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Objectives. To reveal the molecular mechanisms of ulcerative colitis (UC) and provide potential biomarkers for UC gene therapy.
Methods. We downloaded the GSE87473 microarray dataset from the Gene Expression Omnibus (GEO) and identified the
differentially expressed genes (DEGs) between UC samples and normal samples.+en, a module partition analysis was performed
based on a weighted gene coexpression network analysis (WGCNA), followed by pathway and functional enrichment analyses.
Furthermore, we investigated the hub genes. At last, data validation was performed to ensure the reliability of the hub genes.
Results. Between the UC group and normal group, 988 DEGs were investigated. +e DEGs were clustered into 5 modules using
WGCNA. +ese DEGs were mainly enriched in functions such as the immune response, the inflammatory response, and
chemotaxis, and they were mainly enriched in KEGG pathways such as the cytokine-cytokine receptor interaction, chemokine
signaling pathway, and complement and coagulation cascades. +e hub genes, including dual oxidase maturation factor 2
(DUOXA2), serum amyloid A (SAA) 1 and SAA2, TNFAIP3-interacting protein 3 (TNIP3), C-X-C motif chemokine (CXCL1),
solute carrier family 6 member 14 (SLC6A14), and complement decay-accelerating factor (CD antigen CD55), were revealed as
potential tissue biomarkers for UC diagnosis or treatment. Conclusions. +is study provides supportive evidence that DUOXA2,
A-SAA, TNIP3, CXCL1, SLC6A14, and CD55 might be used as potential biomarkers for tissue biopsy of UC, especially SLC6A14
and DUOXA2, which may be new targets for UC gene therapy. Moreover, the DUOX2/DUOXA2 and CXCL1/CXCR2 pathways
might play an important role in the progression of UC through the chemokine signaling pathway and inflammatory response.

1. Introduction

Ulcerative colitis (UC) is a chronic nonspecific inflammation
of the rectum and colon whose etiology and pathogenesis are
not yet well defined [1]. UC has a high incidence in western
countries, with increasing incidence in the developing
countries [2]. +e etiology of UC is considered to be
multifactorial, including genetic and environmental factors
such as urban lifestyles, dietary factors, high levels of hy-
giene, and gut microbiota, all of which are associated with
disease progression; however, the pathogenesis of UC re-
mains unclear [3]. Bioinformatics can be effectively used to
analyze UC microarray data, providing theoretical reference

for further exploration of the mechanisms of inflammatory
bowel disease, and help to find potential target genes. As the
latest bioinformatics research method, WGCNA is com-
monly used to reveal differences between genes in different
samples [4].

In this study, UC gene expression data uploaded by Li
et al. were downloaded.We identified the DEGs between UC
samples and normal samples. +en, a module partition
analysis was performed based on a WGCNA, followed by
pathway and functional enrichment analyses. +en, data
validation was performed to ensure the reliability of the hub
genes. +is study forecasts the molecular mechanism of UC
and the potential biomarkers for UC therapy.
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2. Materials and Methods

2.1. Microarray Data. +e gene expression profile of
GSE87473 was obtained from the GEO database [5] (http://
www.ncbi.nlm.nih.gov/geo/). A total of 127 mucosal biopsy
samples were obtained from 106 UC patients and 21 control
subjects for subsequent analysis. +e UC samples consisted
of adult UC samples (n� 87) and pediatric UC samples
(n� 19). Adult UC patients of 44 male and 43 female were
enrolled from all geographic regions of the USA and from
both metropolitan and rural settings, with an average age of
41 (race of samples not available) [6]. Pediatric UC patients
of 8 male and 11 female obtained from a phase 1b clinical
trial of golimumab in pediatric patients, with an average age
of 15, and only subjects of European ancestry were applied
[7].Normal samples (n� 21) were obtained from the De-
partment of Gastroenterology, Perelman School of Medicine
at the University of Pennsylvania (Philadelphia, PA) and the
Department of Gastroenterology, University Hospital Gas-
thuisberg (Leuven, Belgium) [6], and information on age,
gender, and race was not available.

2.2. Data Preprocessing and DEG Analysis. +ere were a
total of 20741 probes in the present dataset. GEO2R (http://
www.ncbi.nlm.nih.gov/geo/geo2r/) is based on R that comes
with the GEO databases, which was used to identify DEGs
between UC and control samples. |log-fold change
(LFC)|> 1 and P values <0.05 were selected as the thresholds
for DEG screening.

2.3. WGCNA Analysis. +e coexpression network analysis
was performed using WGCNA (version: 1.63) [8]. WGCNA
is a systematic biological method for constructing scale-free
networks using gene expression data. First, we selected the
soft threshold for network construction. +e soft threshold
was used to transform the similarity matrix of gene ex-
pression into adjacency matrix, which enhances strong
correlation and weakens correlation at the exponential level.
Second, the adjacency matrix was transformed into a to-
pological matrix. Based on TOM, we used the average-
linkage hierarchical clustering method to cluster genes.
According to the standard of hybrid dynamic cut tree, we set
the minimum number of base 30 for each gene network
module. After determining the gene module by the dynamic
shearing method, we calculated the eigenvectors of each
module in turn, then clustered the modules, merged the
nearer modules into new modules, and set height� 0.25 [9].
+ird, we calculated the module eigengene (ME) of each
module, which represents the expression level for each
module. We also calculated the correlation between the
clinical traits and ME in each module. At last, we calculated
the gene significance (GS) of each gene in the module, which
represented the correlation between the genes and sample.

2.4. FunctionandPathwayEnrichmentAnalysis. Weused the
DAVID 6.8 (https://david.ncifcrf.gov) software for the GO-
biological function (GO-BP) and KEGG pathway analyses of

the genes in main modules. We selected the P-false discovery
rate (FDR) of <0.05 as the threshold for the identification of
significant GO-BP terms and KEGG pathways.

2.5. Hub Genes Investigation. According to the feature
vector of each module, the correlation of the gene expression
in the module was analyzed by WGCNA. Genes with cor-
relations greater than 0.9 in each module were considered
hub genes.

2.6. Data Validation. To verify the robustness of hub genes,
the microarray data of GSE75214 [10] ([HuGene-1_0-st]
Affymetrix Human Gene 1.0 ST Array [transcript (gene)
version]), which included 108 tissue samples (97UC samples
and 11 control samples), were downloaded from the GEO
database. GraphPad Prism 7.00 software was used to cal-
culate the area under the curve (AUC).

3. Results

3.1. DEGs between UC Samples and Normal Samples. We
identified 988 DEGs, including 466 upregulated DEGs and 522
downregulated DEGs with PFDR < 0.05 and |LFC|> 1. +e
heatmap and volcano plot are shown in Figures 1(a) and 1(b).
Obviously, the heatmap showed that these DEGs could be used
to distinguish UC from control samples.

3.2. WGCNA Analysis. We performed WGCNA analysis
using the 988 DEGs.+e coexpression network is a scale-free
network, which means the logarithm log(k) of a node with a
connection degree of k is negatively correlated with the
logarithm log(P(k)) of the probability of occurrence of the
node, and the correlation coefficient is greater than 0.8. R
software package WGCNA was used to build a weighted
coexpression network. To ensure that the network was a
scale-free network, we chose a soft threshold of β� 6
(Figure 1(c)). +e DEGs were clustered into 5 modules,
described here as including turquoise (510 DEGs), blue (393
DEGs), brown (48 DEGs), yellow (30 DEGs), and gray (7
DEGs) (Figure 1(d)). +e turquoise and blue modules were
downregulated, while the brown and yellow modules were
upregulated (Figure 2). Moreover, the turquoise module
(correlation index: − 0.68, P � 3.0E − 18) was negatively
correlated with the disease presence and the yellow (cor-
relation index: 0.51, P � 6.0E − 10), blue (correlation index:
0.62, P � 1.0E − 14), and brownmodules (correlation index:
0.73, P � 3E − 22) were positively correlated with the disease
presence; while the turquoise module (correlation index:
− 0.65, P � 1.0E − 16) was negatively correlated with the
disease extent, the yellow (correlation index: 0.42,
P � 1.0E − 16), blue (correlation index: 0.43, P � 4E − 07),
and brown modules (correlation index: 0.52, P � 6E − 10)
were positively correlated with the disease extent
(Figure 3(a)).+e average gene significance (GS) for each
module indicated that the brown module was the most
related to disease presence, and the turquoise module was
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most related to disease extent (limited or extensive)
(Figure 3(b)).

3.3. Functional andPathwayEnrichment forDEGs. +e top 3
GO-BP and KEGG terms enriched by DEGs are shown in
Table 1 and Figure 4. +e DEGs in the brown module were
mainly involved in functions such as inflammatory response
(P � 4.88E − 07) and pathways such as the chemokine
signaling pathway (P � 0.004195). +e DEGs in the tur-
quoise module were mainly involved in functions such as the
oxidation-reduction process (P � 9.70E − 3) and pathways
such as metabolic pathways (P � 2.8E − 09).

3.4.HubGenes. +e brown module was most relevant to the
disease; therefore, we analyzed the correlation of gene

expression in the brown module in the following study.
Figure 5 shows that dual oxidase maturation factor 2
(DUOXA2), serum amyloid A (SAA) 1 and SAA2,
TNFAIP3-interacting protein 3 (TNIP3), C-X-C motif
chemokine (CXCL1), solute carrier family 6 member 14
(SLC6A14), and complement decay-accelerating factor (CD
antigen CD55) were selected as hub genes.

3.5. Data Validation. To verify the robustness of the hub
genes, the validation data GSE75214 were obtained from the
GEO database. We performed ROC curve analysis using
GraphPad Prism7.00. +e results of the analysis showed that
the hub genes related to UC, including DUOXA2, SAA1,
SAA2, TNIP3, CXCL1, SLC6A14, and CD55, were identified
as potential tissue biopsy molecules for UC diagnosis
(Table 2 and Figure 6).
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Figure 1:+e heat map, volcano plot, and weighted gene coexpression network analysis (WGCNA) of differentially expressed genes (DEGs)
between the UC group and the control group. (a)+e heatmap for DEGs. (b)+e volcano plot for DEGs. Gray dots represent the genes that
are not differentially expressed, red dots represent the upregulated genes, and the blue dots represent the downregulated genes. (c)
Determination of the soft threshold in the WGCNA algorithm.+e approximate scale-free fit index can be attained at the soft-thresholding
power of 6. (d) Clustering dendrograms showing 4 modules that contain a group of highly connected genes. Each designated color
represents a certain gene module.
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4. Discussion

UC is a kind of inflammatory bowel disease that is difficult
to treat, easy to recur, and prone to cancerization
[11, 12].Recently, many potential biomarkers for early
diagnosis or treatment of UC have been identified after the
development of biology technology; however, the mech-
anism of UC is still unknown. In this study, UC gene

expression data were analyzed byWGCNA.We screened a
total of 988 DEGs between UC samples and control
samples, and identified 5 modules. Based on the corre-
lation between the modules and occurrence or develop-
ment of UC, we identified 7 hub genes after data
verification. Combined with previous research, SLC6A14
and DUOXA2 might be critical biomarkers for UC
diagnosis.
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Figure 2: +e module expression pattern. +e heatmap represents the expression of genes where each row represents a gene and each
column represents a sample. +e red color in the heatmap represents upregulated genes, while the green color represents downregulated
genes.+e bar charts represent the eigengene profiles of fourWGCNAmodules; the color of the bar chart represents the color of the related
module.
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Figure 3: Relationships of module eigengenes and the samples. (a)+emodule-trait relationships.+e number in the first row of the square
on the right is the correlation coefficient to the UC group shown at the top of each row with the P values printed below the correlations in
parentheses, and the number on the left is the correlation coefficient to the disease extent (limited or extensive) of the UC group. +e rows
are colored based on the correlation of the module to the UC group: red for a positive correlation and blue for a negative correlation. (b)+e
average gene significance (GS) of all genes (i.e., module significance, MS) of each module. Modules with greater MS values were considered
to have more connection with the disease.
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Table 1: +e results for GO-BP function and KEGG pathway enrichment analysis (top 3 in the brown and turquoise module are listed).

Module GO-BP terms P value KEGG terms P value

Brown
Inflammatory response 4.88E − 07 Chemokine signaling pathway 0.004195
Innate immune response 1.39E − 06 Cytokine-cytokine receptor interaction 0.010708

Chemotaxis 7.32E − 07 Complement and coagulation cascades 0.001897

Turquoise
Oxidation-reduction process 9.7E − 3 Metabolic pathways 2.8E − 09

Transport 1.4E − 5 Drug metabolism, cytochrome P450 1.3E − 11
Metabolic process 1.2E − 10 Chemical carcinogenesis 2.1E − 10
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Figure 4:+e results for GO-BP function and KEGG pathway enrichment analysis (the top 20 in the brown- and turquoise-coloredmodules
are listed). (a) +e GO-BP function enrichment of DEGs in the brown module. (b) KEGG pathway enrichment of the DEGs in the brown
module. (c) +e GO-BP function enrichment of the DEGs in the turquoise module. (d) KEGG pathway enrichment of the DEGs in the
turquoise module.
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SLC6A14 and DUOXA2 are involved in the develop-
ment and carcinogenesis of UC. Multiple sequencing or
microarray studies have shown that SLC6A14 was upre-
gulated in UC patients [5, 10], 58 [13]. SLC6A14 may be
involved in colonic inflammation by regulating glutamine (a
substrate for SLC6A14) and nitric oxide synthase 2 (coor-
dinated upregulation with SLC6A14 in inflamed cells)
[14, 15]. Furthermore, SLC6A14 is one such cancer-specific
amino acid transporter and is essential for tumor growth
[16]. DUOXA2, an ROS-generating enzyme expressed in the
lower gastrointestinal tract, plays a critical role in host
mucosal defense [17], which could be induced by the
changes of gut microbiota [18]. DUOXA2 is the maturation

partner of DUOX2, which participates in the signaling
pathways against inflammation and regulates reactive oxy-
gen species (ROS), mucin, IL-8, and matrix metal-
loproteinase-9 against invading microbial pathogens [19].
However, overproduction of H2O2 could lead to oxidative
stress resulting in oxidative injuries and mucosal barrier
impairment [20]. In addition to its role in the persistent and
recurrent inflammatory of UC, the DUOXA2/DUOX2
pathway is also involved in the development of UC-asso-
ciated adenomas and colorectal cancer [21–23]. We sup-
posed that SLC6A14 and DUOXA2 aberrantly expressed
might promote the initiation and development of UC.

Our research also found that SAA, TNIP3, CD55, and
CXCL1 were potential biomarkers for UC. SAA can reflect
inflammation of UC at an early stage due to its higher
sensitivity and specificity [24–26]. CXCL1 acts by specifically
binding to its receptor, C-X-C chemokine receptor type 2
(CXCR2) [27]. Recent studies have shown that the CXCL1/
CXCR2 signaling pathway regulates the inflammatory re-
sponse; moreover, the pathway causes tumor cell prolifer-
ation, angiogenesis, and lymph angiogenesis and promotes
tumor invasion and vascular metastasis [28]. Previous
studies have shown increased CD55 in stools and colonic
mucosa of disease activity in patients with UC [29, 30] and
CD55 as the decay-accelerating factor can reflect the
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Figure 5: Hub genes in the brown module. A total of six genes were selected as hub genes, and the correlation coefficients (ranging from
0.90–0.93) and P values are shown in the lower right corner of each image.

Table 2: Results of AUCs for hub genes.

Hub genes
UC vs. normal

AUC P value 95% CI
Disease-related
DUOXA2 0.8894 <0.0001 0.826 to 0.9528
SAA1///SAA2 0.8097 0.0008 0.6975 to 0.9220
TNIP3 0.8969 0.0002 0.8366 to 0.9572
CXCL1 0.8857 <0.0001 0.8151 to 0.9562
SLC6A14 0.9822 <0.0001 0.9606 to 1.004
CD55 0.9297 <0.0001 0.8814 to 0.978
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carcinogenesis of UC [31–33]. TNIP3 is a negative regulator
of nuclear factor (NF)-κB signal transduction in response to
multiple stimuli [34]. Ishani Majumdar’s study has dem-
onstrated that the expression of TNIP3 negatively correlates
with diseases severity in UC [35], which was contrary to our
results. +e contrary results might be related to the differ-
ence in disease severity and the genetic testing method.

+e results of functional and pathway DEGs enrichment in
this study show that the biological functions involved in the
pathogenesis of UC include the inflammatory response, innate
immune response, and chemotaxis, indicating that the path-
ogenesis of UC was multifactorial, involving epithelial barrier
defects, genetic predisposition, environmental factors, and
dysregulated immune responses. +e 7 hub genes screened in
this study are not only related to mucosal inflammation but
they also accelerate the progression of colon cancer, so they
should be given proper attention in the treatment of UC.

Although we found 7 hub genes closely related to UC
and confirmed the robustness of their diagnostic value,
which may be useful for us to improve our understanding of
the molecular mechanism of UC and as a potential prog-
nostic and diagnostic biomarker, however, there were some
limitations in this study such as small sample size and lack of
verification test; thus, we still need large sample size with a
wide verification analysis to confirm our hypothesis.

5. Conclusions

In conclusion, DUOXA2, A-SAA, TNIP3, CXCL1,
SLC6A14, and CD55 might be used as potential biomarkers
for UC tissue biopsy, especially SLC6A14 and DUOXA2,
which may be new targets for UC gene therapy. Further-
more, DUOXA2/DUOX2 and CXCL1/CXCR2 pathways
may play important roles in UC progression via the in-
flammatory response.

Abbreviations

AS: Ankylosing spondylitis
AUC: Area under the curve
CD: Complement decay-accelerating factor
CXCL1: C-X-C motif chemokine
CXCR2: C-X-C chemokine receptor type 2
DEG: Differentially expressed gene
DUOXA2: Dual oxidase maturation factor 2
FDR: False discovery rate
GEO: Gene expression omnibus
GO-BP: GO-biological function
GS: Gene significance
IBD: Inflammatory bowel disease
LFC: Log-fold change
ME: Module eigengene
NF: Nuclear factor
ROS: Reactive oxygen species
SAA: Serum amyloid A
SLC6A14: Solute carrier family 6 member 14
TNIP3: TNFAIP3-interacting protein 3
UC: Ulcerative colitis
WGCNA: Weighted gene coexpression network

analysis.
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Figure 6: Predicted ROC curves of the UC hub genes.+e prediction of UC vs. control was robust, and the area under the curve (AUC) of 6
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and I. Lönnroth, “Detection of elafin as a candidate biomarker
for ulcerative colitis by whole-genome microarray screening,”
Inflammatory Bowel Diseases, vol. 12, no. 9, pp. 837–842,
2006.

[14] E. A. Novak and K. P. Mollen, “Mitochondrial dysfunction in
inflammatory bowel disease,” Frontiers in Cell & Develop-
mental Biology, vol. 3, p. 62, 2015.

[15] G. Kolios, V. Valatas, and S. G. Ward, “Nitric oxide in in-
flammatory bowel disease: a universal messenger in an un-
solved puzzle,” Insect Science, vol. 113, no. 4, pp. 427–437,
2004.

[16] A. N. Mccracken and A. L. Edinger, “Targeting cancer
metabolism at the plasma membrane by limiting amino acid
access through SLC6A14,” Biochemical Journal, vol. 470,
no. 3, pp. e17–e19, 2015.

[17] S. Lipinski, A. Till, C. Sina et al., “DUOX2-derived reactive
oxygen species are effectors of NOD2-mediated antibacterial
responses,” Journal of Cell Science, vol. 122, no. 19,
pp. 3522–3530, 2009.
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