and other related pathways
decrease with increasing risk scores, which also suggests that
the imbalance of these pathways may be closely related to the
development of myeloma (Figure 4(b)).

3.5. Correlation between a Risk Model and an Immune Score.
In order to identify the relationship between the risk score of
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Figure 2: Identification of a 7-lncRNA signature risk model and survival analysis. (a) The distribution of the standard deviation of lncRNAs:
red indicates the position of the standard deviation of lncRNA probes whose frequency is greater than 300, the horizontal axis indicates the
standard deviation, and the vertical axis indicates the number of probes. (b) The frequency distribution of lncRNA selected by the rbsurv
feature a thousand times. The horizontal axis represents lncRNA, and the vertical axis represents the frequency of occurrence. Red
indicates that the standard deviation of the lncRNA probe is greater than the median of the overall standard deviation, and green indicates
that it is less than the median of the overall standard deviation. (c) Risk score, survival time, survival status, and expression of 7 lncRNAs
in the training set. (d) ROC curve and AUC of a 7-lncRNA signature. (e) KM survival curve distribution of a 7-lncRNA signature in the
training set.

Table 3: Seven lncRNAs.

lncRNAs p HR z
Low 95%

CI
High 95%

CI

AC092718.2 0.04719 1.0016 1.9850 1.0000 1.0031

AC108002.2 0.000244 1.0045 3.6690 1.0021 1.0069

AL033530.1 0.057083 1.0011 1.9030 1.0000 1.0022

AL589765.7 0.018056 1.0003 2.3640 1.0001 1.0006

C5orf17 0.001176 1.0033 3.2450 1.0013 1.0052

miR194-
2HG

0.032055 0.9962 -2.1440 0.9927 0.9997

TSPOAP1-
AS1

0.06837 1.0026 1.8230 0.9998 1.0054
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a 7-lncRNA signature and the immune score, the scores of 13
immune factors were first calculated. The significant differ-
ence between the immune factor scores in the high/low-risk
samples of the training set shows that only IF_I and Cytolytic
show significant differences in the high- and low-risk groups,
p < 0:05 (Figure 5(a)). Next, we calculated the correlation
between the two significant immune scores and the risk score
and found that IF_I showed a significantly negative correla-
tion with the risk score (Figure 5(c)). Although Cytolytic is
positively correlated with the risk score correlation trend, it
is not significant (Figure 5(b)). It shows that our risk model
may have some connection with IF_I.

3.6. Relationship between a Risk Model and a Molecular
Subtype. In order to analyze the predictive efficacy of a 7-
lncRNA signature in different subtypes, our model could signif-
icantly divide hyperdiploid, low bone disease, and MAF/MAFB
subtypes into two groups with high and low risk, and the
prognosis is significantly different (Figures 6(a)–6(g)). The
analysis showed that there were significant differences in
the prognosis of 7 subtypes (Figure 6(h)).

3.7. Comparison of Risk Models with Other Models. Two pub-
lished risk models were selected, one of which was a 16-gene
signature [23] and the other was a 6-gene signature [24],
compared with our 7-lncRNA signature. In order to make
the model comparable, we use multifactor Cox analysis to
calculate the risk score of the training set samples based on

the corresponding genes in the model, evaluate the ROC of
the two models, and divide the samples into high according
to the optimal threshold. The risk prognosis of the two
groups of samples was calculated for the low-risk and high-
risk groups. The 16-gene signature ROC and KM curve
results showed that the 3-year AUC was 0.83 (Figure 7(a)),
and the prognosis was significantly different (p < 0:0001)
(Figure 7(b)). ROC and KM curve of 6-gene signature results
showed that the 1-year AUC value was 0.71 (Figure 7(c)), but
the prognosis was not significant (Figure 7(d)). In order to
compare the predictive performance of these models on mye-
loma samples, we use the rms package in R to calculate the
concordance index (C-index) of our 2 models and our model.
The C-index of the 7-lncRNAmodel in the 3 models is above
0.8 (Figure 7(e)); the overall performance of the 7-lncRNA
signature model is better than the other two.

4. Discussion

In the past period of time, great progress has been made in
the understanding of the occurrence and development of
MM [25]. However, the clinical characteristics of myeloma
patients remain highly heterogeneous. The traditional labo-
ratory parameters S, 2M, and serum albumin, known as the
international staging system (ISS), have been used as an
objective staging system [26]. Cytogenetic studies have found
cytogenetic abnormalities, such as 13q14 deletions and t (4;
14) translocation that can also provide valuable prognostic
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information [27, 28]. With the development of high-
throughput techniques, molecular markers based on expres-
sion profiles have been reported in various types of cancer,
and these markers have become more effective prognostic
tools for predicting the prognosis of patients [29]. A number
of multigene expression features have been developed,
including the UAMS 17 gene [30] and the IFM 15 gene
model [31], which have been developed to predict survival
in MM patients. Recently, dysregulation of lncRNA expres-
sion has been observed in newly diagnosed MM patients,
indicating their potential as biomarkers for the diagnosis
and prognosis of MM [32]. However, there are few reports
on the prognostic significance of lncRNA signature based
on the expression profile for the prognosis of MM patients.

Zhou et al. analyzed the data of the GSE24080 gene chip
and randomly divided MM patients into a training dataset
(n = 280) and test dataset (n = 279) [33]. The team used a

univariate regression analysis to find 59 lncRNAs that were
closely related to patient OS. After multivariate regression
analysis, four lncRNAs (RP4-803J11.2, RP1-43E13.2, RP11-
553L6.5, and ZFY-AS1) were shown to have predictive
effects. Hu et al. identified 176 lncRNAs significantly related
to the survival status of MM patients from the GSE24080 and
GSE57317 datasets, especially RP1-286D6.1, AC008875.2,
MTMR9L, AC069360.2, and AL512791.1, which can be used
to evaluate the prognosis of MM patients [34]. None of the
lncRNAs found in the two studies above overlapped with
the lncRNAs associated with the top 20 prognosis found in
this study. The different results of their study and this study
may lie in the use of different statistical tools and different
GEO databases. Hu et al. did not conduct ROC analysis to
check the prognostic value of lncRNA, while Zhou et al.
found that the AUC of four lncRNA signature had 0.682. In
this study, we found that the AUC of the lncRNA prognostic
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model was greater than 0.79 (>0.682), higher than that of
Zhou et al.’s ROC, which had certain advantages in predict-
ing the survival status of MM patients.

lncRNA in the prognostic model constructed in this
study has not been studied in MM. Only three lncRNAs
(C5orf17, miR194-2HG, and TSPOAP1-AS1) have been
more or less studied in different diseases. Qi et al. con-
structed five lncRNA prognostic models for lung squamous

cell carcinoma including C5orf17 [35]. The ceRNA network
indicates that lncRNA may contain bladder cancer-related
microRNA (miRNA) recognition elements [36]. The
expression of host lncRNA TSPOAP1-AS1 was significantly
induced by influenza A virus (IAV) infection [37]. Giulietti
et al. performed a survival analysis and identified
TSPOAP1-AS1 as prognostic biomarkers for pancreatic
cancer [38].
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Inevitably, there are some shortcomings in the research
work, which we hope to solve in the future work. First,
although 256 cases were included in this study, our find-

ings should be confirmed in a separate cohort. Second,
the prognostic value of lncRNA was studied using gene
microarray. This single detection method should also be
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verified by other methods, such as real-time RT-qPCR.
Third, most of the lncRNA in our prognostic model has
not been reported. Their specific clinical significance, bio-
logical function, and potential mechanism of action should
be studied in further experiments. In summary, more
experimental evidence is needed to determine how prog-
nostic lncRNA functions in MM.

5. Conclusion

In this study, we developed the prognostic marker of mye-
loma OS (7-lncRNA signature) through bioinformatics
methods, which may contribute to the understanding of the
disorder RNA involved in the development and prognosis
of myeloma and will lay the foundation for the development
of novel clinical diagnostic and therapeutic biomarkers.
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