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Background. Alzheimer’s disease (AD) is a neurodegenerative disorder and characterized by the cognitive impairments. It is
essential to identify potential gene biomarkers for AD pathology. Methods. DNA methylation expression data of patients with
AD were downloaded from the Gene Expression Omnibus (GEO) database. Differentially methylated sites were identified. The
functional annotation analysis of corresponding genes in the differentially methylated sites was performed. The optimal
diagnostic gene biomarkers for AD were identified by using random forest feature selection procedure. In addition, receiver
operating characteristic (ROC) diagnostic analysis of differentially methylated genes was performed. Results. A total of 10
differentially methylated sites including 5 hypermethylated sites and 5 hypomethylated sites were identified in AD. There were a
total of 8 genes including thioredoxin interacting protein (TXNIP), noggin (NOG), regulator of microtubule dynamics 2
(FAM82A1), myoneurin (MYNN), ankyrin repeat domain 34B (ANKRD34B), STAM-binding protein like 1, ALMalpha
(STAMBPLI), cyclin-dependent kinase inhibitor 1C (CDKN1C), and coronin 2B (CORO2B) that correspond to 10 differentially
methylated sites. The cell cycle (FDR =0.0284087) and TGF-beta signaling pathway (FDR =0.0380372) were the only two
significantly enriched pathways of these genes. MYNN was selected as optimal diagnostic biomarker with great diagnostic value.
The random forests model could effectively predict AD. Conclusion. Our study suggested that MYNN could be served as

optimal diagnostic biomarker of AD. Cell cycle and TGF-beta signaling pathway may be associated with AD.

1. Introduction

Alzheimer’s disease (AD), the most common form of neuro-
degenerative illness leading to dementia in elderly popula-
tions, affects approximately 32% of individuals over 85 and
11% of individuals over 65 years old [1]. By 2050, AD will
affect as much as 1 in 85 people in the world [2]. AD is
characterized with deposition of formation of neurofibrillary
tangles, amyloid-f peptides as -amyloid plaques, chronic
neuroinflammation, and neuronal injury and loss [3]. It has
been found that the dysfunction and death of neurons in
brain regions, such as the amygdale, hippocampus, and
cortical regions, contribute to the behavioral abnormalities
in AD [4].

Clinically, AD is complex with multiple manifestations.
AD etiology had the strong genetic component, with about
60-80% heritability [5]. The risk of genetic component of
AD has been evidenced by the increased risk of AD among
first-degree relatives of affected patients [6]. There are several
other risk factors associated with AD, such as aging, age,
activity, lifestyle, education, family history, and atherosclero-
sis [7]. Along with the progressively incapacitating, AD can
linger many years. It is reported that AD can linger 8 years
averagely, but it can also linger as long as 20 years [8]. Ulti-
mately, AD is fatal and is estimated to be the leading cause
of death [8]. In addition, the final diagnosis can only be got
by autopsy making the identification of potential biomarkers
of AD a great challenge [9]. Moreover, current treatments for
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TaBLE 1: The DNA methylation expression datasets of AD.

GEO accession Author Platform Samples (N:P) Year Country
GSE76105 Watson CT Nlumina HumanMethylation450 BeadChip 34:34 2015 USA
GSE59685 Lunnon K Mumina HumanMethylation450 BeadChip 0:117 2017 UK

N: normal control; P: patients with AD.

AD are transient, not disease modifying. Therefore, it is
needed to identify potential biomarkers for the diagnosis
and therapy for AD.

DNA methylation is a crucial process in the regulation of
gene expression in genetics. In AD genetics, the earliest
genetic finding is the &4 variant of the apolipoprotein E
gene (APOE) [10]. In addition, the single-nucleotide poly-
morphism (rs11136000) of the clusterin (CLU) gene
(encodes the protein similar to APOE) has also been asso-
ciated with AD [11, 12]. In view of this, we tried to find
the potential aberrant methylated genes in the pathology
of AD based on the machine learning. We first obtained
the DNA methylation data of patients with AD from the
GEO database. Then, we performed the functional analy-
ses of differentially methylated genes. Lastly, we applied
machine learning to find the optimal diagnostic biomarker
for AD.

2. Methods

2.1. Datasets Retrieval in the GEO Dataset. Herein, we
searched datasets from the GEO dataset (http://www.ncbi
.nlm.nih.gov/geo/) with the keywords “Alzheimer’s disea-
se”[MeSH Terms] OR Alzheimer’s disease [All Fields]
AND “Homo sapiens”[porgn] AND “gse”[Filter]. The study
type was described as “Methylation profiling by array.” All
selected datasets were genome-wide DNA methylation
expression data of AD group and/or normal group superior
temporal gyrus tissue samples. Only those standardized or
primary datasets (the total samples size >50) were included.
At last, a total of 2 datasets (GSE76105 and GSE59685) were
identified, which was shown in Table 1.

2.2. Analysis of Differentially Methylated Sites in AD. Firstly,
the primary data was preprocessed by an intersection taken
of the two datasets, removing the sex chromosome sites and
quantile standardization. Then, the COHCAP in the R pack-
age [13] was used to identify the differentially methylated
sites. The threshold of differentially methylated sites was set
as |Abeta| > 0.2 and false discovery rate (FDR) < 0.05. Heat
map of identified differentially methylated sites was gener-
ated by hierarchical clustering analysis by using R package.

2.3. Functional Annotation of Genes Corresponding to the
Differentially Methylated Sites in AD. To investigate the
biological function of genes corresponding to the differen-
tially methylated sites, the online software GeneCodis3
(http://genecodis.cnb.csic.es/analysis) was applied to per-
form the functional annotation analysis of Gene Ontology
(GO) classification and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment. The statistical
significance was defined as FDR < 0.05.

2.4. Identify of the Optimal Diagnostic Gene Biomarkers for
AD. To identify the optimal diagnostic gene biomarkers for
AD, the feature selection procedures were performed as
follows. Firstly, importance value of each differentially meth-
ylated site ranked according to the mean decrease in accuracy
using the random forest algorithm. Then, the optimal
number of features was found by subsequently adding one
differentially methylated site at a time in a top-down
forward-wrapper approach. Optimal differentially methyl-
ated sites with diagnostic value for AD were used to establish
classification models including decision tree (DT), support
vector machine (SVM) model, and random forests (RF).
The “rpart” packet in R (https://cran.r-project.org/web/
packages/rpart/), “el071” package in R (https://cran.r-
project.org/web/packages/e1071/index.html), and “random-
Forests” packet (https://cran.r-project.org/web/packages/
randomPForest/) establish the DT model, SVM model, and
RF model, respectively. We compared three kinds of
classification models by the average misjudgment rates of
their 10-fold cross-validations. Diagnostic ability of classifi-
cation prediction was evaluated by obtaining specificity, sen-
sitivity, and the area under a receiver operating characteristic
(ROQ) curve (AUC).

2.5. Electronic Validation of Genes in Differentially
Methylated Sites. The dataset of GSE63061 was used to
validate the expression of genes in differentially methylated
sites. It is noted that the GSE63061 dataset was comparable
with the DNA methylation expression datasets of AD
(GSE76105 and GSE59685) in terms of demographic and
clinical characteristics (such as age, sex, and race). Clinical
information statistics of the above 3 datasets was shown in
supplementary Table 1. The dataset of GSE63061 contains
the blood sample of 139 patients with AD and 134 normal
individuals. The expression result of these genes was
visualized by box plots.

2.6. Diagnostic Analysis of Differentially Methylated Genes.
By using pROC package in R language, we performed the
receiver operating characteristic (ROC) analysis to assess
the diagnostic value of differentially methylated genes. The
area under the curve (AUC) under binomial exact confidence
interval was calculated, and ROC curve was generated.

3. Results

3.1. Identification of Differentially Methylated Sites in AD.
DNA methylation profiles of a total of 151 patients with
AD and 34 normal individuals were obtained. After a series
of data processing including intersection taken of two data-
sets, removing the sex chromosome sites and quantile stan-
dardization, a total of 438762 methylation sites were first
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TaBLE 2: The detailed information of 10 differentially methylated sites in AD.
Site ID Chr Loc Gene Island Abeta FDR
cg20064151 1 145438865 TXNIP N/A 0.215096658 9.88741E-38
cgl14678442 17 54672540 NOG chr17:54674158-54674366 0.229358886 1.05581E-36
cg18944924 38265394 FAMS2A1 N/A 0.209927033 3.71711E-39
€g27143246 3 169489583 MYNN chr3:169490834-169491206 0.212332981 2.19602E-43
cg24834873 5 79865402 ANKRD34B chr5:79864842-79866447 0.24222697 3.75651E-21
cgl11917694 10 90639684 STAMBPL1 chr10:90639787-90640623 -0.20479899 0.020693382
cg08206623 11 2907334 CDKN1C chr11:2907308-2907675 -0.21677658 9.7722E-40
cg02405503 15 68871738 CORO2B chr15:68870633-68871974 -0.24286476 0.008382656
cg11901248 5 149866502 N/A chr5:149865064-149866038 -0.26318932 0.003210476
cgl11912513 9 43915234 N/A chr9:43915270-43915506 -0.23938093 0.003403942
FDR: false discovery rate; N/A: not applicable.
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detected. Then, a total of 10 differentially methylated sites
including 5 hypermethylated sites and 5 hypomethylated
sites were identified. Detailed information of 10 differentially
methylated sites was presented in Table 2. The Manhattan
figure of these differentially methylated sites was shown in
Figure 1. The heat map of these differentially methylated sites
was shown in Figure 2.

3.2. Functional Enrichment Analysis of Genes Corresponding
to the Differentially Methylated Sites in AD. There were a
total of 8 genes including thioredoxin interacting protein
(TXNIP, hypermethylated), noggin (NOG, hypermethy-
lated), regulator of microtubule dynamics 2 (FAMS82AIL,

hypermethylated), myoneurin (MYNN, hypermethylated),
ankyrin repeat domain 34B (ANKRD34B, hypermethy-
lated), STAM-binding protein like 1, ALMalpha
(STAMBPLI1, hypomethylated), cyclin-dependent kinase
inhibitor 1C (CDKNIC, hypomethylated), and coronin 2B
(CORO2B, hypomethylated) that correspond to 10
differentially methylated sites. In order to investigate the
potential biological function of these genes, GO and KEGG
enrichment analysis were used for the functional analysis.
GO enrichment analysis revealed that cellular response to
tumor cell (FDR=0.00283977), negative regulation of
cytokine activity (FDR = 0.00283977), and positive regulation
of glomerulus development (FDR =0.00283977) were the
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FIGURE 2: The heat map of 10 differentially methylated sites in AD. Diagram presents the result of a two-way hierarchical clustering of 10
differentially methylated sites and samples. The clustering is constructed using the complete-linkage method together with the Euclidean
distance. Each row represents a differentially methylated site and each column, a sample. Differentially methylated sites clustering tree is
shown in the bar on the right. The colour scale illustrates the relative level of differentially methylated site expression: red: below the

reference channel; green: higher than the reference.

most enriched biological processes; enzyme inhibitor activity
(FDR =0.0304319), protein kinase inhibitor activity
(FDR = 0.0322006), and cytokine binding (FDR = 0.0357226)
were the only enriched molecular functions; cytoplasm
(FDR = 0.0463417) was the only enriched cellular component.
KEGG enrichment analysis showed that the cell cycle
(FDR =0.0284087) and TGF-beta signaling pathway
(FDR =0.0380372) were the only enriched signal pathways.
The result of enrichment analysis was showed in Table 3. It is
a pity that one of the eight differentially methylated genes,
STAMBPLI, was not involved in any biological process.

3.3. Identification of Optimal Diagnostic Gene Biomarkers for
AD. To identify the optimal diagnostic gene biomarkers for
AD, the random forest feature selection and classification
(DT, SVM, and RF) procedures were performed. All differen-
tially methylated sites were ranked according to the stan-
dardized drop in prediction accuracy (Figure 3(a)).
Differentially methylated sites including cg11901248 and
cg27143246 were considered as the optimal diagnostic gene
biomarkers for AD after subsequently adding one differen-
tially methylated site at a time in a top-down forward-
wrapper approach (Figure 3(b)). Box plots of the optimal dif-
ferentially methylated sites in AD were presented in Figure 4.
2 optimal differentially methylated sites with diagnostic value
for AD were used to establish classification models including
DT, SVM, and RF. The 10-fold cross-validation indicated
that the AUC value in the DT, SVM, and RF models was
89.6%, 75.8%, and 92.7%, respectively (Figure 5). It can be
seen that the RF model is with the largest AUC value, which
could effectively predict AD.

3.4. Electronic Validation of Genes in Differentially
Methylated Sites. In this study, 4 genes including NOG
(hypermethylated), MYNN (hypermethylated), ANKRD34B
(hypermethylated), and CDKNIC (hypomethylated) in
differentially methylated sites were randomly selected for
validation in the GSE63061 dataset (Figure 6). Our result
showed that CDKNI1C was up-regulated and that NOG,
MYNN (P <0.01), and ANKRD34B were down-regulated,
which was consisted with the bioinformatics analysis.

3.5. Diagnosis Prediction of Differentially Methylated Genes.
ROC curve analysis was performed to assess the diagnosis
ability of TXNIP, NOG, ANKRD34B, STAMBPLI,
CDKNIC, and CORO2B (Figure 7). Unfortunately, AUC
values of above differentially methylated genes were all
<0.6, which suggested that they have no potential diagnostic
value for AD.

4. Discussion

AD is a prevalent neurodegenerative disorder that severely
affects the health of the old people. Therefore, exploring the
potential biomarkers of AD is essential. In the present study,
we performed integrated genome-wide analysis of DNA
methylation expression profiles in patients with AD from
GEO. A total of 10 differentially methylated sites including
5 hypermethylated sites and 5 hypomethylated sites were
identified in AD. 10 differentially methylated sites were
mapped to 8 genes including TXNIP, NOG, FAMS82A1,
MYNN, ANKRD34B, STAMBPL1, CDKN1C, and CORO2B.
Among which, MYNN was served as optimal AD-specific
diagnostic biomarker. The functional enrichment analysis
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TaBLE 3: The result of GO and KEGG enrichment analysis.

Items Items_Details Support FDR Genes

Biological process
GO0:0071228 Cellular response to tumor cell 1 0.00283977 TXNIP
GO0:0060302 Negative regulation of cytokine activity 1 0.00283977 NOG
GO0:0090193 Positive regulation of glomerulus development 1 0.00283977 NOG

Molecular function
G0:0004857 Enzyme inhibitor activity 1 0.0304319 TXNIP
GO:0004860 Protein kinase inhibitor activity 1 0.0322006 CDKNIC
GO:0019955 Cytokine binding 1 0.0357226 NOG

Cellular component
GO:0005737 Cytoplasm 5 0.0463417 ANK(}:((I))I;ALOBZ, ]ég?(ﬁfél};)’(NIP

Signalling pathway
Kegg:04110 Cell cycle 1 0.0284087 CDKNIC
Kegg:04350 TGF-beta signaling pathway 1 0.0380372 NOG

FDR: false discovery rate.

showed that the cell cycle and TGF-beta signaling pathway
were the only two significantly enriched pathways of these
genes. The RF model could effectively predict AD.

TXNIP is an early response gene involved in neuronal
apoptosis induced by high glucose and oxidative stress [14].
It mediates neuronal repair when transiently expressed [15,
16]. It is found that the expression of TXNIP is related to
the senescence process and increases with age in the brain
[17, 18]. It has been demonstrated that TXNIP is up-
regulated in diabetes, ischemia, and hypertension, which
were risk diseases for AD [15, 19-21]. Significantly, TXNIP
is prominently increased in multiple brain regions including
the superior frontal gyrus, postcentral gyrus, and entorhinal
cortex in aging of AD [22]. In AD, the pharmacological inhi-
bition of receptor for advanced glycation end product-
(RAGE-) TXNIP axis will promote neuroprotection by
blocking neurovascular dysfunction [23]. In addition, knock-
down of hippocampal TXNIP can remarkably improve cog-
nitive impairment and neuroinflammation, which suggested
that TXNIP is a potential treatment target for AD [24]. In
the present study, we first found the association between
hypermethylated TXNIP and AD, which could provide new
epigenetic evidence for AD pathology.

FAMS82A1 (also called BLOCK18) is a potential and
novel gene identified in human steroidogenesis and involved
in the microtubule formation during cell division [25]. It is
found that the expression of FAM82A1 is up-regulated in
experimental autoimmune encephalomyelitis [26]. Up to
now, there are few reports about the role of FAM82A1 in
AD. Herein, we first found the association between hyper-
methylated FAMS82A1 and AD, which suggested that
FAMS82A1 may be involved in AD.

The expression of ANKRD34B has been found in the
brain of rodent [27]. It is reported that the CpG sites of
ANKRD34B are significantly associated with age [28]. In
mouse amyotrophic lateral sclerosis, the expression of
ANKRD34B is down-regulated and plays roles in axon out-
growth and synapse formation in motor neurons [29]. In

the peripheral blood of patients with bacterial meningitis,
ANKRD34B is the most remarkably down-regulated gene
[30]. In the present study, we found that ANKRD34B was
hypermethylated in the tissue of AD, which was also vali-
dated in the blood sample of GSE63061 dataset. Our result
suggested that ANKRD34B methylation may play key roles
in the process of AD.

STAMBPLI (also called AMSH-FP or AMSH-LP) is a
member of the JABI/MPN/MOV34 metalloenzyme (JAMM)
family of zinc metalloproteases [31]. The expression of
STAMBPLI is increased in the middle cerebral artery [32].
Lavorgna and Harhaj found that STAMBPLI regulated NF-
xB activation in neuroinflammation process [33]. It is worth
mentioning that the missense mutation of STAMBPLI1 has
been found in AD in the Amish [7]. In this study, we also
found the relationship between STAMBPL1 and AD, which
further suggested that STAMBPLI1 may be a crucial factor
in the pathology of AD.

CORO2B, a central nervous system gene, is involved in
brain cellular cytoskeleton rearrangement and motility and
molecular trafficking [34, 35]. The up-regulated expression
of CORO2B has been detected in induced neurons [36]. It
is pointed out that CORO2B is associated with the neurolog-
ical disease such as neuroblastoma [37]. In addition,
CORO2B plays a key role in brain endothelial cells of cerebral
malaria [38]. In the present study, we first found that
CORO2B was hypomethylated in the tissues of AD, which
indicated that CORO2B may be involved in the process of
AD.

MYNN encodes the zinc-finger transcription factor myo-
neurin, which plays roles in regulating neuromuscular junc-
tions [39]. Previous study has demonstrated the association
between MYNN and AD [40]. Herein, we found that MYNN
was hypermethylated in the tissues of AD. The expression
tendency of MYNN was validated in the blood sample of
GSE63061 dataset. Furthermore, it was identified as optimal
diagnostic biomarker of AD by the method of machine learn-
ing. Our result may provide a new field in understanding the
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FIGURE 3: (a) The ranking of 10 differentially methylated sites. Differentially methylated sites were ranked according to the standardized drop
in prediction accuracy. (b) The tendency chart of AUC along with the increase of methylation sites.

molecular mechanism and searching for the novel diagnostic
biomarkers for AD.

According to the functional annotation of genes corre-
sponding to the differentially methylated sites, we found that
cell cycle and TGF-beta signaling pathway were the only two
significant enrichment signaling pathways. Moreover,
CDKNI1C and NOF were the only genes that involved in
the above two signaling pathways, respectively. Snape et al.
reported that cell cycle defect was also one of the characteris-

tics of AD [41]. The ectopic expression of several cell cycle
proteins including p16, cdk4, PCNA, cyclin Bl, and cdc2
kinase has been found in the brain regions of AD [42-44].
Moreover, it has been proposed that changes in these cell
cycle proteins in lymphocytes can be considered as potential
biomarkers for AD diagnosis [45-50]. CDKNIC (also called
BWCR, BWS, KIP2, and WBS) is associated with neurogen-
esis and senescence [51, 52]. In the hippocampus, deletion of
CDKNIC will increase neurogenesis, which leads to impaired
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neurogenesis [53]. It is noted that CDKN1C is up-regulated
in severe AD [54]. Herein, we found that CDKN1C was
hypomethylated both in the tissue and blood of AD. Further-
more, CDKNI1C is also involved in the cell cycle, which sug-
gested that CDKN1C may play a crucial role in AD.
Transforming growth factor-f (TGF-f5), expressed by
neurons, is a pleiotropic cytokine that regulates neuronal

development and survival and protects neurons from central
nervous system inflammation and injury [55-57]. Liao et al.
found that the prompt and sustained expression change of
TGF-f after brain injury may serve as the potential bio-
marker for brain injury [58]. Interestingly, it is reported that
the TGF- pathway is dysregulated in AD, and the accumu-
lation around the amyloid plaques of TGF-p has been found
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the diagnostic ability with 1-specificity and sensitivity.

in the brain of AD patients [59, 60]. The expression of TGF-3
is up-regulated in brain tissue [61], while down-regulated in
the serum of patients with AD [62]. NOG belongs to the
transforming growth factor-f superfamily and is associated
with neurorecovery and neuroregeneration [63]. Bonaguidi
et al. and Yousef et al. found that NOG signaling changes
with age and involved in the age-related neurological impair-
ments and reductions in neuroregeneration [64, 65]. It is
pointed that NOG is a pluripotent gene with increased
expression in AD [66]. Herein, we found that NOG was
hypermethylated in the tissues of AD. The electronic valida-
tion result in the blood sample was consisted with the infor-
matics analysis in the tissues. Moreover, NOG was the only
gene that involved in the TGF-f signaling pathway. Our
results indicated that epigenetic change of NOG may be asso-
ciated with AD pathology.

5. Conclusion

In summary, we found several differentially expressed
methylated genes (TXNIP, NOG, FAMS82A1, MYNN,
ANKRD34B, STAMBPLI1, CDKN1C, and CORO2B) in the
tissues of AD. Importantly, MYNN may be the optimal diag-
nostic biomarker for AD. In addition, only two significantly
enriched signaling pathways including cell cycle and TGF-p3

may provide a new field in understanding the pathological
mechanism. However, there are limitations to our study.
Firstly, some in vitro experiments such as quantitative real-
time polymerase chain reaction, immumohistochemical
staining, or western immunoblot are also needed to further
validate the expression of identified genes. Secondly, we did
not investigate the deeper mechanism of AD, and animal
model or cell culture (AS-induced PCl12 cells or primary
neuron cells) is further needed to validate the expression of
identified genes and explore the detailed function of identi-
fied methylated genes.
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