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Objective. Familial adenomatous polyposis (FAP) is one major type of inherited duodenal cancer. The estimate of duodenal cancer
risk in patients with FAP is critical for selecting the optimal treatment strategy.Methods. Microarray datasets related with FAP were
retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes were identified by FAP vs. normal
samples and FAP and duodenal cancer vs. normal samples. Furthermore, functional enrichment analyses of these differentially
expressed genes were performed. A support vector machine (SVM) was performed to train and validate cancer risk prediction
model. Results. A total of 196 differentially expressed genes were identified between FAP compared with normal samples. 177
similarly expressed genes were identified both in FAP and duodenal cancer, which were mainly enriched in pathways in cancer
and metabolic-related pathway, indicating that these genes in patients with FAP could contribute to duodenal cancer. Among
them, Cyclin D1, SDF-1, AXIN, and TCF were significantly upregulated in FAP tissues using qRT-PCR. Based on the 177 genes,
an SVM model was constructed for prediction of the risk of cancer in patients with FAP. After validation, the model can
accurately distinguish FAP patients with high risk from those with low risk for duodenal cancer. Conclusion. This study
proposed a cancer risk prediction model based on an SVM at the transcript levels.

1. Introduction

FAP is an autosomal dominant inherited syndrome mani-
fested as a mass of adenomatous colorectal polyps caused
by APC gene mutations, which almost inevitably develops
into duodenal cancer at an average age of 35 to 40 years
[1]. Duodenal cancer has become the second leading cause
of death in patients with the disease [2]. Family identification
and subsequent screening programs have significantly
reduced morbidity and mortality in duodenal cancer. As a
precancerous lesion, colectomy remains the best preventive
treatment [3, 4]. However, the appropriate timing of surgery
and which endoscopic findings indicate surgery still remain
challenging [5]. Thus, it is necessary to estimate duodenal

cancer risk in patients with FAP through endoscopic surveil-
lance procedures [6]. The Spigelman scoring system has been
used to stratify malignant tumors of FAP patients based on
the size, morphology, number, and dysplasia of duodenal
polyps under endoscopy [7]. However, increasing evidence
suggests that the Spigelman scoring system underestimates
the risk of duodenal cancer in patients with FAP along with
duodenal polyposis [8, 9]. Therefore, it is necessary to
develop new models to predict the risk of cancer in patient
with FAP. Because FAP is a genetic disease, surgical treat-
ment after the disease essentially cannot eliminate the risk
of recurrence of the disease in patients and has a very high
risk of carcinogenesis. In addition, gene mutations associated
with FAP are continuously discovered as research into the
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disease progresses, suggesting that there is a genetic back-
ground difference in patients with FAP. Due to the combined
effects of the patient’s living environment, diet structure, age,
and sex, etc., the etiology of FAP is complicated, and there are
many uncertainties in treatment and rehabilitation. This
requires us to be able to analyze the characteristics of FAP
on the basis of differences in genetic background and other
factors, to provide recommendations for rehabilitation prog-
nosis, and to guide the choice of treatment methods.

SVM is a supervised learning model commonly used in
machine learning, proposed by Cortes and Vapnik in 1995
[10]. Early diagnosis and prognosis of cancer have become
a necessary condition for cancer research because they can
promote subsequent clinical management of patients.
Machine learning tools detect critical features from complex
data sets. Among them, SVM has been widely used in cancer
research to develop predictive models, resulting in effective
and predictable models [11–13]. For example, recent study
performed machine learning analysis of DNA methylation
profiles to distinguish primary lung squamous cell carcino-
mas from head and neck metastases [14]. Another study
identified characteristic genes associated with vascular inva-
sion in hepatocellular carcinoma, which was validated by
SVM [15]. The GEO, an online public database provided by
the NCBI in 2000, has been one of the most comprehensive
gene expression databases. Based on this database, we
comprehensively analyzed gene expression pattern related
with FAP and duodenal cancer at the transcript levels. The
similarly expressed genes between FAP and duodenal cancer
were identified, which were differentially expressed com-
pared to normal cases. Moreover, we constructed a cancer
risk prediction model in patients with FAP based on an
SVM at the transcript levels.

2. Materials and Methods

2.1. Microarray Dataset Preparation. The microarray data
related to FAP were retrieved from the GEO (http://www
.ncbi.nlm.nih.gov/geo/) including GSE111156 [16] and
GSE65270 datasets [17]. Corresponding clinical data were
also obtained from the GEO database. The gene expression
data of GSE111156 and GSE65270 datasets were generated
by Affymetrix Human Transcriptome Array 2.0 or Affyme-
trix Human Gene 1.0 ST Array platform, respectively. The
GSE111156 dataset included 24 FAP cases, 12 normal cases,
and 12 adenocarcinoma cases. Furthermore, there were 40
FAP cases in the GSE65270 dataset. The GSE111156 dataset
was used as a training set, and the GSE65270 dataset was used
as a validation set. The expression data were analyzed by
Z-score transformation using Linear Models for Microarray
data (limma) package (version 3.34.7; https://bioconductor
.org) in R3.4.1 [18].

2.2. Microarray Data Processing. Based on the annotation
information of the GPL17586 platform, the microarray raw
CEL files were annotated into the gene expression data,
thereby constructing a gene expression matrix. Since an indi-
vidual gene may have multiple expression data, based on the
gene expression matrix, the repeated expression data of each

gene were removed, leaving only the maximum expression of
the gene. The similarity test of the samples was performed on
the expression matrix, and it was preliminarily determined
whether there was a difference in the similarity between the
samples at the transcript level.

2.3. Analysis of Differentially Expressed Genes between FAP
and Normal Samples. First, based on the gene expression
matrix, we constructed a grouping matrix. The grouping
matrix contained the grouping information of the samples,
which provided the grouping information for differential
expression analysis. Second, a difference comparison matrix
was constructed, which specified a pair of samples to com-
pare with each other for downstream analysis. Herein, we
specified a comparison between normal samples and FAP
samples. Differential expression analysis was performed
between 24 cases of FAP and 12 cases of normal samples
using limma package (version 3.34.7) in R3.4.1. The adjusted
P value ≤ 0.05 was set as the cutoff criterion.

2.4. Analysis of Similarly Expressed Genes between FAP and
Adenocarcinoma Samples. Similar to the identification of
differentially expressed genes between FAP and normal sam-
ples, we constructed a grouping matrix based on the gene
expression matrix using 24 FAP cases, 12 normal cases, and
12 adenocarcinoma cases. The grouping matrix included
the grouping information of the samples and provided
grouping information for differential expression analysis:
the normal samples and disease samples (including 24 FAP
and 12 adenocarcinoma samples). The difference between
FAP and adenocarcinoma was smaller than that between
normal samples and disease samples. Such differences can
be used to characterize similar expression characteristics
between FAP and adenocarcinoma. Then, a difference
comparison matrix was constructed. The difference compar-
ison matrix specified the pair of samples to be compared with
each other for downstream analysis. A comparison between
normal samples and disease samples (FAP and adenocarci-
noma) was specified. Next, we used the R language limma
package to detect differentially expressed genes. The adjusted
P value ≤ 0.05 was set as the filter condition. Ultimately,
differentially expressed genes were identified between normal
and disease samples.

Table 1: Primer information for qRT-PCR.

Genes Primer sequence

Cyclin D1
5′-CGCTGGAGCCCGTGAAA-3′ (forward)
5′-GGATGGAGTTGTCGGTGTAGATG-3′

(reverse)

SDF-1
5′-ACGCCAAGGTCGTGGTC-3′ (forward)
5′-AGCTTCGGGTCAATGCA-3′ (reverse)

AXIN
5′-AGCCCTCCCACCTCTTCATC-3′ (forward)
5′-ACCTTCCTCTGCGATCTTGTCT-3′ (reverse)

TCF
5′-ACCCAGCCTACACCACCCT-3′ (forward)
5′-GTCTTTGTCCACCACGCACT-3′ (reverse)
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Figure 1: Sample clustering at the transcription level. Sample similarity test was performed using the GSE111156 dataset. (a) FAP vs. normal.
(b) FAP vs. normal, FAP vs. adenocarcinoma, or normal vs. adenocarcinoma. At the top of the heat map, sample type is shown. Red
represents positive correlation, and blue represents negative correlation. FAP: familial adenomatous polyposis.
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2.5. Functional Enrichment Analysis. After obtaining differ-
entially expressed genes, gene set enrichment analysis
(GSEA; http://software.broadinstitute.org/gsea/index.jsp) was
performed to identify GO processes [19]. A P value ≤ 0.01,
q − value ≤ 0:01, and Jaccard degree > 0:375 were used as
thresholds. After that, similar gene functions were annotated
based on the GO database. A Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathway enrichment analysis of these
differentially expressed genes was carried out using the Data-
base for Annotation, Visualization and Integrated Discovery
(DAVID) version 6.8 (https://david.ncifcrf.gov/) [20, 21]. A
P value < 0.05 was considered to be significantly enriched.

2.6. SVMClassifier Construction. SVMs are commonly used to
supervise learning, which are primarily used for classification
and regression. Since this study was designed to compare
FAP-normal, FAP-adenocarcinoma, adenocarcinoma-normal,
the GSE111156 dataset was used as a training set. Sigmoid
was used to select the SVMmodel. We performed an examina-
tion to select the optimal kernel. The differentially expressed
genes were used to construct recursive feature elimination
(RFE) analysis [22], which could be used to screen the optimal
feature genes in the training dataset. The optimal feature
genes were subsequently utilized to construct the SVM clas-
sifier [15]. The GSE65270 data was set as a verification set
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Figure 2: Differential expression gene clustering using heat map. The differentially expressed genes between normal samples and FAP
samples were used to construct expression matrices, and z-score was used for data standardization. The samples and genes were clustered
by the Euclidean distance. At the top of the heat map, sample type is shown. Red represents upregulated, and blue represents
downregulated genes in FAP compared to normal samples. FAP: familial adenomatous polyposis.
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to validate the classifier model and evaluate the risk of can-
cerization in FAP cases.
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where xk is the kth component of x.

2.7. Quantitative Real-Time PCR (qRT-PCR). Total RNA was
extracted from 12 pairs of FAP tissues and normal tissues
using TRIzol reagent (Invitrogen), which was reverse tran-
scribed into cDNA. qRT-PCR was carried out on the ABI
PRISM 7500 Real-Time PCR System (Applied Biosystems,
Foster City, CA). Primers of Cyclin D1, SDF-1, AXIN, and
TCF are listed in Table 1. GAPDH was used as an internal
control. The relative expression levels of mRNAs were
calculated with the 2−ΔΔCT method. All experiments were
repeated at least three times. Our study was approved by
the ethics committee of the First Affiliated Hospital of
Kunming Medical University. All patients provided written
informed consent.

3. Results

3.1. Sample Similarity Test.Using the gene expression matrix,
the correlation coefficient matrix between samples in the

GSE111156 dataset was obtained, followed by the Euclidean
distance of the correlation coefficient between the samples.
As shown in the heat map, we found the differences in
transcription levels between normal samples and FAP or
adenocarcinoma cases (Figures 1(a) and 1(b)). Compared
to the difference between normal samples and FAP or adeno-
carcinoma cases, the difference between FAP and adenocar-
cinoma cases was smaller. Therefore, we performed further
downstream analysis.

3.2. Identification of Differentially Expressed Genes in FAP
Compared with Normal Samples. Herein, we specified a
comparison between normal samples and FAP samples.
The differential expression analysis was performed using
the R language package limma. Among the results obtained,
the corrected P value ≤ 0.05 was set as the filter condition.
Finally, we identified 196 differentially expressed genes in
FAP compared with normal tissues (Supplementary Table 1).
In Figure 2, the difference in patterns of differentially expressed
genes between FAP and normal samples is shown.

3.3. Functional Enrichment Analysis of Differentially
Expressed Genes in FAP Compared with Normal Samples.
After obtaining differentially expressed genes between normal
samples and FAP samples, to elucidate the function of differ-
entially expressed genes, GSEA software was used to perform
functional enrichment analysis enriched by differentially
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Figure 3: Gene enrichment and functional annotations of differentially expressed genes in FAP compared with normal tissues. Blue
represents the highly expressed genes in FAP, and red represents the highly expressed genes in normal tissues.
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expressed genes. P value = 0.01, q − value = 0:01, and Jaccard
degree > 0:375 were set as thresholds. Moreover, similar gene
functions were annotated based on the GO database. We
found that, among the differentially expressed genes, the genes
that were highly expressed in FAP were extensively enriched
into negative regulation metabolic, organelle organization bio-
genesis, and cell adhesion biological processes. The genes that
were highly expressed in normal samples were mainly
enriched in the function of phosphorus metabolic process
and ion transport molecules (Figure 3).

Furthermore, we performed pathway enrichment analy-
sis to identify functional features of differentially expressed
genes using the online KEGG pathway enrichment analysis
tool DAVID. We found that a total of 191 differentially
expressed genes were enriched in 15 KEGG pathways.
Among them, genes that were highly expressed in FAP were
enriched in many pathways such as signaling thyroid cancer
and xenobiotic mineral absorption (Figure 4), particularly in
pathways in cancer (Figure 5).

3.4. Identification of Similarly Expressed Genes in FAP and
Adenocarcinoma. The differential expression gene detection
by comparing FAP or adenocarcinoma samples and normal
samples was performed using the R language package limma.
The genes with the corrected P value ≤ 0.05 were identified as
differentially expressed genes. In Figure 6, we identified 177

differentially expressed genes, which could distinguish
between normal samples and FAP or adenocarcinoma
samples but could not distinguish between FAP and
adenocarcinoma.

3.5. Functional Enrichment Analysis of Similarly Expressed
Genes in FAP and Adenocarcinoma. After that, enrichment
analysis of these differentially expressed genes was performed
using GSEA software, with a P value = 0.01, q − value = 0:01,
and Jaccard degree > 0:375 as thresholds. The similar gene
functions were annotated based on the GO database. The
results showed that among the differentially expressed genes,
genes that were highly expressed in FAP and adenocarci-
noma were mainly enriched in metabolic processes
(Figure 7). These 177 genes reflected the similarity of the
expression level both in FAP and adenocarcinoma. We
defined these 177 genes as the similarity gene set at the
expression level in FAP and adenocarcinoma. Through the
pathway enrichment analysis of these genes, we found that
these pathways that enriched these genes were significantly
associated with cancer-related pathways (Figure 8). Interest-
ingly, there were 65 overlapping genes between the 177 sim-
ilarity expressed gene sets and the 191 differentially expressed
genes in FAP compared to normal samples, which reflected
some gene expression changes in FAP at the expression level
that tended to be similarly expressed in adenocarcinoma.
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Figure 4: KEGG pathway enrichment analysis of differentially expressed genes in FAP compared with normal tissues. The circle represents
the signal pathways. The color in the circle represents the P value. The darker the color, the smaller the P value.
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qRT-PCR results showed that, among genes in the cancer-
related pathway, Cyclin D1, SDF-1, AXIN, and TCF were
all significantly upregulated in FAP tissues compared to
normal tissues (Figure 9), indicating their roles in the devel-
opment of FAP.

3.6. Construction of FAP and Adenocarcinoma Binary
Classification Model Based on SVM. Based on the similarity
measurement gene set of 177 genes for FAP and adenocarci-
noma at the transcript levels, machine learning was used to
construct a SVM-based binary model. Using the GSE111156
dataset as a training set, this classification model can distin-
guish between FAP and adenocarcinoma. After training, the
model had a good discrimination degree of FAP and adeno-
carcinoma. The error rate was 0, and the relevant parameters
of the model are shown in Table 2.

The GSE65270 dataset was used to validate the binary
classification model (Figure 10). Using a 50% classification
probability as a criterion, we can define the similarity
between the 177 genes of any sample in FAP and cancer. If
the judgment results showed that the pathological similarity
probability to cancer was greater than 50%, the case was
considered to be closer to cancer at the transcription levels.
Furthermore, these 177 genes showed a high degree of
similarity in cancer-related pathways. Therefore, we believed

that once the FAP case had a cancer similarity probability
greater than 50%, suggesting that the case had a high risk of
cancer. According to the model, 6 of the 40 FAP cases in
the GSE65270 dataset had a high cancer risk of more than
50%, accounting for 15% of the entire cases.

4. Discussion

In this study, we constructed an SVM model that might
predict the risk of adenocarcinoma in patients with FAP at
the transcript levels.

We identified 196 differentially expressed genes in 24
cases of FAP compared with 12 cases of normal tissues using
microarray. Although falling prices and mature technology
have made next-generation sequencing technology as the
first choice in many ways, the transition from microarray
technology to next-generation sequencing technology is a
long and iterative process. Microarray technology is easier
to operate than next-generation sequencing and does not
require complex, intensive labor sample preparation, and
massive data analysis. Furthermore, there are many tools
available for microarray technology in data analysis, and
uniform results are easy to be obtained by using the main
methods. Compared with the cost of next-generation
sequencing, microarray technology is more economical and

Pathways in cancer

Figure 5: Pathways in cancer enriched by differentially expressed genes in FAP comparedwith normal tissues. Green suggests that the genes are
highly expressed in FAP compared to normal tissues, and red suggests that the genes are lowly expressed in FAP compared to normal tissues.
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Figure 6: Differential expression gene clustering using heat map. The differentially expressed genes between normal samples and FAP or
adenocarcinoma samples were used to construct expression matrices, and z-score was used for data standardization. The samples and
genes were clustered by the Euclidean distance. At the top of the heat map, sample type is shown.
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cost-effective, especially when processing large-scale samples.
Therefore, in this study, microarray data were used to iden-
tify differentially expressed genes. Previous study identified
84 differentially expressed genes in FAP compared to the
corresponding normal mucosa, which revealed the gene
deregulation during adenoma formation [23]. To explore
the biological dysregulation under adenoma formation, we

performed enrichment analysis of these differentially
expressed genes. We found that the highly expressed genes
in FAP were mainly enriched into negative regulation meta-
bolic processes and cell adhesion biological processes, which
play a critical role in FAP [24, 25]. KEGG pathway enrich-
ment analysis results showed that the genes that were highly
expressed in FAP were enriched in several KEGG pathways
related with cancer such as signaling thyroid cancer and
xenobiotic mineral absorption, particularly in pathways in
cancer. Among genes in pathways in cancer, Cyclin D1,

Pathways in cancer

Figure 8: Pathways in cancer enriched by differentially expressed genes in FAP and adenocarcinoma. Green suggests that the genes are highly
expressed in FAP and adenocarcinoma, and red suggests that the genes are lowly expressed in FAP.
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Figure 9: Validation of genes in the cancer-related pathways in FAP
tissues, including Cyclin D1, SDF-1, AXIN, and TCF.

Table 2: The parameters of the SVM model for FAP.

Support vector machine object of class “ksvm”

SV type: C-bsvc (classification)

Parameter: cost C = 100
ANOVA RBF kernel function

Hyperparameter: sigma = 10 degree = 1
Number of support vectors: 19

Objective function value: -0.0807

Training error: 0

Probability model included
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SDF-1, AXIN, and TCF were all significantly upregulated in
FAP tissues compared to normal tissues. FAP is involved in
many extracolonic organs, such as the thyroid [26, 27]. These
genes were enriched into thyroid cancer-related pathways,
indicating that they could contribute to thyroid cancer in
patients with FAP. Furthermore, recent study proposed that
differential expression of genes in the Wnt pathway could
be considered a potential biomarker for duodenal cancer
stratification [28]. Therefore, these differentially expressed
genes could be involved in the development of FAP.

After identification of differentially expressed genes in
FAP, we also analyzed the gene expression profile by compar-
ing FAP and duodenal cancer with normal samples. 177
genes were differentially expressed in FAP and duodenal can-
cer compared with normal samples. More importantly, these
differentially expressed genes had similar expression pattern
in FAP and duodenal cancer. To illuminate potential func-
tions of these genes, functional enrichment analysis was per-
formed. GSEA results showed that highly expressed genes in
FAP and duodenal cancer were mainly enriched in metabolic
processes, indicating that these genes could be involved in
metabolic processes both in FAP and duodenal cancer.
According to KEGG pathway enrichment analysis results,
these genes were mainly enriched in pathways in cancer.
Moreover, we found that 65 genes were differentially

expressed in FAP compared with normal samples, which
had similar expression pattern in duodenal cancer. This indi-
cated that the expression level of partial gene in FAP tends to
be similarly expressed with cancer, and these genes could be
significantly associated with cancer. Recent study identified
differentially expressed genes by comparing duodenal ade-
noma vs. carcinoma sequence in FAP transcriptional profil-
ing [16]. Functional enrichment analysis revealed that these
genes could be involved in several signaling pathways associ-
ated with duodenal cancer.

Based on 177 similarly expressed genes in FAP and
duodenal cancer, we constructed an SVM-based binary
classification model. Our results showed that the model can
accurately distinguish between FAP and duodenal cancer
using the GSE111156 dataset. To further validate the model,
the GSE65270 dataset was used as a validation set. Our model
predicted that 6 of the 40 FAP in the GSE65270 dataset had a
cancer similarity probability of more than 50%, which was a
high cancer risk pathology, accounting for 15% of the entire
FAP cases. Defining the risk of cancer in FAP can guide not
only the choice of treatment options but also the recovery
of patients after surgery. At the same time, based on the pre-
diction of cancer risk of gene expression level, its operation is
simple, and the sample RNA can be obtained by biopsy. A
previous study screened 15 genes to predict the risk of colon
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Figure 10: The risk of adenocarcinoma in FAP based on an SVM: (a) FAP prediction; (b) adenocarcinoma prediction; (c) training result of
FAP in the GSE65270 dataset; (d) training result of adenocarcinoma in the GSE65270 dataset.
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cancer recurrence based on SVM [29]. A recent study con-
structed a 19-miRNA SVM classifier for ovarian cancer
patients, which may be considered a potential biomarker
for ovarian cancer prognosis [30]. Another study established
an SVM prediction model for gastric cancer [31]. However,
we firstly proposed a cancer risk model for patients with FAP.

The limitations of this study should be noted. First, the
sample size with FAP was small. However, we performed
qRT-PCR assay to validate the expression of key genes in
FAP. Second, although this study was based on GEO related
to FAP and was verified by machine learning, prospective
studies in different populations should be required to validate
our findings.

In summary, we constructed an SVMmodel that can pre-
dict duodenal cancer risk in FAP at the transcript levels,
which may help predict individual cancer risk and help clini-
cians manage patients with FAP.

5. Conclusion

In our study, we screened differentially expressed genes of
FAP or adenocarcinoma compared with normal tissues and
identified similarly expressed genes between FAP and adeno-
carcinoma. Furthermore, functional enrichment analysis was
performed for these differentially expressed genes. By con-
structing and verifying SVM classifier, characteristic genes
were obtained. Furthermore, a risk prediction model was
constructed, which could predict the risk of duodenal cancer
in patients with FAP. However, the model required further
validation.
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