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Lung cancer is the leading cause of cancer-related death worldwide, and the most common histologic subtype is lung
adenocarcinoma (LUAD). Due to the significant mortality and morbidity rates among patients with LUAD, the identification of
novel biomarkers to guide diagnosis, prognosis, and therapy is urgent. Guanosine triphosphate-binding protein 4 (GTPBP4) has
been found to be associated with tumorigenesis in recent years, but the underlying molecular mechanism remains to be
elucidated. In the present study, we demonstrate that GTPBP4 is significantly overexpressed in LUAD primary tumors. A total
of 55 genes were identified as potential targets of GTPBP4. GO enrichment analysis identified the top 25 pathways among these
target genes, among which, ribosome biogenesis was shown to be the most central. Each target gene demonstrated strong and
complex interactions with other genes. Of the potential target genes, 12 abnormally expressed candidates were associated with
survival probability and correlated with GTPBP4 expression. These findings suggest that GTPBP4 is associated with LUAD
progression. Finally, we highlight the importance of the role of GTPBP4 in LUAD in vitro. GTPBP4 knockdown in LUAD cells
inhibited proliferation and metastasis, promoted apoptosis, and enhanced sensitivity to TP. Overall, we conclude that GTPBP4
may be considered as a potential biomarker of LUAD.

1. Introduction

Adenocarcinoma is the most prevalent subtype of lung can-
cer, comprising ~40% of all lung cancer cases [1, 2]. Despite
a wealth of research, lung adenocarcinoma (LUAD) remains
as a highly aggressive and fatal disease, with an overall sur-
vival time of <5 years due to the difficulty in diagnosis [2–
4]. The discovery of novel specific molecular markers or tech-
nologies to diagnose LUAD is urgently required. Currently,
computational biology is often combined with molecular
biology and technology to explore the molecular mechanisms
of disease and to identify clinically significant molecules [5].
Biomarkers, usually molecules involved in cancer develop-

ment, play an important role in the diagnosis, treatment,
and prognosis of various cancer types [6, 7].

Guanosine triphosphate-binding protein 4 (GTPBP4),
also known as CRFG [8], NGB [9], and NOG1 [10], is a
GTPase involved in the synthesis of 60S ribosomal subunit
and located on nuclear chromosome 10p15-14 [11]. Previous
studies had shown that GTPBP4 can induce cell proliferation
and enhance cell colony formation in some cancer types [12,
13]. A study of colorectal carcinoma (CRC) also uncovered
that GTPBP4 was responsible for tumor metastasis [14].
Meanwhile, patients with HCC (hepatocellular carcinoma)
with high levels of GTPBP4 expression tended to have a poor
prognosis [15]. The aforementioned research suggests that
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high expression of GTPBP4 is likely an important factor in
the occurrence and development of tumors. However, there
have been no prior reports regarding the expression or the
role of GTPBP4 in lung adenocarcinoma.

In this study, we combined computational biology and
experimental techniques to investigate the role of GTPBP4
in LUAD. The molecular function of GTPBP4 and its target
genes were analyzed based on data from The Cancer Genome
Atlas (TCGA) database. We demonstrate that the high
expression of GTPBP4 contributes to LUAD tumorigenesis
and might affect the prognosis of patients. Additionally,
knockdown of GTPBP4 in A549 and H1299 cells inhibits
proliferation and migration and improves cell apoptosis.
Therefore, this study may provide a novel molecular target
for the treatment of LUAD.

2. Materials and Methods

2.1. GTPBP4 Expression in LUAD. The Cancer Genome Atlas
(TCGA) is a high-throughput gene database containing data
regarding >30 types of human carcinoma [16]. We obtained
the GTPBP4 expression profiles for diverse cancer types and
with respect to gender, node metastasis status, ethnicity, and
stage, based on a TCGA online analysis tool (http://ualcan
.path.uab.edu/index.html).

2.2. Prediction and Data Screening of GTPBP4 Target Genes.
A total of 5 programs, including String (https://string-db.org/),
BioGRID (https://thebiogrid.org/), BioPlex (https://bioplex.hms
.harvard.edu/), HPRD (http://www.hprd.org), and InBio_Map
(https://www.intomics.com/inbio/map/#home), were used to
identify the target genes of GTPBP4. The target genes that over-
lapped in ≥3 of 5 programs were selected to improve the accu-
racy of the results. The integration of the genes was visualized
by a Venn diagram (https://www.omicshare.com/tools/).

2.3. Functional Annotation of the Selected Target Genes in
LUAD. Gene Ontology (GO) enrichment analysis was per-
formed to uncover the biological function of the overlapping
target genes of GTPBP4 in LUAD. The online analysis tool
(https://www.omicshare.com/tools/) was applied to explore
the significance of the overlapping target genes of GTPBP4.

2.4. Protein-Protein Interaction (PPI) Network Construction.
The retrieval of interacting genes search tool (http://
metascape.org/gp/index.html#/main/step1) was used to dia-
gram the PPI network of the overlapping target genes.

2.5. Identification of Differentially Expressed Genes. The
expression of the overlapping genes between LUAD primary
tumor and adjacent normal tissues was analyzed using a
TCGA data online analysis tool (http://ualcan.path.uab.edu/
index.html). Results with statistical differences (P < 0:05)
were recorded as differentially expressed genes.

2.6. Assessment of the Prognostic Value of the Overlapping
Genes of GTPBP4. The overlapping genes were searched on
TCGA data online analysis tool (http://ualcan.path.uab.edu/
index.html) to retrieve the associated survival curves
(P < 0:05).

2.7. Correlation Analysis of GTPBP4 and the Selected Target
Genes. We used another TCGA analysis tool (http://gepia
.cancer-pku.cn/detail.php) to define the correlation between
GTPBP4 and the selected overlapping genes.

2.8. Cell Lines and Cultures. Human LUAD cell lines (A549
and NCI-H1299) were purchased from the American Type
Culture Collection (ATCC; VA, USA) and cultured in RPMI
1640 (Roswell Park Memorial Institute 1640) medium
(Gibco, Grand Island, NY) containing 1% penicillin/strepto-
mycin (Sigma, St Louis, MO) and 10% fetal bovine serum
(FBS, Gibco). All cells were maintained at 37°C in 5% CO2.

2.9. Cell Transfection. GTPBP4 small interfering RNA
(siRNA) and negative control siRNA were synthesized
obtained from GenePharma Co. (Shanghai, China). Briefly,
cells at a density of 2:0 × 105 cells per well were transfected
with siRNA using Lipofectamine 2000 (Invitrogen, Carlsbad,
CA) in a serum-free medium in a 6-well plate. After 6 hours,
the medium was replaced with fresh medium containing FBS.
All subsequent experiments were performed at least 24 h
after transfection. The sequences of the GTPBP4 siRNA are
as follows: GTPBP4-homo-245: sense: 5′-CCAUGAUAG
ACUUUCACAATT-3′ and antisense: 5′-UUGUGAAAG
UCUAUCAUGGTT-3′; GTPBP4-homo-868: sense: 5′
-GGGAGCAGCUAGAACUCUUTT-3′ and antisense: 5′
-AAGAGUUCUAGCUGCUCCCTT-3′; GTPBP4-homo-
1374: sense: 5′-GGCCAUAAUAUAGCUGAUUTT-3′ and
antisense: 5′-AAUCAGCUAUAUUAUGGCCTT-3′.

2.10. Cell Viability Assay. LUAD cells were seeded into 96-
well plates at a density of 5 × 103 cells per well and incubated
overnight. Then, the medium was replaced with media con-
taining different concentrations of Triptolide (TP; Sigma-
Aldrich) (0, 0.78125, 1.5625, 3.125, 6.25, 12.5, and 25ng/mL)
and incubated with the cells for 48h. Cell viability was esti-
mated using a Cell Counting Kit-8 assay (CCK8; Dojindo;
Kumamoto, Japan), according to the manufacturer’s instruc-
tion. A MAX II microplate reader (Dynex Technologies,
Chantilly, VA) was used to measure the absorbance at
450 nm. The half maximal inhibitory concentration (IC50)
of TP was measured using the following equation: V% =
100/ð1 + 10½TP�logIC50Þ, where V% is the percentage viability
and [TP] is the TP concentration (ng/mL).

2.11. 5-Ethynyl-2′-deoxyuridine (EdU) Incorporation Assay.
DNA synthesis was quantified using a Click-iT™ EdU Imag-
ing kit (Invitrogen; Carlsbad, CA, USA) according to the
manufacturer’s instruction. Briefly, cells were seeded in 96-
well plates and 10μMEdUwas added to culture for 2 h. Next,
cells were fixed with 4% paraformaldehyde for 15-30min and
permeabilized with 0.5% Triton X-100 for 20min at room
temperature. After washing with PBS, 100μL Click-iT reac-
tion mixture was incubated with the cells for 30min,
followed by 100μL Hoechst 33342 in PBS for 30min. The
results were visualized using a NanoZoomer 2.0-RS fluores-
cence microscope (Hamamatsu, Japan).
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Figure 1: Continued.
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2.12. Cell Apoptosis Analysis. Preconditioned A549 and
H1299 cells were harvested and then washed twice with ice-
cold PBS. Then, Annexin V-FITC and PI dyes (BD Biosci-
ences, Franklin Lakes, NJ, USA) were used to stain the cells,
according to the manufacturer’s description. Cells were
finally analyzed via flow cytometry (BD Biosciences, Franklin
Lakes, NJ, USA).

2.13. Western Blotting. Cells were washed twice with PBS and
transferred to 100μL lysis buffer (Beyotime Co, China) con-
taining 100mM phenylmethanesulfonyl fluoride (PMSF,
Beyotime Co, China), in which they were incubated for

30min on ice. The soluble protein fractions were collected
after centrifugation at 12000 × g for 20min at 4°C, and pro-
tein concentration was quantified using a BCA protein assay
kit (Thermo Fisher; Rockford, IL, USA), according to the
manufacturer’s protocol. Equal amounts of protein were
denatured and separated by 10% SDS-PAGE and then trans-
ferred into polyvinylidene difluoride (PVDF) membranes
(Millipore; Billerica, MA, USA). PVDF membranes were
blocked with 5% nonfat milk in TBST (Tris-buffered saline
(TBS) containing 0.1% Tween 20) at room temperature for
2 hours. Membranes were then incubated with anti-
GTPBP4 (13897-1-AP; Proteintech, Wuhan, China) and
anti-GAPDH (2118S; CST, Danvers, MA, USA), diluted
1 : 1000 in TBST overnight at 4°C. The membranes were then
washed 3 times and incubated with a horseradish peroxidase-
conjugated secondary antibody, diluted 1 : 2000 in TBST, at
room temperature for 2 hours. Signals were visualized using
ECL reagents (Thermo Scientific, Waltham, MA, USA),
using GAPDH as a loading control.

2.14. Scrape Motility Assay. The scrape motility assay was
used to evaluate cell migration. Cells (3:5 × 105 per well) were
seeded in 6-well plates. Once the cells had formed confluent
monolayers, a 200μL sterile pipette tip was used to create a
scratch in each well. The floating cells were removed, and
the anchorage-dependent cells were incubated in serum-
free medium. Images were captured under an inverted light
microscope (Olympus IX51, Olympus, Center Valley, PA,
USA) at 0, 24, and 48 hours after scratching.

2.15. Statistical Analysis. Each experiment was performed
independently ≥3 times. Results are presented as mean ±
standard deviation (SD). All data were analyzed using Graph-
Pad Prism (version 8; GraphPad, San Diego, CA). Student’s t
test was used to analyze differences between groups, and P <
0:05 was considered to indicate a statistically significant
difference.
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Figure 1: The expression profile of GTPBP4 in LUAD clinical tissues. (a) GTPBP4 is overexpressed in the majority of human cancer types
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3. Results

3.1. GTPBP4 Expression in LUAD Tissues. To confirm the
expression level of GTPBP4 in various human tumors, we
used UALCAN, a TCGA data online analysis tool, to derive
the GTPBP4 expression profiles. GTPBP4 expression was
increased in most human cancer types when compared with
adjacent normal tissues (Figure 1(a)), and this difference was
significant in LUAD primary tumor tissues (Figure 1(b)).
GTPBP4 expression profiles in LUAD tissues were also com-
pared for gender (male and female), node metastasis status
(N0, N1, N2, and N3), ethnicity (Caucasian, African-Ameri-
can, and Asian), and stage (S1, S2, S3, and S4). Statistical
analysis revealed that, in patients with LUAD, GTPBP4
expression was higher in men than in women (Figure 1(c)).
Excluding the impact of sample size, node metastasis status,
ethnicity, and tumor stage did not result in the differential
expression of GTPBP4 (Figures 1(d)–1(f)).

3.2. Prediction and Data Screening of GTPBP4 Target Genes.
Groups of potential GTPBP4 target genes were selected from
5 public databases. A total of 119 genes were obtained from
String, 179 from BioGRID, 40 genes from BioPlex, 403 from
InBio_Map, and 33 from HPRD. This resulted in a total of
774 potential target genes. To improve prediction accuracy,
only genes obtained from ≥3 of 5 databases (overlapping
genes) were selected as potential targets of GTPBP4 for fur-
ther analysis, which was a total of 55 genes (Figure 2).

3.3. Functional Analysis of the Overlapping GTPBP4 Target
Genes in LUAD. The functional roles of 55 potential target
genes in LUAD were analyzed in terms of biological pro-
cesses (BP) by GO enrichment analysis. The top 25 enriched
pathways with significant differences were selected to con-
struct a bubble chart (Figure 3). The biological functions of
GTPBP4 target genes were mainly associated with RNA
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processing and metabolism, and the most significant path-
way was ribosome biogenesis (P < 0:001).

3.4. Protein-Protein Interaction (PPI) Enrichment Analysis of
the Overlapping Target Genes. To determine the interaction
among the proteins encoded by the overlapped genes in
LUAD, Metascape software was used to construct a PPI net-
work. This was performed using 3 databases: BioGRID,
InWeb_IM, and OmniPath. As indicated in Figure 4, the
interactions among target genes are complicated, and each
target gene has intricate associations with other genes. Most
of the targets belong to the PRL family, the DDX family,
and the NOP family; these families all were reported to be
essential for ribosome biogenesis and RNA metabolism,
and this corresponds with the results in Section 3.3.

3.5. Validation of the Overlapping Target Genes of GTPBP4 in
LUAD from TCGA Data. To further explore the role of
GTPBP4 in LUAD, the expression of the overlapping target
genes and their association with prognosis were analyzed
using the UALCAN program. According to the query results,
12 genes with the most significant association between
expression and prognosis in LUAD were selected for further
analysis. Among the 12 genes (NOP2, DDX18, EIF6, BOP1,
PES1, DDX47, RPF2, DDX56, MRTO4, RPL4, DDX5, and
WDR46), all were upregulated in LUAD tissues compared

to normal adjacent tissue except for DDX5 (Figure 5). In
terms of LUAD prognosis, patients with downregulated
DDX5 expression, or overexpression of NOP2, DDX18,
EIF6, BOP1, PES1, DDX47, RPF2, DDX56, MRTO4, RPL4,
andWDR46, had lower survival probabilities (Figure 6). Fur-
thermore, the correlation between the expression of GTPBP4
and these 12 genes was calculated using GEPIA. In patients
with LUAD, NOP2, DDX18, EIF6, BOP1, PES1, DDX47,
RPF2, DDX56, MRTO4, RPL4, and WDR46 had a positive
correlation with GTPBP4, while DDX5 had a negative corre-
lation with GTPBP4 (Figure 7).

3.6. Knockdown of GTPBP4 Suppressed Cell Proliferation and
Accelerated Cell Apoptosis of LUAD Cells. To verify the results
of bioinformatics analysis, we analyzed the effect of downreg-
ulated GTPBP4 expression in LUAD cells in vitro. Western
blotting showed that siRNA targeting GTPBP4 (si-
GTPBP4-245, si-GTPBP4-868, and si-GTPBP4-1374) mark-
edly suppressed the expression of GTPBP4 in both A549 and
H1299 cells. The most striking downregulation of GTPBP4
was achieved by si-GTPBP4-1374 (Figure 8(a)). CCK8 assays
showed that RNA interference of GTPBP4 significantly
increased the sensibility of A549 and H1299 cells to TP com-
pared to control cells (Figure 8(b)). Based on the results of
western blotting and CCK8 assays, si-GTPBP4-1374 was
selected for use in subsequent experiments. The EdU assays
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Figure 6: The prognostic significance of the 12 selected target genes for LUAD. Low expression of DDX5 and high expression of EIF6,
DDX18, MRTO4, NOP2, PES1, RPF2, RPL4, WDR36, BOP1, DDX47, and DDX56 were associated with poor prognosis of LUAD patients.
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revealed that proliferation of A549 and H1299 cells was sup-
pressed by si-GTPBP4 (Figure 8(c)). Similarly, downregula-
tion of GTPBP4 expression induced apoptosis of both A549
and H1299 cells (Figure 8(d)).

3.7. GTPBP4 Facilitates the Migration of LUAD Cells. To
investigate whether GTPBP4 may contribute to LUAD
metastasis, siRNA was used to downregulate GTPBP4
expression in A549 and H1299 cells. Downregulation of
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Figure 8: GTPBP4 regulates LUAD cell proliferation and apoptosis. (a) Knockdown of GTPBP4 in A549 and H1299 cells using si-NC, si-
GTPBP4-245, si-GTPBP4-868, and si-GTPBP4-1374 was confirmed by western blotting (left: A549 cells; right: H1299 cells). (b) Viability
of A549 and H1299 cells was determined under different concentrations of TP (25, 12.5, 6.25, 3.125, 1.5625, 0.78125, and 0 ng/mL). (c)
Proliferation rates of LUAD cells were analyzed using the EdU assay with an IC50 concentration of TP. ∗P < 0:05 and ∗∗P < 0:01. (d) Cell
apoptosis was evaluated by Annexin V staining; mean ± SD (n = 3), ∗∗∗ P < 0:001.
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GTPBP4 expression in A549 cells partially inhibited the
migration of LUAD cells 24 h posttransfection, and this inhi-
bition was magnified at 48 h after transfection. In H1299
cells, downregulated GTPBP4 expression also repressed
metastasis 24 h and 48 h posttransfection compared with
the control and si-NC groups. There was no difference in
metastasis between the control and si-NC groups. These
results indicated that GTPBP4 facilitated the migration of
LUAD cells (Figure 9).

4. Discussion

GTPBP4 is a molecular switch that is of great importance for
the biogenesis of the 60S ribosomal subunit and signal trans-
mission due to its GTPase activity [8, 17, 18]. It switched
between an active state and inactive state when bound with
GTP or GDP [19]. At a time when targeted therapy is popu-
lar in the field of cancer research, GTBBP4 has been identi-
fied as a potential biomarker for various cancer types.
However, recent studies have indicated that the role of
GTPBP4 in malignant tumor types is double sided. Although
GTPBP4 has been most often found to act as an oncogene

[12, 13], it has also been described as a suppressor gene in
rare cases, such as in neurofibromatosis 2 (NF2) [9], suggest-
ing that the role of GTPBP4 depends on the specific type of
cancer.

In the present study, we have demonstrated that the
expression of GTPBP4 is higher in tumor tissues than in
adjacent normal control. Similarly, the immunohistochemis-
try (IHC) database of HPA (https://www.proteinatlas.org)
showed that the protein expression of GTPBP4 in LUAD tis-
sues was increased compared to normal control (Figure S1).
In addition, to further investigate the function of GTPBP4,
its potential downstream target genes were identified. We
show that GTPBP4 may be a novel potential biomarker to
guide LUAD diagnosis, prognosis, and treatment.
Suppression of GTPBP4 expression in A549 and H1299
cells inhibited cell proliferation and migration and
increased the rate of apoptosis. Based on the anti-tumor
activity of TP and its toxicity to LUAD cells [20], our study
indicated that RNA interference of GTPBP4 in A549 and
H1299 cells significantly increased sensibility to TP.

Some studies have reported that GTPBP4 plays a critical
role in the progression of tumors. For example, aberrantly
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Figure 9: GTPBP4 promotes migration of LUAD cells. Wound healing was monitored for 48 h in A549 and H1299 cell monolayers;
mean ± SD (n = 3).
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expressed GTPBP4 was found to be significantly associated
with low survival probability in patients with HCC and breast
cancer [15, 21]. Yu et al. concluded that GTPBP4 was respon-
sible for tumor metastasis in CRC [14], and Li et al. suggested
that GTPBP4 promotes gastric cancer progression [12]. The
analysis of its potential target genes in the present study sug-
gested that GTPBP4 may be a predictor of survival in LUAD
cases. The overall survival analysis graph indicates that high
expression of GTPBP4 in LUAD is associated with poor
prognosis; however, this was not statistically significant
(Figure S2). This also implies that GTPBP4 may predict
prognosis of patients with LUAD.

As shown in Figure 3, ribosome biogenesis was predicted
to be the crucial biological process involving GTPBP4.
Importantly, a series of studies have indicated that dysregu-
lated ribosome biogenesis is essential for the tumorigenesis
of most spontaneous cancer types and that ribosome biogen-
esis is closely related to tumor suppressor P53 in cell prolifer-
ation and apoptosis [22–24]. The majority of the selected
target genes in the present study were also observed to partic-
ipate in ribosome synthesis. EIF6 (eukaryotic initiation factor
6) has been shown to be essential for nucleolar biogenesis of
60S ribosomes andmaximal protein synthesis downstream of
growth factor stimulation [25]. The assembly of 40S and 60S
ribosomal subunits is regulated by DEAD-box RNA helicase
18 (DDX18) [26]. Nucleolar protein 2 (NOP2/NSUN1),
which can inhibit HIV-1 transcription and promote viral
latency [27], is also required for nucleolar maturation and
ribosome biogenesis in mammals [28]. Ribosomal protein
L4 (RPL4) is known to affect tumorigenesis and metastasis
of HCC [29] and to participate in the assembly of pre-60S
in the nucleus [30]. BOP1 (Block of Proliferation 1) is
responsible for modulating pre-rRNA processing of 28S
and 5.8S rRNAs [31, 32]. Additionally, DEAD-box RNA heli-
case 56 (DDX56) is involved in the assembly of the 60S large
ribosomal subunit and has been associated with lymphatic
invasion and distant metastasis in CRC [33]. Pescadillo ribo-
somal biogenesis factor 1 (PES1), which has been reported as
an independent poor prognostic factor in pancreatic cancer
patients [34], is essential for 60S ribosomal subunit matura-
tion and pre-rRNA processing [35]. Therefore, we speculated
that the regulation of ribosome biogenesis by GTPBP4 plays
an essential role in various types of cancer. Regarding pro-
moted progression of gastric cancer by GTPBP4 regulation
of P53 activity [12], we infer that aberrant GTPBP4 affects
LUAD cell proliferation, apoptosis, and migration by dis-
turbing the balance between ribosome biogenesis and P53
activity. Thus, GTPBP4 is likely to participate in LUAD by
regulating ribosomal biogenesis.

5. Conclusions

In conclusion, our findings suggest that aberrantly high
expression of GTPBP4 contributes to the tumorigenesis of
LUAD and that it may be associated with prognosis of
patients with LUAD. GTPBP4 may have potential as a novel
therapeutic target, a diagnostic biomarker, or a survival pre-
dictor for LUAD.
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