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Background. Hepatocellular carcinoma (HCC) is characterized by increased mortality and poor prognosis. We aimed to identify
potential prognostic markers by weighted gene coexpression network analysis (WGCNA), to assist clinical outcome prediction
and improve treatment decisions for HCC patients. Methods. Prognosis-related gene modules were first established by WGCNA.
Venn diagrams obtained intersection genes of module genes and differentially expressed genes. The Kaplan-Meier overall
survival curves and disease-free survival curves of intersection genes were further analyzed on the Gene Expression Profiling
Interactive Analysis website. Chi-square tests were performed to explore the associations between prognostic gene expressions
and clinicopathological features. Results. CCNB2, TOP2A, and ASPM were identified as both prognosis-related genes and
differentially expressed genes. TOP2A (HR: 1.7, P = 0:003) and ASPM (HR: 1.8, P < 0:001) exhibited a significant difference
between the high- and low-expression groups in the overall survival analysis, while CCNB2 (HR: 1.4, P = 0:052) was not
statistically significant. CCNB2 (HR: 1.5, P = 0:006), TOP2A (HR: 1.7, P < 0:001), and ASPM (HR: 1.6, P = 0:003) were all
statistically significant in the disease-free survival analysis. All three genes were significantly associated with race and fetoprotein
values (P < 0:05). CCNB2 expression was associated with tumor stage (P = 0:01), and ASPM expression was associated with new
tumor events (P = 0:03). Conclusion. Overexpression of CCNB2, TOP2A, and ASPM are associated with poor prognosis, and
these genes could serve as potential prognostic markers and therapeutic targets for HCC.

1. Introduction

Hepatocellular carcinoma (HCC) is the third most common
cause of cancer mortality worldwide [1]. The mechanisms by
which hepatitis B virus, hepatitis C virus, alcohol, fatty liver
disease, and other environmental factors, such as aflatoxin,
cause liver cancer remain unclear. However, advances in
genomics provide essential information about tumor initia-
tion and progression [2]. The complex genetic background
of HCC makes current clinical staging methods, including
the Barcelona Clinic Liver Cancer algorithm or the tumor
node metastasis (TNM) staging, insufficient to predict
patient prognosis. Indeed, patients with the same HCC stage
may have significantly different outcomes. Besides, the high
recurrence and metastasis rates after ablation or surgical

resection lead to a low survival rate in patients with HCC.
These outcomes present an urgent requirement for improved
prognostic estimates other than staging [3]. To date, thou-
sands of HCC genomes have been sequenced globally, and
most driver gene mutations, structural variants, fusion genes,
copy number alterations, and viral integration events have
been established [4]. This vast amount of new data provides
an opportunity to understand the molecular basis of HCC
better [5]. However, to utilize this scientific information,
knowledge of the available database resources and bioinfor-
matics tools are indispensable. To improve the treatment
decisions and the overall survival of patients with HCC, we
summarized the currently available databases supporting
HCC research to aid in the identification of potential prog-
nostic markers of clinical outcome prediction.
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A coexpression analysis is an efficient method to describe
free-scale gene coexpression networks. The weighted gene
coexpression network analysis (WGCNA), an algorithm
based on large-scale datasets and modules of highly corre-
lated genes, was used to explore associations between gene
sets and clinical features and to identify candidate bio-
markers [6, 7]. This approach has been successfully applied
in multiple tumors, such as clear cell renal cell carcinoma
[8], glioblastoma [6], pancreatic carcinoma [9], adrenocorti-
cal carcinoma [10], breast cancer [11], and HCC [12, 13]. We
mined prognostic markers by constructing a coexpression
network and performing differential gene analysis and sur-
vival analysis to verify their prognostic values.

2. Materials and Methods

2.1. Data Sources.HCC-related gene expression profiles were
downloaded from Gene Expression Omnibus (GEO) data-
sets (https://www.ncbi.nlm.nih.gov/geo/).The search details
used were as follows: (“2010”(UDAT): “3000”(UDAT)) and
(((“carcinoma, hepatocellular”(MeSH terms) or hepatocellu-
lar carcinoma (all fields)) and (“liver neoplasms”(MeSH
terms) or liver cancer (all fields)) and (“mortality”(sub-
heading) or “survival”(MeSH terms) or survival (all
fields))) and “Homo sapiens”(porgn) and “Expression profil-
ing by array”(filter)) and “Expression profiling by array”(fil-
ter). Four datasets contained HCC and paracancerous
nontumor tissues, and samples over 30 were included for
our analysis. GSE54236 [14] was utilized for WGCNA
analysis because there were clinical features such as survival
time in the dataset. GSE60502 [15], GSE64041 [16], and
GSE45114 [17] were used for differential expression gene
(DEG) analysis to obtain reliable DEGs. Standardized series
matrix file and annotation platform were extracted through
the R package “GEOquery” [18]. The data uniformity
between samples was judged by boxplot and log2 conversion
was performed to standardize datasets if necessary.

2.2. WGCNA Analysis. To identify hub genes associated with
phenotypes, we analyzed GSE54236 by the R package
“WGCNA” as follows [19, 20]. (1) Data procession: the
median absolute deviation (MAD) of each gene expression
between samples was calculated. We selected genes with
MAD greater than the 70% quantile interval of the MAD of
all genes and greater than 0.01 for the subsequent analysis.
Missing values were checked by the “goodSamplesGenes”
function, and outlier samples were identified by the “hclust”
function to eliminate possible sample interference. (2) Net-
work construction: soft power was determined with a thresh-
old of 0.85 by “pickSoftThreshold” function to make the
constructed network in line with a scale-free network. Then,
we constructed the network by “blockwiseModules” function
and showed each module by a hierarchical clustering tree.
(3) Modules related to phenotypes: To explore phenotype-
related modules, we analyzed the associations between
modules and phenotypes. We calculated the correlations
of modules and genes (module membership), and pheno-
types and genes (gene significance) by the Pearson correla-
tion analysis. Genes highly associated with phenotypes in

modules, with correlation coefficients > 0:5 and P < 0:05
were selected for further analysis. (4) Hub genes identified:
the topological overlap matrix was calculated from module
genes of interest, and hub nodes with an edge-adjacency
threshold of 0.2 were exported to visualize in Cytoscape
(version 3.7.2) by “exportNetworkToCytoscape” function.

2.3. Pathway Enrichment Analysis. We performed Gene
Ontology (GO), including biological processes, cellular com-
ponents, and molecular functions, and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis of
module genes of interest by the “clusterProfiler” package
[21]. Next, the top 10 most significant enrichment path-
ways were graphically displayed. Moreover, protein-protein
interaction (PPI) analysis was performed on the Metascape
website (http://metascape.org/gp/index.html#/main/step1),
which determined the PPI network, Molecular Complex
Detection (MCODE) components, and the top three enrich-
ment pathways of each component.

2.4. DEG Analysis. We analyzed DEGs of GSE60502,
GSE64041, and GSE45114 between HCC and paracancerous
nontumor tissues by the “limma” [22] package. ∣Log2 fold
change ∣ >1:5 and adjusted P values (Benjaminiand-Hoch-
berg adjustment) < 0.05 were set as the screening cutoff for
DEGs. The intersection of WGCNA phenotype-related
module genes and DEGs was obtained and visualized in
Venn diagrams (http://bioinfogp.cnb.csic.es/tools/venny/
index.html), representing both prognosis-related and differ-
entially expressed genes.

2.5. Survival Analysis. We performed the Kaplan-Meier
overall survival curves and disease-free survival curves of
intersection genes on the Gene Expression Profiling Interac-
tive Analysis (GEPIA) website [23], a web-based tool for
analyzing Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx) project data from tumors and
normal samples.

2.6. Correlation Analysis of Clinicopathological Features. To
further explore the associations between prognosis gene
expressions and clinicopathological features, RNA-seq-
counts of the TCGA liver cancer (n = 424) and phenotypes
(n = 469) were downloaded from the UCSC Xena (https://
xenabrowser.net/datapages/). Genes were divided into high-
and low-expression groups, according to the median of
gene expressions. We compared the differences between
the two groups in clinicopathological features by Chi-
square tests. All analyses were performed by R (version
3.6.0). Bilateral P values less than 0.05 were considered
statistically significant.

3. Results

3.1. Weighted Coexpression Network Construction and Key
Module Identification. To mine coexpression module genes
for HCC, the top 30% MAD of all genes in GSE54236 were
extracted, which provided 5,612 genes for further analysis.
No outlier samples were identified in the sample clustering
tree, so no samples were removed from the analysis
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(Figure 1(a)). Next, we constructed the gene-gene similarity
network. We set the soft power as 7 to ensure a scale-free
network (Figure 1(b)). By the “blockwiseModules” function,
we divided the network into 11 modules with similar gene
expressions (Figure 1(c)). Then, we analyzed the relation-
ships between modules and phenotypes. Results showed that
the red module had a significant negative correlation with
doubling time and survival time (Figure 1(d)). Figures 1(e)
and 1(f) further proved the associations between the red
module genes and doubling time and survival time with
correlation coefficients > 0:5 and P < 0:001. Finally, we
identified 153 hub genes in the red module as key genes
by Cytoscape.

3.2. Gene Function and Pathway Enrichment Analyses. To
further understand the biological functions and signaling
pathways in which red module genes participate, we per-
formed enrichment analysis for 153 hub genes by GO and
KEGG. Biological processes were mainly enriched in chro-
mosome segregation, nuclear division, and organelle fission
(Figure 2(a)). Associated cell components were mainly pres-
ent in the chromosomal region, chromosome, centromeric
region, and condensed chromosome (Figure 2(b)). Molecular
functions occurred in microtubule motor activity, tubulin
binding, and microtubule activity (Figure 2(c)). KEGG path-
ways were considerably enriched in the cell cycle and oocyte
meiosis (Figure 2(d)). PPI and MCODE analyses revealed
that red module genes were divided into five components
(Figures 2(e) and 2(f)). The top three enrichment pathways
for each component were shown in Supplementary Table 1.
These genes mainly participated in the cell cycle and divisions.

3.3. Identification of Intersection Genes. We explored the
intersection genes both related to prognosis and differentially
expressed in tumors and paracancerous nontumor tissues by
the Venn diagram. There were 510, 75, and 415 DEGs for
GSE60502, GSE64041, and GSE45114, respectively. We
found three intersection genes (CCNB2, TOP2A, and ASPM)
which were both red module genes and DEGs in the Venn
diagram (Figure 3(a)).

3.4. Identification and Validation of Hub Genes. To fur-
ther validate hub genes, we analyzed expression levels
(Figure 3(b)), overall survival curves (Figure 3(c)), and
disease-free survival curves (Figure 3(d)) of CCNB2, TOP2A,
and ASPM on the GEPIA website. All three genes were differ-
entially expressed in HCC and normal tissues with P < 0:01.
Genes were divided into high- and low-expression groups
based on the median gene expression levels. The differences
between the two groups were compared by the logrank test.
TOP2A (HR: 1.7, P = 0:003) and ASPM (HR: 1.8, P < 0:001)
had a statistical significance between the two groups in the
overall survival analysis, while CCNB2 (HR: 1.4, P = 0:052)
was not statistically significant. CCNB2 (HR: 1.5, P =
0:006), TOP2A (HR: 1.7, P < 0:001), and ASPM (HR: 1.6,
P = 0:003) were statistically significant in the disease-free
survival analysis.

3.5. Associations between Gene Expressions and
Clinicopathological Features. To explore the associations

between CCNB2, TOP2A, ASPM, and clinicopathological
features, we divided three genes into the low- and high-
expression groups according to the median of gene expres-
sions in the TCGA. Through Chi-square tests, we found that
all three genes were significantly associated with race and
fetoprotein (AFP) values (P < 0:05). CCNB2 was significantly
associated with tumor stage (P = 0:01), while there was no
significant association between TOP2A or ASPM and tumor
stage. Moreover, a significant association between ASPM
and new tumor events was observed (P = 0:03), as shown in
Table 1. We did not found significant associations between
CCNB2, TOP2A, ASPM, and BMI, adjacent hepatic tissue
inflammation, fibrosis Ishak score, residual tumor, vascu-
lar tumor, and Child-Pugh classification, as shown in
Supplementary Table 2.

4. Discussion

Clinical prognostic information is limited for patients of
HCC. Several staging systems that attempt to predict patient
prognosis and guide treatment modality have been proposed
for HCC. However, the clinical features of these systems have
drawbacks concerning the efficacy of treatment guidance and
prognostic accuracy. Staging systems based on clinical fea-
tures lack universal applicability, having been designed using
data mostly acquired from a Western population or by being
too rigid in suggesting therapy for some problematic
prognostic factors [24]. Therefore, it is necessary to identify
prognostic markers for patients with HCC. Patients with
HCC present with features of high heterogeneity, metastasis,
recurrence, and mortality and provide potential targets for
prognosis prediction and treatment monitoring [25]. On
the other hand, there have been very few reports detailing
data mining by combining coexpressed and differentially
expressed genes to explore HCC prognostic markers.

In this study, we explored genes associated with HCC
prognosis using WGCNA, a method more frequently used
to investigate phenotype-related coexpression module genes
than to analyze DEGs. We identified 153 hub genes in the
red module that were significantly negatively associated with
doubling time and survival time, symbolizing a poor progno-
sis. Besides, the strong correlations of modules and genes and
phenotypes and genes further proved the robust prognostic
efficacy of red module genes. Second, gene function and
pathway enrichment analyses indicated that red module
genes were mainly engaged in the cell division and prolifera-
tion of HCC. DEGs were mined by combining GSE60502,
GSE64041, and GSE45114, making results more credible.
Further combining overall and disease-free survival analysis
using the GEPIA website, we identified that TOP2A, ASPM,
and CCNB2 were promising prognostic markers and poten-
tial therapeutic targets for HCC. It is worth noting that the
overall survival analysis was based on patient all-cause mor-
tality, and disease-free survival analysis was based on disease
progression or death. Therefore, overall survival analysis
endpoints were optimal observation endpoints without
subjective judgment bias. In our study, both overall and
disease-free survival analyses were evaluated by public
databases.
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Figure 1: Continued.
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We further investigated associations between TOP2A,
ASPM, CCNB2, and clinicopathological features by Chi-
square tests. We found significant associations between three
prognostic genes and AFP levels; therefore, we speculated
that these three genes were potential markers of the develop-
ment and progression of HCC. However, whether these
genes might become favorable diagnostic markers for HCC
and specific mechanisms required further experimental
verification. Importantly, high CCNB2 expression was
strongly associated with tumor stage (P = 0:01), and high
ASPM expression was associated with new tumor events
(P = 0:03). These findings indicated that the overexpression
of CCNB2 and ASPM accelerated the possibility of HCC

deterioration and metastasis, suggesting a worse prognosis
for HCC patients; hence, more aggressively integrated treat-
ment and assessment were needed when these genes were
found to be overexpressed.

TOP2A, DNA topoisomerase II alpha encoding a DNA
topoisomerase, regulates the topologic states of DNA and
controls tumor cell response. Wong et al. [26] showed that
TOP2A overexpression in HCC tumors, relative to adjacent
nontumors, correlated with histological grading, microvascu-
lar invasion, tumor deterioration, shorter survival, and
chemoresistance, which was consistent with our clinicopath-
ological features correlation analysis [27]. TOP2A targeted
therapeutic drugs, such as doxorubicin, were suggested when
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Figure 1: Weighted gene coexpression network analysis of GSE54236. (a) Sample clustering tree to detect outliers. (b) Identification of soft
power with a threshold of 0.85. (c) Hierarchical clustering tree of each module. Different colors represent different modules. (d) Correlations
of modules and doubling time and survival time. The correlation coefficient varied from -1 (blue) to 1 (red) and P was annotated.
(e) Correlations between gene-module and gene-survival time. (f) Correlations between gene-module and gene-doubling time.
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TOP2A was overexpressed in HCC. Overexpression of
microRNA-23a potentiated the response of HCC to the
TOP2A targeted drugs etoposide and doxorubicin in vivo
and in vitro, while suppressing another topoisomerase,
TOP1, but not altering TOP2A expression levels [28].
Another study showed that TOP2A was targeted for protea-
somal degradation by histone deacetylase inhibitors by
activating casein kinase 2α and GSK3β double phosphoryla-
tion, highlighting a novel potential mechanism of HCC
treatment [29]. The significance of TOP2A in tumor aggres-
siveness and chemoresistance indicate that the mechanisms
through which it functions require further exploration.

ASPM encodes an abnormal spindle-like, microcephaly-
associated protein that participates in mitosis and is reported
to be a recurrence, invasion, metastasis, and prognostic
marker for HCC. However, the specific molecular mecha-

nism and pathways through which ASPM function have
not been reported [30, 31]. CCNB2 encodes cyclin B2, the cell
cycle mediated by transforming growth factor β, which,
according to the GEPIA website, did not have a statistically
significant influence on overall survival. However, we further
analyzed the influence on CCNB2 on the UALCAN website
[32] (http://ualcan.path.uab.edu/index.html) and found a
statistical significance with P < 0:001. The variation in these
results could be attributed to the different sample sizes and
sequencing databases. A review of the literature revealed that
CCNB2 expression is increased in HCC tissues compared to
adjacent nontumor tissues [33], and CCNB2 is a target
molecule following knockdown of XPOT [34], TPX2 [35],
KPNA2 [36], and TMEM9 [37]. The prognostic value and
target therapy of the hub genes for HCC patients remain to
be confirmed by further clinical studies.
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Figure 3: Survival analysis of CCNB2, TOP2A, and ASPM. (a) Venn diagrams of red module genes in weighted gene coexpression network
analysis (WGCNA) and differentially expressed genes (DEGs). (b) Expression levels. (c) Overall survival curves. (d) Disease-free survival
curves of CCNB2, TOP2A, and ASPM.

Table 1: Associations between CCNB2, TOP2A, and ASPM expressions and clinicopathological features.

Variables
CCNB2 TOP2A ASPM

Low (n) High (n) χ2 P Low (n) High (n) χ2 P Low (n) High (n) χ2 P

Age (years)
<50 29 39

1.41 0.24
30 38

0.84 0.36
31 37

0.42 0.52
≥50 152 143 151 144 150 145

Gender
Female 51 67

2.70 0.10
50 68

3.49 0.06
54 64

0.95 0.33
Male 130 115 131 114 127 118

Race
Asian 65 90

6.26 0.01
63 92

8.56 0.003
66 89

5.24 0.02
Non-Asian 116 92 118 90 115 93

New tumor events
No 108 91

3.05 0.08
104 95

0.81 0.37
110 89

4.70 0.03
Yes 73 91 77 87 71 93

Tumor stage
I-II 149 129

6.00 0.01
147 131

3.82 0.05
146 132

2.91 0.09
III-IV 32 53 34 51 35 50

Fetoprotein (ng/ml)
<500 125 91

17.07 <0.001
121 95

10.19 0.001
119 97

9.39 0.002
≥500 16 44 19 41 19 41
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There were some limitations in our study. All of these
sequencing data were from tissue samples and may not be
suitable for unresectable patients whose liver tissues may be
unavailable. Given that bioinformatics predictions are
obtained in silico, further experimental validation is required.
Additionally, we analyzed expression profiling by the array in
the GEO datasets and concluded that TOP2A, ASPM, and
CCNB2 were promising prognostic markers and potential
therapeutic targets. However, other prognostic markers, such
as methylation, microRNA, lncRNA, and circRNA, should be
explored, and the data should be integrated with the findings
of the present study to propose a new treatment algorithm
that incorporates these markers in determining how aggres-
sive is the treatment approach.
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