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Purpose. To explore the effects of depression on cardiac autonomic nerve function and related metabolic pathways, the heart rate
variability (HRV) and urinary differential metabolites were detected on the college students with depression. Methods. 12 female
freshmen with depression were filtered by the Beck Depression Inventory (BDI-II) and Self-rating Depression Scale (SDS). By
wearing an HRV monitoring system, time domain indexes and frequency domain indexes were measured over 24 hours. Liquid
chromatography–mass spectrometry (LC-MS) was used to detect their urinary differential metabolites. Differential metabolites
were identified by principal component analysis (PCA) and orthogonal projections to latent structures discriminant analysis
(OPLS-DA). The metabolic pathways related to these differential metabolites were analyzed by the MetPA database. Results.
Stress time was significantly increased, and recovery time was markedly decreased in the depression group compared with the
control group (p < 0:001). Standard deviation of the normal-to-normal R interval (SDNN), root mean square of the beat-to-beat
differences (RMSSD), high frequency (HF), and low frequency (LF) were decreased significantly (p < 0:01). Moreover, 15
differential metabolites (4↑, 11↓) were identified in the depression group. These differential metabolites were involved in the
disruption of five metabolic pathways (coenzyme Q biosynthesis, glycine-serine-threonine metabolism, tyrosine metabolism,
pyrimidine metabolism, and steroid metabolism). Conclusion. Some autonomic nervous system disruption, high stress, and poor
fatigue recovery were confirmed in college students with depression. The metabolic mechanism involved the disruption of
coenzyme Q biosynthesis, glycine-serine-threonine metabolism, tyrosine metabolism, pyrimidine metabolism, and steroid
metabolism under daily stress.

1. Introduction

Depression is a severe mental illness with symptoms that
include anxiety, insomnia, cognitive impairment, and even
suicidal tendency [1, 2]. Studies investigating the causes and
mechanisms of depression are research hotspots [3, 4]. The
etiology and mechanism of depression are complex, and the
biological abnormalities associated with depression involve
many systems in the body, including the autonomic nervous
system (ANS), which affects sleep. Therefore, somnipathy is
also the most common clinical symptom of depression [5].

Heart rate variability (HRV), a reliable index that indicates
stress level [6], can be used to quantitatively evaluate the ten-
sion and balance of the sympathetic nerve and vagus nerve in
the heart [7]. HRV is widely used in many fields, such as clin-
ical practice [8], sleep quality measurement [9], and stress
and recovery analysis [10].

Metabonomics is a detection method used to analyze the
metabolic mechanisms of an organism from the point view of
molecular biology. This method can identify changes in dif-
ferential metabolites and related metabolic pathways by
detecting changes in small molecular metabolites [11]. Most

Hindawi
BioMed Research International
Volume 2020, Article ID 5246350, 9 pages
https://doi.org/10.1155/2020/5246350

https://orcid.org/0000-0001-6804-2731
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/5246350


modern theories of depression believe that stress leads to a
risk of depression through cognitive processes and specific
biological processes [12]. Some theories argue that major
stressful events are one of the best predictors of depression
[13]. Other studies have shown that certain life events, such
as social exclusion, increase the risk of severe depression [14].

Adolescents are in the sensitive periods of physiological
and psychological development, which means they lack of
capability to handle learning stress, sleep lacking, interper-
sonal tension, and other external pressures and problems;
thus, adolescents are prone to become depressed [15, 16].
The problem of depression among college students in China
is highly prominent, with frequently occurred suicide caused
by depression in recent years [17, 18]. College students with
depression have symptoms such as insomnia and potentially
increased duration of daily stress. However, it is not clear
whether there is a direct relationship between daily stress
time and autonomic nerve function, and the metabolic
mechanism under stress remains unknown. Therefore, it is
important to monitor college students with depression and
explore their metabolic profiles.

In this study, 48 freshmen with depression were selected
from Shaanxi Normal University by Beck Depression Inven-
tory (BDI-II) and Self-rating Depression Scale (SDS). Their
24-hour dynamic HRV, pressure, and recovery time were
monitored by a HRV monitoring system (Firstbeat Body-
guard 2). The urine samples were detected by differential
metabolite detection, and related metabolic pathway analysis
was performed to explore the metabolic mechanism.

2. Methods

2.1. Participants. A total of 4000 freshmen from Shaanxi
Normal University were identified as having depression,
according to the BDI-II and SDS, with the depression screen-
ing criteria of BDI-II score ≥ 15 [19] and SDS score ≥ 50 [20].
And then those students who meet the above conditions were
required to pass a comprehensive physical examination at
Xuefu Hospital of Shaanxi Normal University to eliminate
other physical diseases, mental diseases, abnormal physical
development (including), and other interference factors.
Considering the sample size requirements of this experiment
and excluding gender differences, 12 female students with
depression were selected as the subjects of this study (depres-
sion group). Additionally, 12 healthy female students form
the same grade were recruited as the control group (control
group). The basic information of the subjects is shown in
Table 1. All participants signed the informed consent. This
study was approved by the Review Committee of Shaanxi
Normal University.

2.2. Measurements and Analysis. To minimize the impact of
external factors on HRV collection and differential metabo-
lite detection, all participants were told to ban caffeine drinks,
alcohol, tobacco, drugs, other foods, and strenuous exercise
for 12 hours before monitoring.

HRV of the subjects was monitored by wearing an HRV
monitoring system (Firstbeat Bodyguard 2, Finland) for 24
hours. The operationmethod: one electrode of the instrument
was affixed to the right clavicle of the body, and the other was
taped to the left rib of the body. The green LED light flashed
when the device was successfully connected, and the data were
automatically recorded. The instrument was removed when
finished, and the HRV data were analyzed with linear (time
and frequency domain) methods through the Firstbeat-
compatible software. The time domain parameters were stud-
ied by the standard deviation of the artifact-eliminated (NN)
intervals, the standard deviation of the normal-to-normal R
interval (SDNN), and the root mean square of the beat-
to-beat differences (RMSSD). SDNN reflects the overall
HRV, and RMSSD is an indicator of cardiac parasympathetic
regulation. Frequency bands in normal units (ms2) were
obtained, including low frequency (LF) power (0.04 to
0.15Hz) and high frequency (HF) power (0.15–0.4Hz).

2.3. GC-MS Analysis of Urine Samples. Urine was selected as
the sample for metabonomics analysis. All subjects were
provided with the sane diet, and the morning urine in the
middle of 2mL was collected in a covered centrifuge tube,
transported in a liquid nitrogen tank, and stored in a low
temperature refrigerator at -80°C.

LC-MS analyses were performed using anUHPLC system
(1290, Agilent Technologies) with a UPLC HSS T3 column
(2:1mm × 100mm, 1.8μm) coupled to a Q Exactive mass
spectrometer (Orbitrap MS, Thermo). The mobile phase A
was 0.1% formic acid in water for positive and 5mmol/L
ammonium acetate in water for negative, and the mobile
phase B was acetonitrile. The elution gradient was set as fol-
lows: 0min, 1% B; 1min, 1% B; 8min, 99% B; 10min, 99%
B; 10.1min, 1% B; and 12min, 1% B. The flow rate was
0.5mL/min. The injection volume was 1μL. The QE mass
spectrometer was used due to its ability to acquire MS/MS
spectra on an information-dependent basis (IDA) during an
LC-MS experiment. In this mode, the acquisition software
(Xcalibur 4.0.27, Thermo) continuously evaluates the full
scan survey MS data as it collects and triggers the acquisition
of MS/MS spectra depending on preselected criteria. The ESI
source conditions were set as follows: sheath gas flow rate, 45
Arb; aux gas flow rate, 15 Arb; capillary temperature, 320°C;
full MS resolution, 70,000; MS/MS resolution, 17,500; colli-
sion energy, 20/40/60 eV in the NCE model; and spray volt-
age, 3.8 kV (positive) or -3.1 kV (negative).

Table 1: Basic information of the subjects.

Groups Age Height Weight BMIa

Control group (n = 12) 18-20 161:5 ± 5:9 51:39 ± 2:1 20:31 ± 2:1
Depression group (n = 12) 18-20 160:7 ± 6:7 50:00 ± 1:9 19:4 ± 1:6
aBody mass index.
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2.4. Statistical Analysis. In order to compare the age, weight,
and BMI index, an independent sample t-test was carried out
by the GraphPad Prism statistical software, and the results
were expressed as mean ± standard deviation. The signifi-
cance level among the groups was p < 0:05. To investigate
the relationship between daily state and HRV parameters,
multiple Pearson product-moment correlation coefficient
(PPMCC) determinations were performed based on each
outcome.

After LC-MS detection, the normalized data were ana-
lyzed by multivariate pattern recognition using the SIMCA
software (V14, Umetrics AB, Umea, Sweden). Principal
component analysis (PCA) of samples can reflect the overall
differences among the samples and the degree of variation
among the samples in the group as a whole. Using PCA
and OPLS-PA multidimensional statistical processing, all
compounds were screened for potential differential metabo-
lites through the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database. The screening standards of differential
metabolites were the variable importance in the projection
ðVIPÞ > 1, p < 0:05, and similarity > 700.

Finally, the screened differential metabolites were
uploaded to the MetPA database (http://www.metaboanalyst
.ca), and the influence weights of the corresponding metabolic
pathways were analyzed. The influence score > 0:01 was used
as the main criterion. The main metabolic pathways of college
students with depression were identified.

3. Results

3.1. Stress and Recovery Time. Figure 1 presents the changes
of the total stress and recovery time of students in two
groups. The total stress time of students in the depression
group was significantly increased in comparison with those
in the control group (p < 0:01). However, the recovery time
in the depression group was markedly decreased than that
in the control group (p < 0:001). It was indicated that the
daily stress management time was longer than the recovery
time in students with depression.

3.2. HRV Data. The results of HRV data had statistical differ-
ences between the depression group and the control group.
As shown in Table 2, RMSSD, R-R interval time, SDNN,
HF, and LF of the depression group were significantly
decreased (p < 0:05, 0.01, or 0.001) compared with those
the control group, whereas the average heart rate (HR) was
markedly elevated in the depression subjects (p < 0:01).

The results of correlation between the recovery time,
stress time, and HRV parameters are presented in Table 3.
The recovery time was negatively correlated with stress time
and average HR and positively correlated with HF, RMSSD,
and SDNN, and the results were significant or extremely
significant (p < 0:05 or 0.01). However, the stress time was
significantly negatively correlated with SDNN (p < 0:01).

3.3. LC-MS Detection Results of Urine Samples. In this exper-
iment, urine samples from the depression group and control
group were collected to identify the differential metabolites
between students with depression and healthy students. The

results of the LC-MS ion flow diagram of urine samples are
shown in Figure 2. Metabolomics was detected by LC-MS.
The original mass spectrometry peaks obtained from 24 sam-
ples were normalized, and the peak area was calculated by the
SIMCA software.

3.4. Multidimensional Statistical Analysis of the Differential
Metabolites. The peak area data from mass spectrometry
were analyzed by multivariate pattern recognition; first,
PCA [21] was performed. PCA is a statistical method that
converts a group of observed possible correlation variables
into linear uncorrelated variables (principal components)
through orthogonal transformation. PCA can reveal the
internal structure of the data, thus facilitating better interpre-
tation of data variables. Due to the influence of related vari-
ables, different variables will be scattered across more
principal components, preventing perform good visualiza-
tion and follow-up analysis. Therefore, we used the statistical
method of orthogonal projections to latent structures-
discriminant analysis (OPLS-DA) to analyze the results.
Through OPLS-DA analysis, the orthogonal variables that
were not related to the classification variables were filtered
out, and the nonorthogonal variables and orthogonal vari-
ables were analyzed. To obtain reliable information about
the differences in metabolites between groups and the degree
of correlation between the depression group and the control
group the PCA and OPLS-DA, results of the urinary metab-
olites between the depression group and control group are
shown in Figure 3.

Each point in the diagram represents a sample, and the
coordinates of the sample in the diagram were determined
by the composition it contains; in other words, the difference
in the distribution of the sample was determined by differ-
ences in composition. The samples from the depression
group and the control group were distributed in each quad-
rant, which showed that PCA analysis alone rarely achieved
an obvious separation effect, so it was necessary to further
analyze the samples with supervised OPLS-DA. The unre-
lated orthogonal signals were filtered out by OPLS-DA, mak-
ing the obtained differential metabolites more reliable. From
the OPLS-DA score diagram, the control group samples were
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Figure 1: Change in the daily stress and recovery time of students
with depression (∗∗p < 0:01, ∗∗∗p < 0:001).
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distributed in the second and third quadrants, while the
depression group samples were distributed in the first and
fourth quadrants; the distribution of the two groups of sam-
ples was very neat, and the separation effect was very obvious.
The OPLS-DA score reflected the similarity of urines within
the groups and the differences in urine metabolites between
the depression group and the control group.

3.5. Screening of Potentially Differential Metabolites. To filter
out irrelevant orthogonal signals and to obtain more reliable
differential metabolites, not only must the VIP value of a
metabolite exceed 1 in the OPLS-DA model but also its
p value must be less than 0.05 between groups in Student’s
t-test. KEGG mass spectral libraries were utilized to ensure
the identification accuracy of the differential metabolites,
and then the similarity value of the compounds needed
to exceed 700 to be adopted.

After the above filtrations, the 15 metabolites were iden-
tified in the depression group in comparison with the control
group as follows: methanoic acid, glycine ursodeoxycholic
acid, 3-hydroxyshiptic acid, m-cresol, 4-hydroxyphenyl
lactic acid, azelaic acid, vanillin, dimethyl glycine, gentian
acid, ethylene glycol, dihydrothymine, corticosterone, indole
methanol, methyl uridine, and p-ethyl benzoic acid. In the
negative ion mode, the 10 substances that follow were
identified: methanoic acid, glycine ursodeoxycholic acid,
3-hydroxyshiptic acid, m-cresol, 4-hydroxyphenyl lactic
acid, azelaic acid, vanillin, dimethyl glycine, gentian acid,
and ethylene glycol. Five of these were also identified in
positive ion mode, namely, dihydrothymine, corticoste-
rone, indole methanol, methyl uridine, and p-ethyl benzoic
acid (Table 4).

The relative values of the peak areas of the differential
metabolites are shown in Table 4. The results demonstrated
that the values of malonic acid, fumaric acid, 2-methylfuma-
rate, L-malic acid, and palmitic acid were significantly
increased, whereas the values of 4-acetamidobutyric acid,
α-ketoglutaric acid, tartaric acid, gluconic acid, sphingosine,
and 21-hydroxypregnenolone were markedly decreased,
except for the significant increase in methyl uridine and in
the depression group compared with the control group in

positive ion mode. In negative ion mode, the values of m-cre-
sol, vanillin, and dimethyl glycine were significantly
increased, while the values of methanoic acid, glycine urso-
deoxycholic acid, 3-hydroxyshiptic acid, 4-hydroxyphenyl
lactic acid, azelaic acid, and gentian acid ethylene glycol were
markedly decreased.

3.6. Attribution of Metabolic Pathways. Although there are
more differential metabolites than those mentioned above,
it is necessary to further evaluate the weight and influence
of the metabolic pathway and its related metabolic pathways.
At present, the accepted metabolic pathway evaluation
method is MetaboAnalyst (http://www.metaboanalyst.ca/).
Characterization analysis, hypergeometric test, path topolog-
ical structure analysis, relative centrality selection, and
topological weight score analysis were performed on Meta-
boAnalyst. The results of the main identified metabolic path-
ways with changes were shown in Figure 4. Five metabolic
pathways were generated in the depression group in compar-
ison with the control groups, and the pathway impact values
of those metabolic pathways were calculated via a pathway
topology analysis with a threshold of 0.01. These pathways
were coenzyme Q biosynthesis, glycine-serine-threonine
metabolism, tyrosine metabolism, pyrimidine metabolism,
and steroid biosynthesis. The tryptophan metabolic pathway
was excluded because the impact values did not meet the
standard. The results suggested that there were characteristic
disorders in the five above metabolic pathways in students
with depression.

4. Discussion

In this study, the time domain indexes RMSSD and SDNN
and the frequency domain indexes LF and HF were selected.
The results showed that the overall level of HRV of college
students with depression was lower than that of healthy con-
trol students, which is in accordance with the results of recent
studies on depression [22–26]. In terms of the time domain
indexes, the SDNN and RMSSD were lower in the depression
group than in the control group [23–25]; in terms of the fre-
quency domain indexes, the LF and HF were much lower in

Table 2: Comparative results for the HRV parameters in the depression group vs. control group.

HR R-R (ms) RMSSD (ms) SDNN (ms) HF (ms2) LF (ms2)

Control group (n = 12) 74:40 ± 3:31 18:63 ± 1:15 60:50 ± 10:54 182:25 ± 37:42 1180:74 ± 269:62 1582:00 ± 40:52
Depression group (n = 12) 83:22 ± 8:04∗ 17:11±0:92∗∗ 33:78±12:69∗∗∗ 130:00±35:05∗∗ 931:31±363:03∗∗ 967:61±196:19∗∗∗

Note: vs. control group—∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001.

Table 3: Correlation analysis of the recovery time, stress time, and HRV parameters.

Recovery time Stress time HR R-R RMSSD (ms) SDNN (ms) HF (ms2) LF (ms2)

Recovery time
p 1 -0.542∗ -0.740∗∗ 0.368 0.727∗∗ 0.648∗∗ 0.602∗ 0.480

r 0.025 0.001 0.146 0.001 0.005 0.011 0.051

Stress time
p -0.542∗ 1 0.147 -0.374 -0.353 -0.699∗∗ -0.471 -0.481

r 0.025 0.573 0.139 0.165 0.002 0.056 0.051

Note: ∗p < 0:05 and ∗∗p < 0:01.
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the depression group than in the control group [27, 28]. The
results of the Firstbeat test showed that the daily stress time
of college students with depression was significantly longer
than that of healthy college students, while both the recovery
time and sleep time are significantly shorter of college stu-
dents with depression than those of healthy college students.
Stress occurs after 11 : 00 in the evening, leading to sleep dis-
orders in college students with depression [29]. In addition,
the potential neurophysiological mechanisms of stress and
recovery time were studied by analyzing HRV parameters.
The significant results show that stress time may be the factor
that leads to the decrease in HRV parameters, and the recov-
ery time may be the potential factor for the recovery of these
HRV parameters. The longer the recovery time is, the more
helpful it is to the balance of the ANS and to reduce depres-
sion. The SDNN in the time domain index reflects the con-
trol ability and recovery degree of the autonomic nerve to
the heart. The RMSSD is a sensitive index that reflects the
vagus nerve [30], which means that the larger the value is,
the stronger the autonomic nerve regulation ability. HF
power is an index that reflects the change in vagus nerve
activity, and an increase in HF power indicates that the activ-
ity of the vagus nerve is enhanced [31]. LF power is a com-
pound regulatory function of the sympathetic nerve and
vagus nerve, which further reflects the heart rate changes
caused by baroreceptor reflex and blood pressure regulation
[32]. Some research reported that HF and LF were signifi-
cantly reduced in patients with chronic fatigue syndrome
(CFS) or anxiety, which discovered there were an imbalance
of cardiac autonomic nerves and the decreased cardiac vagus
function in some mental illness [33, 34]. Moreover, a recent

study reported the average heart rate was increased in
patients with depression [35]. In the present study, our
results demonstrated that both the HF and LF of the subjects
with depression were significantly reduced, and the average
heart rate was significantly increased, confirming that
depression could also cause an imbalance of cardiac auto-
nomic nerves and the decreased cardiac vagus function in
college students. In summary, compared with healthy college
students, students with depression have longer stress time
and shorter recovery time. In addition, the results of the
HRV experiment in this study show that the cardiac auto-
nomic nerve function of college students with depression is
disrupted, which affects sleep quality and the mental state.
The above factors are intrinsically related because a lack of
sleep leads to a reduction in recovery time, and both stress
and lack of sleep will further lead to of the disrupted auto-
nomic nerve function in college students with depression.

The current research, including the 5-HT hypothesis,
dopamine hypothesis, amino acid neurotransmitter hypothe-
sis, norepinephrine hypothesis, acetylcholine hypothesis,
neuroendocrine function changes, and neuroimmune theory
[36, 37], believes that the pathogenic factors and pathogene-
sis of depression are mainly understood from the three major
systems, the nervous, endocrine, and immune systems. There
are some differences in the metabolic mechanism of depres-
sion. Pan et al. and Moaddel et al. [38, 39] detected differen-
tial plasma metabolites in patients with depression through
LC-MS and showed that differential characteristic plasma
metabolites were mainly concentrated in lipid metabolic
pathways (such as LDL, VLDL, unsaturated lipids, and cho-
lesterol), energy metabolic pathways (such as glucose,
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Figure 2: Total ion chromatograms (TICs) of urine samples from students (ESI+: positive ion model; ESI-: negative ion mode).
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pyruvate, and lactic acid), and amino acid metabolic path-
ways (such as alanine, glycine, and taurine). Vahabi et al.
[40] detected serum samples of patients with depression with
1HNMR and found that the levels of the differential metabo-
lites of some amino acids (glutamic acid, glutamine, alanine,
N-acetyl glycoprotein, leucine, and isoleucine) in serum were
significantly increased. Ratnasekhar et al. detected urine sam-
ples from patients with depression by GC-MS, and the results
showed that the urine markers were azelaic acid, sorbitol,
uric acid, quinolinic acid, hippuric acid, and tyrosine [41].
Goedert et al. used 1HNMR to detect fecal samples from
patients with depression. The results revealed that the meta-
bolic mechanism of depression is related to the disruption of
lipid metabolism and amino acid metabolism [42]. The sim-
ilarities and differences of the above studies are due to the dif-
ferent detection methods used and the different samples
collected. In this research, LC-MS was used to detect urine
samples from students with depression. Our results showed
that 15 characteristic differential metabolites are present in
patients with depression. The relative contents of methyl

uridine, m-cresol, vanillin, and dimethyl glycine were
significantly increased, while the relative contents of 11
additional metabolites, including dihydrothymine, cortico-
sterone, indole methanol, 4-ethylbenzoic acid, methanoic
acid, glycoursodeoxycholic acid, 3-hydroxyshiptic acid, 4-
hydroxyphenyl lactic acid, azelaic acid, 2,5-dihydroxybenzoic
acid, and ethylene glycol were significantly decreased in the
depression students when compared with the healthy stu-
dents. The metabolic pathways related to the differential
metabolites in the college students with depression mainly
included coenzyme Q biosynthesis, glycine-serine-threonine
metabolism, tyrosine metabolism, glycine-serine-threonine
metabolism, pyrimidine metabolism, and steroid hormone
biosynthesis.

The results of glycine-serine-threonine metabolism and
the tyrosine metabolism pathway are consistent with the
results of other studies investigating depression by Pan
et al., Moaddel et al., and Ratnasekhar et al. [38, 39, 41]. Cor-
ticosterone is a key substance in the steroid hormone biosyn-
thesis pathway. Prior studies showed that the severity of
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depression was negatively correlated with corticosterone
levels [43, 44]. Our study also confirmed a significant
decrease in corticosterone in students with depression;
meanwhile, the steroid hormone biosynthesis pathways have
been detected.

Moreover, this experiment found that the coenzyme Q
biosynthesis pathway is disrupted in students with depres-
sion. Coenzyme Q has many physiological functions, such
as reducing the production of free radicals in the myocar-

dium and skeletal muscle and enhancing the physical
strength of patients with heart disease [45]. Other research
has shown that the synthesis of coenzyme Q10 affects the
function of mitochondria, resulting in depression [46].
Therefore, some studies suggested that coenzyme Q10 may
be a new target for the treatment of depression [47, 48].
Our results show that the relative level of 4-hydroxyphenyl
lactic acid, the key metabolite in the coenzyme Q biosynthe-
sis pathway, decreased significantly in the depression group,
which suggests that metabolic problems in coenzyme Q bio-
synthesis may contribute to this process.

In addition, this study found that the relative level of
dihydrothymine in the pyrimidine metabolic pathway was
significantly decreased in students with depression. Dihy-
drothymine is a marker of thymine synthesis and metabolism
that is often used to evaluate the metabolic level of thymine
[49]. As a basic base unit of DNA and RNA, thymine plays
an important physiological role in skin cancer caused by
ultraviolet injury and in other diseases [50]. The results sug-
gest that the level of thymine metabolism in students with
depression is lower than that in healthy students, which
could be related to the myocardial fatigue caused by insuffi-
cient sleep. Moreover, college students with depression have
a serious lack of sleep, and their time under stress is longer
than their recovery time, which leads to the disruption of
the pyrimidine metabolic pathway.

5. Conclusions

The overall level of daily HRV in college students with
depression is lower than that in healthy college students.
The daily stress time is greater than the recovery time, which
could be one of the main causes of autonomic dysfunction.
Metabonomic tests showed that disorders exist in five

Table 4: Potential differential metabolites in the depression group in comparison with the control group.

Number Metabolite HMDB ID KEGG ID RT (min) m/z Similarity VIP p value Trend

ESI+

1 Dihydrothymine HMDB0000079 C00906 115.58 129.06 0.741 2.31 0.017 ↓∗

2 Cortisone HMDB0002802 C00762 280.76 361.20 0.711 2.21 0.022 ↓∗

3 Indole-3-carbinol HMDB0005785 — 213.40 147.04 0.686 2.49 0.004 ↓∗∗

4 4-Ethylbenzoic acid HMDB0002097 — 248.36 151.07 0.537 1.84 0.038 ↓∗

5 3-Methyluridine HMDB0004813 — 55.189 259.09 0.638 1.77 0.044 ↑∗

ESI-

1 Formylanthranilic acid HMDB0004089 C05653 145.02 164.03 0.974 1.98 0.007 ↓∗∗

2 Glycoursodeoxycholic acid HMDB0000708 — 271.957 448.31 0.937 1.88 0.038 ↓∗

3 3-Hydroxyhippuric acid HMDB0006116 — 133.45 194.05 0.898 2.33 0.013 ↓∗

4 m-Cresol HMDB0002048 C01467 68.77 107.05 0.828 2.38 0.011 ↑∗

5 Hydroxyphenyllactic acid HMDB0000755 C03672 69.68 181.05 0.808 2.01 0.012 ↓∗

6 Azelaic acid HMDB0000784 C08261 109.58 187.09 0.778 1.822 0.031 ↓∗

7 Vanillin HMDB0012308 C00755 68.72 151.04 0.768 2.47 0.010 ↑∗

8 Dimethylglycine HMDB0000092 C01026 32.81 102.06 0.726 2.93 0.012 ↑∗

9 Gentisic acid HMDB0000152 C00628 76.71 153.02 0.718 1.99 0.049 ↓∗

10 17a-Ethynylestradiol HMDB0001926 C07534 229.01 295.17 0.539 1.33 0.049 ↓∗

Note: vs. control group—∗p < 0:05 and ∗∗p < 0:01.

0.010
1.0

1.5

2.0

–L
og

(p
)

2.5

3.0

0.015 0.020 0.025
Pathway impact

0.030 0.035

A

B

C

D

E

F

Figure 4: Results of the metabolic pathway topology analysis. (a:
coenzyme Q biosynthesis; b: glycine-serine-threonine metabolism;
c: tyrosine metabolism; d: pyrimidine metabolism; e: steroid
biosynthesis; f: tryptophan metabolism).
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metabolic pathways, including coenzyme Q biosynthesis,
glycine-serine-threonine metabolism, tyrosine metabolism,
pyrimidine metabolism, and steroid hormone biosynthesis,
in college students with depression.
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