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Objective. A survival risk assessment model associated with a lung adenocarcinoma (LUAD) microenvironment was established
and evaluated to identify effective independent prognostic factors for LUAD. Methods. The public data were downloaded from
the TCGA database, and ESTIMATE prediction software was used to score immune cells and stromal cells for tumor purity
prediction. The samples were divided into the high-score group and the low-score group by the median value of the immune
score (or stromal score). The Wilcoxon test was used for differential analysis. GO and KEGG enrichment analysis of
differentially expressed genes (DEGs) was performed using “clusterProfiler” of R package. Meanwhile, univariate and
multivariate regression analysis was performed on DEGs to construct a multivariate Cox risk regression model with variable
gene expression levels as independent prognostic factors affecting a tumor microenvironment (TME) and tumor immunity.
Results. This study found that LUAD patients with high immune cell (stromal cell) infiltration had better prognosis and were in
earlier staging. Functional enrichment analysis revealed that most DEGs were related to the proliferation and activation of
immune cells or stromal cells. A survival prediction model composed of 6 TME-related genes (CLEC17A, TAGAP, ABCC8,
BCAN, FLT3, and CCR2) was established, and finally, the 6 feature genes closely related to the prognosis of LUAD were proved.
The AUC value of the ROC curve in this model was 0.7, indicating that the model was reliable. Conclusion. Six genes related to
the LUAD microenvironment have a predictive prognostic value in LUAD.

1. Introduction

According to CA statistics in 2018, lung cancer is the most
common cancer worldwide (11.6% of total cases) and the
leading cause of cancer deaths (18.4% of total cancer deaths)
[1], which seriously threatens human health. Non-small-cell
lung cancer (NSCLC) accounts for about 80% of lung cancer,
which is further divided into three histological subtypes,
including lung adenocarcinoma (LUAD), squamous cell car-
cinoma (LUSC), and large cell carcinoma (LCLC). LUAD is
the dominant subtype of NSCLC, with a low overall survival
(OS) [2]. In recent years, tumor immunotherapy has been a
research hotspot in tumor therapy, and its efficacy is closely
related to a tumor microenvironment (TME). Therefore,
finding diagnostic, therapeutic, and prognostic targets related

to the TME is critical to the implementation of precision
medicine.

The TME includes various cell types (endothelial cells,
fibroblasts, immune cells, etc.) and extracellular components
(cytokines, growth factors, hormones, extracellular matrix,
etc.) that are surrounding tumor cells and nourished by a vas-
cular network [3]. Immune cells (macrophages, mast cells,
neutrophils, etc.) and adaptive immune cells (T and B lym-
phocytes) in the TME interact with tumor cells by direct con-
tact or through chemokine and cytokine signal transduction,
which influence tumor behavior and response to treatment.
Many scholars have found that immune cells can both
improve and obstruct therapeutic efficacy and may vary in
their activation status and localization within the TME [3].
Tumor-infiltrating lymphocytes (TILs), for example, inhibit
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tumor growth by directly killing the tumor cells, while pre-
serving the immune escape of malignant cells in the tumor
to promote tumor development [4, 5]. M1, which suppresses
tumor development, and M2, which promotes tumor devel-
opment, are the two subtypes of tumor-associated macro-
phages (TAMs) [6–8]. Stromal cells are another type of
important cells in the TME, and numerous studies have indi-
cated that stromal cells and tumor cells have a bidirectional,
dynamic, and complex relationship [9]. For example,
carcinoma-associated fibroblasts (CAFs) not only block anti-
tumor drugs but also induce tumor resistance, which is
closely related to poor prognosis of tumors [10]. The
immune and stromal cells in the TME play important roles
in the development of tumor. Mining-related genes and inde-
pendent prognostic factors followed with studying their
impacts on tumor development and prognosis will help to
improve the cure rate of patients.

Our team finally screened 6 genes (CLEC17A, TAGAP,
ABCC8, BCAN, FLT3, and CCR2) related to immune and
stromal cells in the TME through bioinformatics and con-
structed a risk assessment model to predict the prognosis of
LUAD and verified evaluation efficiency of the model, which
provides new ideas for improving the prognosis of LUAD.

2. Methods and Materials

2.1. Public Data Were Downloaded from the TCGA Database.
FPKM dataset of TCGA-LUAD mRNA was downloaded
from the TCGA database (https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga),
which contains 535 LUAD samples and 59 paracancerous
samples.

2.2. ESTIMATE Score Method. The immune and stromal cells
of each sample were scored by ESTIMATE software to pre-
dict the tumor purity, with method reference to the research
[11]. In brief, we devised two gene signatures, a “stromal
signature” and an “immune signature,” which were used
to generate scores that reflected the presence of each cell
type in tumor samples and to measure tumor purity. The
samples were divided into the high-score group and the
low-score group by the median value of the immune score
(or stromal score). The Wilcoxon test was used for differen-
tial analysis on the groups, and the results were obtained by
intersection.

2.3. Functional Enrichment and COX Analysis. The R pack-
age “clusterProfiler” was used to conduct GO and KEGG
enrichment analysis on the differentially expressed genes
(DEGs). At the same time, univariate and multivariate
regression analysis was conducted on DEGs, and a multivar-
iate Cox risk regression model with variable gene expression
values was constructed as an independent prognostic factor
affecting TME and tumor immunity.

2.4. ROC Analysis and Survival Curve Plotting. A survival
analysis was performed on the 6-gene survival model to
explore its potential prognostic value. The survival time of
the high- and low-risk groups which were divided according
to the median risk scoring value was compared using the

Kaplan-Meier method, and the differences between survival
curves were tested and evaluated by log-rank. ROC curves
were plotted for the 6-gene model to calculate the AUC value.

3. Results

3.1. Immune and Stromal Scores Are Associated with Different
Clinical Stages and Prognosis of LUAD. According to FPKM
data of mRNA from TCGA-LUAD, the immune and stromal
cells in each sample were scored by ESTIMATE, and the
samples were divided into the high-score and low-score
groups by a median score. It was found that the scores of
immune cells in tumor samples significantly varied in differ-
ent clinical stages of LUAD and were decreased with the
increasing of stage according to the clinical information of
TCGA-LUAD (P < 0:05). However, the scores of stromal
cells were not related to the stage (P > 0:05) (Figure 1(a)).
The infiltration degree of immune and stromal cells had a
significant effect on the prognosis through survival analysis,
which presented that the survival time of high infiltration
patients was significantly longer than that of low infiltration
patients (P < 0:05). (Figure 1(b)). Then, the results of
Pearson’s correlation coefficient analysis indicated that there
was a remarkable positive correlation between immune and
stromal scores in the samples (P < 0:05) (Figure 1(c)). The
above results demonstrated that immune and stromal scores
were significantly related to different clinical stages and prog-
nosis of LUAD, and low-score patients were often accompa-
nied by poor prognosis.

3.2. Mining DEGs of High Immune Score (Stromal Score) and
Low-Score Groups. The samples were divided into the high-
score group and the low-score group by the median value
of the immune score (or stromal score) and analyzed by the
Wilcoxon test. The high immune score group obtained 611
upregulated genes and 164 downregulated genes, and the high
stromal score group obtained 682 upregulated genes and 120
downregulated genes (Figure 2(a)). A total of 299 upregulated
genes and 67 downregulated genes were obtained by the inter-
action of DEGs in two groups (Figure 2(b)).

3.3. Enrichment Analysis of DEGs. In order to further under-
stand the functions of these DEGs in tumorigenesis and
development, we used the R package “clusterProfiler” to per-
form GO and KEGG enrichment analysis on the DEGs
(Figures 3(a) and 3(b)) and found that most genes were
related to the proliferation and activation of immune or stro-
mal cells, while immune and stromal cells were part of the
TME. These TME-related genes were likely to affect tumor
development by regulating the proliferation of microenvi-
ronmental cells.

3.4. Screening of Differential Genes with Independent
Prognostic Value. Univariate and multivariate Cox risk
regression analysis was performed on 366 DEGs, and a
multivariate Cox risk regression model was constructed
based on survival time and survival status of patients. Six
prognostic risk genes (CLEC17A, TAGAP, ABCC8, BCAN,
FLT3, and CCR2) were finally screened as independent
prognostic factors of LUAD. The risk assessment score
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formula was as follows: risk score = ð‐0:29311Þ ∗ CLEC17A
+ ð0:258641Þ ∗ TAGAP + ð‐0:12533Þ ∗ABCC8 + ð0:169511Þ
∗ BCAN + ð0:207814Þ ∗ FLT3 + ð‐0:30955Þ ∗ CCR2. Then,
we verified the model reliability through the ROC curves,
and the results exhibited that the AUC value was 0.7, indi-
cating that the model had certain accuracy (Figure 4(a)).
Samples were split into the high-risk group and the low-
risk group. The results of survival analysis revealed that
the survival time of patients in the high-risk group was
significantly shorter than that in the low-risk group
(Figure 4(b)). The above results indicated that the TME-
related 6-gene risk assessment model had predictive value
for the prognosis of LUAD.

3.5. The Expression Level of Each Gene in the Risk Model Is
Related to the Prognosis of Patients. In order to verify the cor-
relation between each gene in the risk model and the progno-
sis, we divided the 6 genes into the high-expression group
and the low-expression group according to the median value
of their expressions and carried out survival analysis on these
genes. The results displayed that the 6 genes had a significant
impact on the prognosis of patients (Figure 5). Patients with
high expressions of CLEC17A, TAGAP, ABCC8, FLT3, and
CCR2 had a better prognosis and higher OS within 5 years
than those with low expressions, while patients with high
expression of BCAN had poorer prognosis and lower OS
within 5 years.
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Figure 1: Immune and stromal scores were significantly correlated with different clinical stages and prognosis of LUAD. (a) The differences
in different clinical stages of LUAD and (b) survival curves of the high-score (red line) and low-score (blue line) groups on the patients’
prognosis of immune, stromal, and ESTIMATE scores were displayed. (c) Pearson’s correlation coefficient of immune and stromal scores
in tumor samples.
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4. Discussion

In this study, the immune and stromal cells in each sample
were scored by ESTIMATE. The risk score was remarkably
related to the tumor purity of clinical cancer and cancer cell
line samples, and we provided an available and direct method
to measure the number of tumor cells in biological samples.
Tumor purity is the percentage of tumor cells in the TME
and is significantly correlated with the clinical manifestations
and prognosis of patients according to the researches in
recent years. Zhang et al. [12] have studied the correlation
between tumor purity and the prognosis of glioma and have
reported that glioma purity is highly correlated with clinical

and molecular features. Low purity cases are more likely to
be diagnosed as malignant tumors and correlated with
reduced survival time. The predictive validity can be signifi-
cantly improved by integrating glioma purity into prognostic
nomogram.Mao et al. [13] have discovered that tumor purity
exhibits a potential value for colorectal cancer prognostic
stratification as well as adjuvant chemotherapy benefit pre-
diction. The relatively worse survival in low purity colorectal
cancer may attribute to higher mutation frequency in key
pathways and purity-related microenvironmental changing.
Tumor purity also has a significant effect on tumor tran-
scriptome. Rhee et al. [14] have obtained the expression pro-
files and tumor purity of 7,794 tumor specimen across 21
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Figure 2: DEGs of the high immune score (stromal score) and low score groups were mined. (a) Heat maps of DEGs in the immune score
(left) and stromal score (right) groups and (b) Venn diagram of DEGs in two groups.
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tumor types from the TCGA database and have found that
immune genes are significantly inversely correlated with
tumor purity. The expression of genes implicated in immu-
notherapy and specific immune cell genes, along with the
abundance of immune cell infiltrates, is substantially
inversely correlated with tumor purity. Tumor samples with
lower tumor purity have more immune cells and tend to have
a higher mutational load because the inflammatory response
caused by immune cells can increase the mutation rate of
tumor cells, and the effect of immunotherapy may be better
[15]. In another study, researchers have used the GEO data-
base of NSCLC cohort and ESTIMATE algorithm to estimate

the immune score of tumor stromal cells and immune cells.
Ultimately, they screened 10 genes out of 448 DEGs that were
constructed as the risk prediction model. The ten-gene model
was more sensitive to prognosis than TNM staging [16].
However, few researches have been carried out on the corre-
lation between tumor purity and development of LUAD. In
this study, we found that LUAD patients with high immune
score (stromal score) had a better prognosis and higher OS
than those with low score, while LUAD patients with high
tumor purity were often accompanied by poor prognosis.
We also studied the correlation between the ESTIMATE
score and the LUAD staging and observed that the later the
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Figure 3: Enrichment analysis was performed on DEGs. (a) GO and (b) KEGG enrichment analysis results of DEGs at the intersection
of two groups.
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staging, the lower the score, suggesting that patients with low
score tended to have more advanced and dangerous tumor.

The pathway enrichment analysis was performed on
DEGs, and it was found that most genes were related to the

proliferation and activation of immune or stromal cells.
Immune cells interact with tumor cells through direct contact
or signal transduction of chemokines and cytokines and
influence tumor behavior and treatment response. Therefore,
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mining prognostic risk factors related to the TME is condu-
cive to further improvement of immunotherapy. In order to
further explore the genes related to prognosis, we obtained
6 TME-related genes through differential, regression, and
enrichment analyses, namely, CLEC17A, TAGAP, ABCC8,
BCAN, FLT3, and CCR2. A prediction model of these 6 genes
was constructed, and the results showed that the OS of
patients with a high risk score was significantly lower than
that with low risk. The ROC curves were used to verify the
model accuracy, and the AUC value was 0.7, indicating the
model had certain accuracy. Gene enrichment analysis
exhibited that these genes were related to the proliferation
and activation of immune or stromal cells. Related literature
has reported that these genes play an important role in the
development of multiple diseases. For example, CLEC17A
is a member of the calcium-dependent family (type C lectin),
and the protein encoded by CLEC17A gene is mainly
expressed in B cells dividing in the germinal center of second-
ary lymphoid organs, which is related to cell adhesion [17].
Single-nucleotide polymorphisms in TAGAP are associated
with a variety of autoimmune diseases. Some researchers
have put forward that TAGAP variation modulates the risk
of autoimmunity by altering thymocyte migration during
thymic selection [18]. Mutations in the ABCC8 gene are
closely related to diabetes [19, 20]. BCAN-NTRK1 is an effec-
tive glioma driver and therapeutic target. Studies have simu-
lated four relatively rare chromosomal rearrangements with
unknown oncogenic potential in human brain glioma and
have found that one of the chromosomal deletions results
in fusion between BCAN and NTRK1, which promotes the
formation of highly invasive glioma [21]. FLT3 mutations
are associated with polyunsaturated fatty acid metabo-
lism, and they play a previously underappreciated role in
obesity-related leukemia [22]. CCL2 secreted from cancer-
associated mesothelial cells promotes peritoneal metastasis
of ovarian cancer cells through the P38-MAPK pathway
[23]. CCL2 is highly expressed in M2 macrophages but
antagonized by miR-511-3p, and miR-511-3p regulates aller-
gic inflammation and macrophage polarization by targeting
CCL2 and its downstream Ccr2/RhoA axis [24]. However,
the role of these genes in LUAD development has not been
reported. In this study, the expressions of these 6 genes were
further examined by survival analysis, and the results sug-
gested that these genes were significantly correlated with
the prognosis. Patients with high expressions of CLEC17A,
TAGAP, ABCC8, FLT3, and CCR2 had better prognosis
and higher OS within 5 years, while patients with high
expression of BCAN had poorer prognosis and lower
5-year OS.

In conclusion, we demonstrated through a series of rigor-
ous analyses that tumor purity was closely related to LUAD
development and that LUAD patients with high infiltration
of immune cells (stromal cells) had better prognosis and ear-
lier staging. Meanwhile, we identified 6 core genes closely
related to the prognosis of LUAD and constructed a survival
prediction model for TME-related genes. The AUC value of
the ROC curves in this model was 0.7, which proved that
the model was reliable. However, the study has not yet
explored the correlation and molecular mechanism of the

expressions of 6 genes and the development of LUAD, which
still needs to be further investigated. These observations col-
lectively provide a new idea for the prognosis of LUAD and a
new direction for tumor immunotherapy.

Data Availability

The data used to support the findings of this study are avail-
able from the corresponding author upon request.

Additional Points

Highlights. (1) ESTIMATE score is used to evaluate tumor
purity, and it is found that patients with high scores have bet-
ter prognosis and are in earlier staging. (2) A 6-gene
(CLEC17A, TAGAP, ABCC8, BCAN, FLT3, and CCR2) sur-
vival prediction model is constructed, and the AUC value of
ROC curve is 0.7. (3) It is found that patients with high
expressions of CLEC17A, TAGAP, ABCC8, FLT3, and
CCR2 have a better prognosis, while patients with high
expression of BCAN have a poorer prognosis.
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