
Research Article
Integrated Transcriptomic Analysis Reveals the Molecular
Mechanism of Meningiomas by Weighted Gene Coexpression
Network Analysis

Biao Yang,1 Shuxun Wei,2 Yan-Bin Ma,1 and Sheng-Hua Chu 1

1Department of Neurosurgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai 201999, China
2Department of General Surgery, The Second Military Medical University/Changzheng Hospital, Shanghai 201999, China

Correspondence should be addressed to Sheng-Hua Chu; shenghuachu@126.com

Biao Yang and Shuxun Wei contributed equally to this work.

Received 25 November 2019; Revised 28 April 2020; Accepted 9 May 2020; Published 10 June 2020

Academic Editor: Malay Kumar Basu

Copyright © 2020 Biao Yang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Meningiomas are the most common primary intracranial tumor in adults. However, to date, systemic coexpression analyses for
meningiomas fail to explain its pathogenesis. The aim of the present study was to construct coexpression modules and identify
potential biomarkers associated with meningioma progression. Weighted gene coexpression network analysis (WGCNA) was
performed based on GSE43290, and module preservation was tested by GSE74385. Functional annotations were performed to analyze
biological significance. Hub genes were selected for efficacy evaluations and correlation analyses using two independent cohorts. A
total of 14 coexpression modules were identified, and module lightcyan was significantly associated with WHO grades. Functional
enrichment analyses of module lightcyan were associated with tumor pathogenesis. The top 10 hub genes were extracted. Ten
biomarkers, particularly AHCYL2, FGL2, and KCNMA1, were significantly related to grades and prognosis of meningioma. These
findings not only construct coexpression modules leading to the better understanding of its pathogenesis but also provide potential
biomarkers that represent specific on tumor grades and identify recurrence, predicting prognosis and progression of meningiomas.

1. Introduction

Meningiomas are the most common primary intracranial
tumor in adults, accounting for over 35% of intracranial
tumors [1]. According to the 2007 World Health Organiza-
tion (WHO) Classification of Tumors of the Central Nervous
System (CNS), meningiomas are classified into three grades
including grade I, grade II, and grade III [2]. In the updated
2016 classification, brain invasionwas added into the diagnos-
tic criteria of atypical meningioma, WHO grade II [3].
Approximately 80% of all cases are WHO grade I meningio-
mas, while the high-grade meningiomas, including WHO
grade II or III, comprise 18-20% and 1-2% of all cases, respec-
tively [4]. Despite the combination of different treatments,
including surgery, radiotherapy, and chemotherapy, grade
II and III meningiomas remain aggressive and are coupled

with a poor prognosis and higher mortality [5]. Therefore,
personalized therapy options that are more urgently required,
providing improved therapy outcomes and ultimately,
improve prognosis for patients with meningioma.

Weighted gene coexpression network analysis (WGCNA)
is a powerful method to identify potential modules and
biomarkers with correlation analyses between gene expres-
sion and clinical data [6]. The WGCNA package in R is able
to implement the weighted coexpression network analysis in
microarray datasets [6]. These analyses could identify signifi-
cant prognostic biomarkers or therapeutic targets. This prom-
ising and reliable tool has been used to study numerous
different diseases that have complex molecular mechanisms,
such as colorectal cancer and glioblastoma multiforme [7,
8]. Additionally, there are two studies involving WGCNA of
meningiomas five years ago. Based on the 3600 variable genes,
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Chang et al. identified that a module was associated with
meningiomas using WGCNA and that four intramodular
hub genes within that module (including GAB2, KLF2, ID1,
and CTF1) were identified as oncogenic genes in other types
of cancers [9]; however, the study lacked verification through
further independent datasets. Another WGCNA study
revealed a module named module Quantitative Trait Loci
(mQTL), and single-nucleotide polymorphisms (SNPs) were
significantly associated with meningioma stage, and the path-
way analysis indicated that the hub genes in the module were
involved in meningioma malignant conversion [10]. Though
both studies identified themodule related to the clinical infor-
mation, there is a lack of verification for the reliability of these
modules and hub genes, as well as preservation analyses.

In the present study, WGCNA was used to search for
biologically meaningful modules based on two microarray
datasets. The genes with high connectivity in themodule were
identified as hub genes. Moreover, validation analyses were
implemented using two independent datasets. The results
from the present study may contribute to revealing the path-
ogenesis of meningiomas and providing potential biomarkers
for prognosis assessment and targeted therapy.

2. Material and Methods

2.1. Downloading and Preprocessing of Genetic and Clinical
Data. Three microarray datasets including GSE43290,
GSE74385, and GSE16581 were obtained from the Gene
Expression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/
geo)database.GSE43290 (GPL96;AffymetrixHumanGenome
U133A Array) includes 47meningioma samples and 4 normal
samples with WHO grades [11]. GSE74385 (GPL10558; Illu-
mina HumanHT-12 V4.0 expression beadchip) has 62
meningioma samples withWHO grades and prognosis status
including recurrence and nonrecurrence [12]. Finally,
GSE16581 (GPL570; Affymetrix Human Genome U133 Plus
2.0 Array) includes 68 meningioma samples with complete
WHO grades [13]. Background correcting, normalizing, and
log2 transformation were implemented to ensure clear data.
Moreover, probes matching multiple genes were eliminated
following annotations and were replaced by their average
values. The top 5000 high standard deviation genes were
selected for further analyses.

2.2. Construction of Weighted Gene Coexpression Network
Analysis. The WGCNA package in R was implemented to
construct gene coexpression modules related to WHO
grades [6]. For achieving the standard of scale-free topol-
ogy, an appropriate soft-thresholding value was analyzed
when the scale independence power was set as 0.9 [14].
The acquired weighted adjacency matrix was then trans-
formed into the topological overlap matrix (TOM). The
smallest number was set as 30, and different modules were
coded using different colors. The dissimilarity of module
eigengenes (ME), thefirst principal component of themodule,
was calculated to evaluate the similarity of entiremodules, and
the modules were put together with a maximum cut-off value
of 0.25 [15].

2.3. Module Preservation Analysis. Module preservation and
quality statistics were calculated with the module preserva-
tion function (nPermutations = 200) to examine the stability
of the acquired module using theWGCNA package [16]. The
validation dataset GSE74385 contained the mRNA expres-
sion data of 62 samples. Those modules with high Zsummary
and low medianRank scores were regarded as high conserva-
tive and stable modules, respectively.

2.4. Functional Annotation of InterestedModule. The correla-
tions between modules and clinical information such as
WHO grades were computed by Pearson’s correlation coeffi-
cient in order to select the biologically meaningful module.
The gene significance (GS) and module membership (MM)
were calculated in order to evaluate the clinical significance
of the module. In addition, all genes of the modules were
inputted into the Database for Annotation, Visualization
and Integrated Discovery (DAVID; version 6.8; https://
david.ncifcrf.gov) for functional analyses including Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses (P < 0:05) [17]. And
Reactome pathway (https://www.reactome.org) analysis was
conducted for the genes [18] and was visualized in Cytoscape
(version 3.5.1; http://www.cytoscape.org) [19].

2.5. Identification of Hub Genes. According to the definition,
the genes with high connectivity inside the module were
regarded as hub genes. Based on the intramodular statistical
analyses, the top 10 hub genes with high intramodular con-
nectivity (IC) were selected for the subsequent analyses.
Interaction networks of 10 hub genes were constructed using
the Cytoscape software [19].

2.6. Efficacy Evaluations and Correlation Analyses. Efficacy
evaluations and correlation analyses were performed to test
the clinical value of themodules using three different datasets.
An efficacy evaluation was presented with a receiver operator
characteristic (ROC) curve using the pROC package in R [20].
When the area under the curve (AUC) value was greater than
0.7, the gene was considered to be capable of distinguishing
meningioma samples from normal samples. The correlations
between hub genes andWHOgradeswere presented in scatter
plots, and their statistical significance was assessed using an
independent sample t-test.

3. Results

3.1. Downloading and Preprocessing of Genetic and Clinical
Data. A flow chart of the present study is presented in
Figure 1. Three microarray datasets (GSE43290, GSE74385,
and GSE16581) from the GEO database were obtained in
the present study. Following preprocessing of the data, a total
of 5,000 genes and 47 meningioma samples in the dataset
GSE43290 were extracted for the next analyses.

3.2. Construction of Weighted Gene Coexpression Network
Analysis. Following a quantity check, there was no sample
outlier to be cleared (Figure 2(a)) and the soft-thresholding
power was equal to 5 (Figure 2(b)). The weighed gene coex-
pression network was constructed based on the interaction
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patterns between genes (Figure 2). Gene coexpression mod-
ules, which included the clusters of genes with high topologi-
cal overlap, were identified using average linkage hierarchical
clustering and dynamic cut tree (Figure 2(d)). Genes that did
not belong to any modules were allocated in the module grey.
Following the clustering of ME, 14 coexpression modules
were coded as different colors and the numbers of the each
module ranged from 62 to 790 (Figure 2(d)). The 14 coexpres-
sion modules included black (286), blue (668), brown (539),
cyan (115), green (375), greenyellow (197), grey60 (62),
lightcyan (612), magenta (395), pink (243), purple (201), red
(332), tan (182), and turquoise (790) (Figure 2(d)). In
Figure 2(e), a heat map was showed to demonstrate the
associations between coexpression modules and clinical
information, and modules turquoise (r = 0:64, P = 2e − 06)
and lightcyan (r = −0:6, P = 9e − 06) were the top 2 biologi-
cally meaningful among module-related WHO grades. In
addition, the GS of each module is shown in Figure 2(f),
and the value of module lightcyan was identified as the
highest. The association between MM and GS of module
lightcyan is shown in Figure 2(g), which further confirmed
its biological significance.

3.3. Module Preservation Analyses. Through comparing the
dataset GSE74385, which was regarded as the test cohort, the
summary preservation statistics were analyzed and visualized.
Modules green, lightcyan, and greenyellow, of which Zsummary
statistics were greater than 10 and medianRank scores were the
lowest, were revealed to be the most stable and preservative
(Figure 3). By combining the biological significance-related
grades and preservation, module lightcyan was selected and
its genes were negatively related to WHO grades.

3.4. Functional Annotation of the Module of Interest. A total
of 612 genes in module lightcyan were used for the func-
tional enrichment analyses. GO results showed that module
lightcyan was primarily enriched in the negative regulation
of epithelial cell proliferation, positive regulation of the
apoptotic process, and epithelial cell differentiation in the
biological process category; extracellular exosome in the
molecular function category; and sulfur compound binding
and heparin binding in the cell component category
(P < 0:05; Figure 4). What is more, KEGG pathway results

demonstrated that these genes were mostly enriched in
the TGF-beta signaling pathway, cell cycle, and transcrip-
tional misregulation in cancer (P < 0:05; Figure 5(a)). The
Reactome pathway results showed that these genes were
mostly associated with collagen formation, cellular responses
to stress, and extracellular matrix organization (P < 0:05;
Figure 5(b)). Thus, these findings indicated that the genes
in module lightcyan played critical roles in the pathogenesis
of meningiomas.

All of these findingsmay deserve a further study.With the
aim of simplifying the area of research and promote its accu-
racy, the top 10 genes with high intramodular connectivity
were subsequently extracted as hub genes in the study, which
included DTL, ADAMTSL3, KCNMA1, ID1, ADIRF,
NMNAT2, ID3, FXYD5, AHCYL2, and FGL2 (Figure 6).

3.5. Efficacy Evaluations and Correlation Analyses. Subse-
quently, ten hub genes (including DTL, ADAMTSL3,
KCNMA1, ID1, ADIRF, NMNAT2, ID3, FXYD5, AHCYL2,
and FGL2) were tested in the GSE43290 dataset and two
independent cohorts, GSE74385 and GSE16581. In
GSE43290, ten hub genes could distinguish betweenmeningi-
oma grades (P < 0:05; Figure 7(a)), which is consistent with
the results of WGCNA. Though there were only four
normal samples in GSE43290, the efficacy evaluation
results still showed that five genes, including AHCYL2
(AUC = 0:729), FGL2 (AUC = 0:782), ID3 (AUC = 0:926),
KCNMA1 (AUC = 0:745), and NMNAT2 (AUC = 0:851),
could significantly distinguish meningiomas and normal
samples (Figure 7(b)).

The two independent datasets also showed that these
genes were related to WHO grades (P < 0:05), except for
ADIRF in GSE16581 and ADIRF and NMNAT2 in the
GSE74385 dataset (P > 0:05), which confirmed them as
potential biomarkers for predicting prognosis (Figure 8).
What is more, these genes, excluding ID1, ID3, and
NMNAT2, were confirmed to be able to differentiate between
the recurrence and nonrecurrence forms of meningioma
(P < 0:05; Figure 9).

4. Discussion

Meningiomas with a high recurrence rate are themost common
primary intracranial tumor in adults and includes three grades
[1]. Grade II and III meningiomas are aggressive, and the
patients often tend to have a poor prognosis and high mortality
[5]. Personalized therapy and management of meningioma are
still lacking, for the underlyingmolecularmechanism remains
unclear. Thus, further researches into the pathogenesis of
meningioma are required. In the present study, WGCNA
was performed to extract module lightcyan and the top 10
hub genes related to the WHO grades of meningioma.

WGCNA is a powerful systemic method to construct the
coexpression networks, which has widely been implemented
in a number of different types of diseases [21–23]. Compared
with the two studies of WGCNA on meningiomas [9, 10], the
present study highlighted the significant module associated
with meningioma grade and the extracted hub genes were fur-
ther confirmed by independent cohorts, which improved the

Downloading GSE43290

Data preprocessing

14 modules by WGCNA

Module lightcyan

Module preservation with GSE74385

Top 10 hub genes

GOKEGGReactome Further validation with
GSE74385 GSE16581

Figure 1: Flow chart presenting the design of present study.
WGCNA: weighted gene coexpression network analysis; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 2: Construction of the weighted gene coexpression network analysis. (a) Cluster dendrogram of samples and the corresponding
clinical traits. (b) Analyses of network topology for various soft-thresholding powers. (c) Clustering of module eigengenes was analyzed
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reliability and objectiveness of the results. After an integrated
bioinformatics analysis in the present study, module lightcyan
including 612 genes was revealed to be significantly related to
WHO grades (r = −0:6, P = 9e − 06). What is more, gene sig-

nificance, modulemembership, andmodule preservation also
confirmed the biological significance of module lightcyan.

A total of 612 genes inside module lightcyan were loaded
theDAVID andReactome pathway online tools for functional
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Figure 5: The plots for enriched KEGG and Reactome pathways of all genes in module lightcyan. (a) KEGG analysis was visualized using the
package GOplot in R. The plot included 12 KEGG pathway terms. The genes with at least two pathway terms and the term which includes at
least three genes are shown in the plot. (b) The top 5 enriched Reactome pathways were visualized in Cytoscape. KEGG: Kyoto Encyclopedia
of Genes and Genomes.
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line is positively associated with the degree of connectivity between two genes.
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Figure 7: Correlation analyses and efficacy evaluations for hub genes in the GSE43290 dataset. (a) Scatter plots for hub genes of module
brown across meningioma WHO grades. P values are the results of independent sample t-tests between grade I and grades II and III. (b)
ROC analyses for the top 10 hub genes of module lightcyan. ROC curves and AUC statistics to evaluate the diagnostic efficiency of the
hub genes distinguishing meningioma samples (N = 47) from normal samples (N = 4). WHO: World Health Organization; ROC: receiver
operating characteristic; AUC: area under the curve.
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annotations. According to the GO analysis results, module
lightcyan participates in cell apoptosis, proliferation, and
differentiation, which play critical roles in tumor progression.
Similar results were also observed in the KEGG and Reactome
pathway analyses. For example, the activated PI3k-AKT

signaling pathway is an important driver of tumor develop-
ment in a number of different types of tumors, including
meningioma [24, 25]. Members of the PI3K family are lipid
kinases that participate in multiple cellular processes, such
as differentiation, proliferation, and survival [25], which are
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Figure 8: Scatter plots for hub genes of module brown across meningioma WHO grades in the GSE16581 and GSE74385 datasets. P values
are the results of independent sample t-test between grade I and grades II and III in the (a) GSE16581 and (b) GSE74385 datasets. WHO:
World Health Organization; NS: no significance; ∗P < 0:05; ∗∗P < 0:01.
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related to the results of the GO analyses. Thus, the results of
the present study further confirmed the biological significance
of the module lightcyan.

A total of 10 hub genes, particularly AHCYL2, FGL2, and
KCNMA1, were identified and confirmed by efficacy evalua-
tions and correlation analyses based on three microarray
datasets. Many research found that the top 10 hub genes were
significantly associated with tumors. FGL2 has been identified
as an important immune-suppressive modulator and as a
potential immunotherapeutic target for treating gliomas
[26]. A previous study found that silencing of FGL2 contrib-
uted to a significant decrease in cell viability and increase in
cell apoptosis, accompanied decrease by ERK1/2, and p38
MAPK activation. Furthermore, it was revealed that overex-
pression of FGL2 is significantly associated with poor progno-
sis in patients with clear cell renal cell carcinoma [27]. These
studies confirmed that FGL2 was involved in tumor progres-
sion and prognosis. KCNMA1was demonstrated to be down-
regulated in grade III vs. grade I meningiomas using
microarray expression profiles [28]. Based on the results of
the Kaplan-Meier survival curve and experiments both
in vitro and in vivo, KCNMA1 hypermethylation was signifi-
cantly associated with shorter survival time in patients with
GC (P = 0:036), which confirmed its prognostic value in
gastric carcinogenesis [29]. PEST domain of AHCYL2 inter-
acts with the NBCe1-B, which plays a critical role in neuronal
modulation and intracellular pH regulation during activity
[30, 31]. Reportedly, DTL overexpression decreased the
protein level and accelerated the degradation rate of PDCD4
by ubiquitination and in cancer tissues was significantly
upregulated than in normal tissues [32]. Moreover, cancer
patients with higher DTL expression owned lower survival
rate, and functional experiments found that DTL enhanced
the motility and proliferation of cancer cells through degrad-
ing PDCD4 to promote the development of cancers [32]. A
recent study showed that DTL, as one of the nine hub genes,
played a role in type 2 diabetes mellitus and hepatocellular
carcinoma (HCC) [33]. Genome-wide CRISPR Knockout
Screens identified that ADAMTSL3 and PTEN were signifi-
cantly related to HCC proliferation and metastasis and
DAMTSL3 and PTEN were downregulated in HCC cells
than in normal liver cells [34]. And HCC patients with low
expression had a poor survival time, and further biological
experiments in vitro and in vivo confirmed that DAMTSL3
and PTEN promoted the proliferation and metastasis of
HCC cells [34]. A recent study reported that ID1 acted as a
transcriptional regulator and played a critical role for glioblas-
toma initiation and chemoresistance, and ID1 knockdown
promoted the treatment effect of temozolomide, delays tumor
recurrence, and prolongs survival [35]. Reportedly, a recent
study found that mitochondrial impairment activated the
Wallerian pathway and caused the axon degeneration by the
depletion of NMNAT2 [36]. Moreover, ID3 was reported to
act as a biomarker promoting the stemness of intrahepatic
cholangiocarcinoma by promoting the transcriptional activity
of β-catenin [37]. Furthermore, high-grade serous ovarian
carcinoma patients with higher expression of FXYD5 owned
a shorter survival time than patients with lower expression
of FXYD5, and FXYD5 played a critical role in survival and

prognosis of HCSOC [38]. Similarly, biological experiments
in vitro and in vivo showed that FXYD5 promoted the metas-
tasis of ovarian cancer cells via TGF-β/SMAD signaling path-
ways [39]. Besides, a study demonstrated that FXYD5/Dys
could serve as a biomarker of endometrial cancer progression
associated with TGF-β1 and NF-κB signaling pathways [40].
The findings from the present study confirmed the reliability
and accuracy of hub genes as prognostic biomarkers in
tumors, particularly in meningiomas.

However, the present study has some limitations. The
low sample size may mean that the results are not as accurate
as they could be. There were only 4 normal samples in the
GSE43290 dataset and only 6 grade III meningioma samples
in the GSE16581 dataset, which affected the analyses. Larger
samples are required in future studies. Despite the small
sample size, the plots still demonstrate relevant trends to a
certain extent. Therefore, further functional research needs
to be done to confirm the roles of the top 10 hub genes in
meningioma pathogenesis in the future.

5. Conclusion

A total of 14 coexpression modules of meningiomas were con-
structed and identified using WGCNA. The integrated bioin-
formatics methods confirmed the stability and preservation of
module lightcyan-related WHO grades. The GO enrichment,
KEGG, and Reactome pathway analyses confirmed that the
612 genes of the module were significantly associated with
meningioma progression. Moreover, the top 10 hub genes
were selected based on intramodular connectivity and further
confirmed to be associated with the grade and prognosis of
meningiomas when using an independent sample t-test and
ROC curve in three datasets. The results of the present study
not only provide coexpression modules for an improved
understanding of its pathogenesis but also provide potential
biomarkers that associated with tumor grades and recurrence,
allowing the prediction of prognosis and progression in
patients with meningiomas.
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