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Aim of the Study. This study is aimed at exploring the effects and pharmacological mechanisms of the extracts from the Heritiera
littoralis fruit (EFH) on dextran sulfate sodium- (DSS-) induced ulcerative colitis (UC) in mice. Materials and Methods. The
chemical compositions of EFH were identified using LC-ESI-MS. The mice with 3% DSS-induced UC were administered EFH
(200, 400, and 800mg/kg), sulfasalazine (SASP, 200mg/kg), and azathioprine (AZA, 13mg/kg) for 10 days via daily gavage. The
colonic inflammation was evaluated by the disease activity index (DAI), colonic length, histological scores, and levels of
inflammatory mediators. The gut microbiota was characterized by 16S rRNA gene sequencing and analysis. Results. LC-ESI-MS
analysis showed that EFH was rich in alkaloids and flavones. The results indicated that EFH significantly improved the DAI
score, relieved colon shortening, and repaired pathological colonic variations in colitis. In addition, proteins in the NF-κB
pathway were significantly inhibited by EFH. Furthermore, EFH recovered the diversity and balance of the gut microbiota.
Conclusions. EFH has protective effects against DSS-induced colitis by keeping the balance of the gut microbiota and
suppressing the NF-κB pathway.

1. Introduction

Ulcerative colitis (UC) belongs to the inflammatory bowel
disease (IBD) family and is a nonspecific chronic inflamma-
tory disease (Do et al., 2020). UC clinically appears as chronic
diarrhea, mucous-filled and bloody purulent stools, abdomi-
nal pain, weight loss, and fatigue [1], which all seriously affect
people’s quality of life. The current treatments for UC are
aminosalicylic drugs, glucocorticoid drugs, immunosuppres-
sants, and monoclonal antibodies, but these drugs cannot

achieve ideal results because of the unclear etiology of UC
[2]. As the morbidity of UC and the incidence of disease
flares worsen, people increasingly turn to alternative medi-
cine approaches [3], so there is a growing need to develop
novel, efficient, and safe candidates for UC treatment.

Heritiera littoralis Dryand. (Sterculiaceae), a semiman-
grove plant, is typically found in mangrove zones, which
are mostly tropical and subtropical areas [4]. Mangroves
not only protect the environment but also have medicinal
value. In terms of medicinal uses, Heritiera littoralis Dryand.
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has been used to treat indigestion, diarrhea, and dysentery;
the medicinal parts are mainly in the seeds and are obtained
by decoction [5]. Existing literature had reported that the
Heritiera littoralis bark exerted its anti-inflammatory effects
by reducing the release of NO, PGE2, and TNF-α, as well as
by downregulating iNOS and COX-2 [6]. In addition,
Heritiera littoralis leaf extracts have exhibited obvious
antibacterial and anticancer activities [7, 8]. The pharmaco-
dynamics of the Heritiera littoralis fruit has not been clearly
reported in publications, but the fruit does contain anti-
inflammatory chemicals, such as flavonoids and triterpe-
noids [9]. Therefore, we hypothesized that the extracts of
the Heritiera littoralis fruit (EFH) may have anti-
inflammatory effects.

In this study, we proposed that UC is caused by the
imbalance of intestinal microbiota, associated with intestinal
inflammation responses [10]. NF-κB contributes to the
mechanism of the inflammatory process and controls the
release of inflammatory cytokines involved in UC [11].
Therefore, we hypothesized that gut microbiota dysbiosis
would improve after introduction of EFH to the intestinal
microenvironment, as a result of changes to the release of
inflammatory cytokines and inhibition of the NF-κB
pathway. In our research, we investigated the mechanism of
action for EFH in dextran sulfate sodium- (DSS-) induced
colitis in an experimental murine model.

2. Materials and Methods

2.1. Materials. The Heritiera littoralis fruits were provided by
the Guangdong Academy of Forestry and identified by Pro-
fessor Jian Cai of that academy. The voucher specimens
(914556) were deposited for further reference in South China
Botanical Garden (Guangzhou, China). Dextran sulfate
sodium was bought from MP Biomedicals (Montreal,
Canada). Sulfasalazine (SASP) was provided by Shanghai
Xinyi Tianping Pharmaceutical Co., Ltd. (Shanghai, China)
and azathioprine (AZA) by Aspen Pharmacare Australia
Co., Ltd, (Australia). The ELISA kits for TNF-α, IFN-γ, IL-
1β, and IL-6 were bought from the Shanghai MLBIO
Biotechnology Co., Ltd. (Shanghai, China). The kit for bio-

chemical analysis of myeloperoxidase (MPO) was obtained
from the Nanjing Jiancheng Bioengineering Institute
(Nanjing, Jiangsu, China). The antibodies (NF-κB p65, NF-
κB p-p65, IκBα, p-IκBα, IKKα, p-IKKα, β-actin, and Histone
H3) were purchased from Affinity Biosciences (Ohio, USA).
All other reagents and chemicals were of analytical grade.

2.2. Preparation of Extracts. The Heritiera littoralis fruits
were collected from the Nansha Wetland Park (Guangdong,
Guangzhou, China). The Heritiera littoralis fruits were
dried at 60°C, pulverized and filtered through an 80-mesh
sieve to obtain a dry product for use. The dried fruits
(100 g) were extracted by 20-fold distilled water for 2 h.
After filtration, the residue was reextracted by 20-fold dis-
tilled water under the same condition. Thereafter, the two
filtrates were combined in a container and then evaporated
to 100mL. Finally, the fruit extracts were stored in a refrig-
erator at a concentration of 1 g/mL for subsequent animal
experiments [12, 13].

2.3. LC-ESI-MS Analysis. The extracts of EFH for chemical
composition analysis were precipitated by 95% ethanol. The
filtrate was concentrated to dryness in vacuum and dissolved
in methanol. The EFH was analyzed by liquid
chromatography-electrospray ionization mass spectrometry
(LC-ESI-MS) with ESI-MS-positive and ESI-MS-negative
ion acquisition modes. The sample (5μL) was injected into
the UPLC apparatus equipped with a reverse phase C-18
column (150 × 2:1mm 1.8μm, Welch). Mobile phase elution
was performed with a flow rate of 0.3mL/min using water
acidified with 0.1% formic acid (A) and acetonitrile acidified
with 0.1% formic acid (B), as follows: 0-1min, 98-98% A
(v/v), 2-2% B (v/v); 1-5min, 98-80% A, 2-20% B; 5-10min,
80-50% A, 20-50% B; 10-15min, 50-20% A, 50-80% B; 15-
20min, 20-5% A, 80-95% B; 20-25min, 5-5% A, 95-95% B;
and 25-26min, 5-98% A, 95-2% B; and 26-30min, 98-98%
A, 2-2% B. The positive ion mode was adjusted to a 300°C
capillary temperature and 3 kV capillary voltage. All data
collected were acquired and processed by the MassLynx 4.1
software.

Table 1: Sequences of primers used for QRT-PCR.

Gene Primer sequences (5′-3′) Product size (bp)

iNOS
Reverse CAGCCACATTGATCTCCGTGACAG

358
Forward GATGTGCTGCCTCTGGTCTTGC

COX-2
Reverse GCGGTTCTGATACTGGAACTGCTG

253
Forward TGGTCTGGTGCCTGGTCTGATG

IL-17
Reverse GGTCTTCATTGCGGTGGAGAGTC

222
Forward TGATGCTGTTGCTGCTGCTGAG

IL-4
Reverse CGAAAGAGTCTCTGCAGCTCCA

191
Forward GTCACAGGAGAAGGGACGCC

IL-12
Reverse GCAGACAGAGACGCCATTCCAC

378
Forward CACCTGTGACACGCCTGAAGAAG

GAPDH
Reverse TCGCTCCTGGAAGATGGTGATGG

235
Forward AATGGTGAAGGTCGGTGTGAACG
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Figure 1: The LC-ESI-MS chromatograms of EFH. (a) The total ion currents of EFH. (b) Positive mode in black and negative mode in red.
Peak assignments are listed in Table 2.
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2.4. Experimental Animals. The animals (male BALB/c mice,
22-25 g) were bought from the Guangzhou University of
Traditional Chinese Medicine (SYXK (YUE) 2018-0034,
Guangzhou, China). All animal housing (23 ± 2°C, 50 ± 5%
humidity, 12 h light and dark cycle), handling, and feeding
were supervised by the Animal Experimentation Ethics
Committee at Guangzhou University of Traditional Chinese
Medicine (Registration no. 20181224002).

After 7-day acclimation, all animals were assigned into 7
groups (n = 12) and received their respective treatments by
oral gavage, as follows: control group and DSS group (dis-
tilled water, 0.1mL/10 g), SASP-supplemented group
(200mg/kg), AZA-supplemented group (13mg/kg), and
EFH-supplemented groups (200, 400, and 800mg/kg, respec-
tively). During the experiment, all groups except for the con-
trol group were exposed to 3% DSS drinking freely for 10
days [14], and relative oral treatments were carried out once
daily. The consumption of distilled water versus DSS solution
between the groups was similar. The administrated doses of
treatments were selected according to results from our pilot
study and previous publications [15]. On the last day of the
experiment, all the mice were sacrificed by carbon dioxide
euthanasia; then, the colons were quickly removed and stored
at −80°C for further analysis.

2.5. Evaluation of Disease Activity Index (DAI). The DAI
(body weight loss, stool character, and bloody feces) was eval-
uated by an observer daily, and the DAI score (calculated as
½weight loss score + fecal trait score + hematochezia score�/3)
was regarded as the standard scoring system [16]. After the
mice were sacrificed, the colorectal lengths were measured.
Portions of the distal colorectums were embedded and
stained with hematoxylin and eosin (H&E). The histological
scores were evaluated in a blinded manner [17].

2.6. Evaluation of the Levels of TNF-α, IFN-γ, IL-1β, IL-6, and
MPO. The colorectal tissues were homogenized, and super-
natants were collected by centrifugation. The levels of TNF-
α, IFN-γ, IL-1β, and IL-6 were measured using ELISA kits
at 450 nm according to the manufacturer’s protocols,

whereas MPO activity was determined with a myeloperoxi-
dase assay kit at 460nm.

2.7. Quantitative Real-Time PCR Analysis. The total RNA
was extracted from the colonic tissue with TRIzol reagent.
After RNA concentration and purity control were completed,
the high-quality RNA samples (RNA concentration ≥ 500
ng/μL, OD260/OD280 ≥ 2:0) were reverse transcribed to
complementary DNA (cDNA) using FastKing Reverse Tran-
scriptase Kit according to instructions from the supplier. The
sequences of the primers used in this study are listed in
Table 1. The QRT-PCR was performed with a ChamQ SYBR
qPCR Master Mix (Vazyme Biotech Co., Ltd., Nanjing,
China) and CFX Manager software (Bio-Rad Laboratories
Inc.). The protocol was 95°C for 10min, followed by 95°C
for 15 s and 60°C for 20 s; this sequence was repeated for 40
cycles. The mRNA expression level (iNOS, COX-2, IL-4,
IL-12, and IL-17) was calculated with the 2-ΔΔCt method rel-
ative to control gene GAPDH.

2.8. Western Blot Analysis. The total, cytoplasmic, and
nuclear proteins were extracted using their corresponding
extraction kits according to the manufacturer’s statements.
Briefly, the colonic tissues were homogenized with RIPA lysis
buffer on ice. After incubation (20min) and centrifugation
(14000× g, 4°C, 10min), the supernatant was collected as
total protein for further analysis. The other samples were
homogenized with PBS and centrifuged for 3min (500× g,
4°C). The sediment was mixed with Buffer A thoroughly for
30min and then centrifuged (12000× g, 4°C, 10min) again.
The cytoplasmic protein was separated from the supernatant,
whereas the nuclear protein was extracted from the sediment
with Buffer B. After separated by SDS-PAGE, the proteins
above were transferred onto PVDF membranes. Subse-
quently, the membranes were blocked in 5% nonfat-dried
milk and incubated with primary antibodies NF-κB p-p65,
NF-κB p65, IκBα, p-IκBα, IKKα, and p-IKKα (all 1 : 1000
dilution) overnight, followed by incubation with secondary
antibody. The protein density was quantified by ImageJ soft-
ware relative to β-actin or Histone H3.

Table 2: The phytochemical constituents of EFH.

Order Retention time (R.t) Components Molecular weight Area (%) Ref.

1 1.397 L-glutamic acid 147.05313 4.34% [18]

2 1.471 Triglycidyl glycerol 277.15236 8.97% [19]

3 1.539 2-Naphthalenesulfonic acid 208.02116 10.82% [20]

4 7.116 Penicillic acid 170.058 10.56% [21]

5 10.361 Syringic acid 198.05271 0.92% [22]

6 13.453 Puerarin 416.10993 1.99% [23]

7 13.92 Taxifolin 304.05788 2.34% [24]

8 14.621 4-Hydroxycoumarin 162.03058 1.32% [22]

9 15.508 Carbidopa 226.09909 11.53% [25]

10 22.645 N,N-Dimethylsphingosine 309.30278 1.16% [26]

11 22.696 Caffeic acid 180.04198 2.78% [27]

12 23.754 7-Methylxanthine 166.047 7.99% [28]

Identification of the phytochemical constituents was done using LC-ESI-MS.
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Figure 2: Continued.
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2.9. Gut Microbiota 16S rRNA Gene Sequencing and Analysis.
Fecal genomic DNAwas extracted using the DNA kit. The 16S
rDNAV4 region of the rRNA gene was amplified by PCRwith
the primer (515F: 5′-GTGCCAGCMGCCGCGGTAA-3′ and
806R: 5′-GGACTACHVGGGTATCTAAT-3′). Purified
amplicons were sequence paired on an Illumina platform.
The effective tags were clustered into operational taxonomic
units (OTUs) of ≥97% similarity using USEARCH
(v7.0.1090). On the basis of the relative abundance of OTUs,
the microbial diversity and structural classification were
further analyzed using programming language R (v3.1.1).

2.10. Statistical Analysis. All data were presented as the
mean ± standard error of mean (SEM) with Statistical Prod-
uct and Service Solutions (SPSS) software (version 23.0).

Statistical analysis was carried out by one-way ANOVA
followed by LSD test and Dunnett’s test. A value of p < 0:05
was considered statistically significant.

3. Results

3.1. The Phytochemical Constituent Analysis of EFH. The LC-
ESI-MS analysis revealed that the high constituents were
alkaloids and flavones in EFH. As shown in Figure 1 and
Table 2, the chromatogram identified the phytochemical
constituents in EFH as L-glutamic acid, triglycidyl glycerol,
2-naphthalenesulfonic acid, penicillic acid, syringic acid,
puerarin, taxifolin, 4-hydroxycoumarin, carbidopa, N,N-
dimethylsphingosine, caffeic acid, and 7-methylxanthine.
These findings were consistent with previous publications.
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Figure 2: EFH ameliorated inflammatory indices of DSS-induced colitis. (a) The daily body weight changes from 1st day to 10th day. (b) The
disease activity index (DAI) in mice. (c) The length of colons from a macroscopic perspective. (d) Quantitative measurement of colon length.
Data are presented as the means ± S:E:M: (n = 12). ##p < 0:01 vs. the control group; ∗p < 0:05, ∗∗p < 0:01 vs. the DSS group.
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3.2. EFH Ameliorated Inflammatory Indices of DSS-Induced
Colitis. The mice treated freely with 3% DSS were used suc-
cessfully to establish colitis. As shown in Figure 2(a), the body
weight decrease on day 4 was significantly greater in the DSS
group compared to the control group. However, the mice in
the EFH groups exhibited a slight decrease in weight loss espe-
cially from day 5. The results indicated that EFH treatment
effectively alleviated DSS-induced weight loss.

Figure 2(b) showed that the DAI score of the DSS group
dramatically increased (p < 0:01), whereas EFH treatment
dose dependently decreased DAI scores even more than
treatment with SASP or AZA. In addition, the DAI score
was inversely associated with colon length, which was consis-
tent with previous publication [29]. In Figures 2(c) and 2(d),
the colon length in the DSS group was the shortest (p < 0:01),
which was reversed by EFH in a dose-dependent manner (all
p < 0:01).

3.3. EFH Suppressed Inflammatory Infiltration in DSS-
Induced Colitis. The results of H&E staining and histopatho-
logical scores showed that the colonic tissue structures in the
DSS group were destroyed compared to the control group
(Figures 3(a) and 3(b)). Conversely, the groups treated with
EFH reversed the changes in gut epithelial general morphol-
ogy (p < 0:01). In addition, the MPO activity in DSS-treated
mice remarkably increased compared to the control group
(p < 0:01), suggesting growing infiltration of inflammatory
cells. However, the groups treated with EFH, SASP, and
AZA resulted in suppressing the MPO activity. Therefore,
our results indicated that EFH significantly protected the
intestinal epithelial structure.

3.4. EFH Suppressed the Levels of TNF-α, IFN-γ, IL-1β, and
IL-6. To evaluate the anti-inflammatory effects of EFH, we
measured the activity of proinflammatory cytokines by
ELISA kits. As showed in Figure 4, the levels of all proinflam-
matory cytokines in the DSS group were much higher than
those in the control group (all p < 0:01). EFH treatment

markedly lowered the expressions of TNF-α, IFN-γ, IL-1β,
and IL-6, and the difference was significant in the mice
treated with 800mg/kg of EFH. Furthermore, the decrease
observed in the mice receiving 800mg/kg of EFH was close
to that of the SASP and AZA groups.

3.5. EFH Decreased the mRNA Expressions of COX-2, iNOS,
IL-12, IL-17, and IL-4. Many proinflammatory cytokines
(COX-2, iNOS, IL-12, and IL-17) and an anti-inflammatory
cytokine (IL-4) are involved in the initiation and development
of intestinal inflammation. As shown in Figure 5, the levels of
COX-2, iNOS, IL-12, and IL-17 in the DSS group were signif-
icantly higher than the level in the control group, and these
high levels were reversed by EFH, SASP, or AZA. However,
the anti-inflammatory cytokine IL-4 was upregulated in the
EFH groups but was downregulated in the DSS group.

3.6. EFH Inhibited the Expressions of NF-κB Pathway. The
NF-κB pathway plays an important role in the intestinal
inflammation reaction, which is activated by IκBα and IKKα
phosphorylation [30]. The colonic tissue cell in the DSS
group translocated NF-κB p-p65 to the nucleus by phosphor-
ylating IKKα and IκBα [31]. As shown in Figure 6, the
activated NF-κB p65 (p < 0:05) and the phosphorylation of
IKKα and IκBα (all p < 0:01) in the DSS group were signifi-
cantly higher than in the control group. On the contrary,
treatment with EFH downregulated the expressions of NF-
κB p-p65 p-IKKα, and p-IκBα, and these changes were
similar to the effects of SASP and AZA.

3.7. EFH Altered Microbial Structure and Diversity of Gut
Microbiota in Mice. Changes in the intestinal microenviron-
ment have been reported in UC [32]. The operational taxo-
nomic units (OTU) rank curve represents the number of
observed OTUs in all samples. As showed in Figure 7(b),
the DSS group had significantly fewer OTUs than other
groups (p < 0:01), but the number of OTUs was enriched
by EFH treatment. Additionally, the plateaued rarefaction
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Figure 6: Effects of EFH on colonic expressions of the NF-κB pathway proteins determined by western blot in DSS-induced colitis mice.
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curve in Figure 7(c) indicated that the sequencing depth of all
samples had basically finished. The principal component
analysis (PCA) revealed that the microbial community struc-
ture of the DSS group deviated from that of control group,
whereas EFH treatment partially mitigated the shift
(Figure 7(d)). According to alpha diversity analysis
(Figures 8(e) and 8(f)), a significant reduction in microbial
diversity was observed in the DSS group, but higher diversity
was recorded in the EFH groups.

3.8. EFH Regulated Gut Microbiota Structure in DSS-Induced
Colitis Mice. The histograms in Figure 8 revealed the gut
microbiota community structure and the marked percentage
showed the relative abundance at all levels. The results indi-
cated that DSS decreased the relative abundance of Bacteroi-
detes and Firmicutes by 2.4% and 3.2%, respectively,
compared with the control group, whereas DSS increased
the levels of Proteobacteria by 6.8%. However, EFH reversed
the proportions of all 3 phyla to beyond those of the control
group. At the class level (Figure 8(b)), the levels of Bacteroi-
dia and Clostridia dropped in the DSS group, which was
reversed by EFH treatment. In addition, ɛ-Proteobacteria
and δ-proteobacteria related to IBD pathogenesis [33] were
found at high levels in the DSS group.

As shown in Figure 8(c), Bacteroidales, Clostridiales,
Campylobacterales, and Desulfovibrionales were the most
represented of the 12 bacterial orders. Among them, Campy-
lobacterales was identified at a relatively high level in the DSS
group but was detected only slightly in the EFH groups. Most
of the 16 families observed were related to the communities
observed at the phylum and class levels. Lachnospiraceae
and S24-7 were the main intestinal floras in the control
group, and their levels were reduced by DSS treatment. After
EFH treatment, the levels of these bacteria recovered to levels
similar to the control group.

As shown in Figure 8(e), sequencing data identified 18
genera of intestinal microflora. The relative abundance of
Odoribacter was significantly downregulated by DSS treat-
ment, but EFH treatment reversed the alteration. In addition,
EFH reduced the levels of Helicobacter, Ruminococcus, and
Paraprevotella.

4. Discussion

In this investigation, we proved for the first time the effective-
ness of EFH to treat DSS-induced colitis by improving the
balance of the gut microbiota and inhibiting the NF-κB
pathway. DSS-induced colitis is similar to UC in human
[34], so we extrapolated the anti-UC mechanism of EFH
based on the basis of results in mice with DSS-induced colitis.

Our LC-ESI-MS chromatogram results showed that EFH
is a complex mixture of chemical compositions. The main
effective components of EFHwere flavonoids, predominantly
taxifolin and puerarin. Taxifolin exerts its diverse therapeutic
benefits in inflammation-related diseases via the inhibition of
the NF-κB pathway [35]. Puerarin is associated with changes
in the gut microbiota and inhibits the NF-κB pathway to
relieve the inflammatory response [36]. Therefore, we specu-
lated that the observed anti-inflammatory effects of EFH
might be associated with flavonoids. However, more research
is needed to clarify how the biologically active ingredients of
EFH act on DSS-induced colitis.

The DAI score, colon length, and histological changes are
some of the markers used to assess for inflammation in
BALB/c mice with DSS-induced colitis [29]. Our results
showed that mice treated with EFH maintained body weight
and had significantly decreased DAI scores and histological
scores. In addition, MPO activity was higher in the DSS
group but was lowered with EFH treatment, suggesting that
EFH attenuated DSS-induced massive inflammatory
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Figure 7: Effects of EFH on the overall structure and microbial diversity of the gut microbiota in DSS-induced colitis mice. (a) OTU rank
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infiltration and disruption of mucosal structures [37]. These
results suggested that EFH exerted noticeably protective
effects against DSS-induced colitis to alleviate colonic
inflammation.

In recent years, the gut microbiota has received great
attention, and many studies have explored the changes of
the intestinal flora occurring with intestinal diseases, includ-
ing IBD and CRC [38]. In our study, DSS reduced the micro-
bial diversity of the gut microbiota in mice with colitis [39].
In contrast, EFH improved the bacterial diversity and kept
the balance between the population of beneficial bacteria
and pathogenic bacteria. For example, Helicobacter is associ-
ated with chronic gastritis and peptic ulcer diseases [40], and
we found that EFH reduced the relative increase of Helico-
bacter caused by DSS. Remarkably, EFH treatment increased
the richness of Odoribacter compared with DSS treatment,
and Odoribacter may reduce SCFA production to relieve
UC [41]. These results also suggested that EFH regulated
the gut microbiota to keep the balance of intestinal homeo-
stasis in DSS-induced colitis. However, the relationship
between the gut microbiota and colitis must be investigated
further.

Dysbiosis of the gut microbiota is associated with the
destruction of intestinal barrier and signals to epithelial cells
to trigger inflammatory responses [42]. The dysbiosis of
cytokines and gut bacteria might be controlled by the NF-
κB pathway [43]. The phosphorylation of p65 was thought
to enhance its entrance into the nucleus, so we measured
the expression level of the NF-κB p65 nuclear/cytoplasm
ratio. According to our results, EFH relieved DSS-induced

inflammatory infiltration in epithelial cells and then
suppressed the NF-κB pathway through downregulation of
the phosphorylated proteins IKKα, IκBα, and NF-κB p65.
The activated NF-κB pathway can be associated with the high
expression of cytokines. Therefore, proinflammatory
cytokines (TNF-α, IFN-γ, IL-1β, IL-6, IL-12, and IL-17) were
expressed highly in the DSS group, but the anti-
inflammatory cytokine (IL-4) expression was low, and these
changes were reversed by EFH treatment. Proinflammatory
cytokines mediate cell infiltration [44], whereas anti-
inflammatory cytokines are involved in tissue growth, repair,
and anti-inflammatory responses [45]. Therefore, EFH
suppressed the NF-κB pathway to upregulate the anti-
inflammatory cytokine but downregulate proinflammatory
cytokines, which formed an anti-inflammatory environment
to improve colon tissue repair.

Activated NF-κB transcriptionally expresses many pro-
teins involved in the initiation of signal transduction
cascades, especially COX-2 and iNOS [46]. In fact, iNOS
works synergistically with COX-2 to release cytokines and
contribute to the development of inflammatory reactions
[47]. As expected, high expressions of iNOS and COX-2 in
the DSS group were detected, and these were reduced with
EFH treatment. The anti-inflammatory effects of EFH might
not only reduce the release of inflammatory factors but also
downregulate iNOS and COX-2 mRNA levels.

Furthermore, two approved drugs (SASP and AZA)
were used to more comprehensively evaluate the efficacy
of EFH. As shown in the graphical abstract, the two drugs
are effective treatments for UC as measured clinically and
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pharmacologically [48]. SASP can decompose to 5-ASA to
inhibit the synthesis and release of PGE2 (related to COX-
2), and AZA can suppress the NF-κB pathway through
immune suppression. The results of this study, comparing
EFH effects with those of SASP and AZA, suggest that
EFH may be a potential better therapeutic agent than SASP
or AZA for the treatment of UC.

5. Conclusions

Our study shows novel insights into the anti-inflammatory
effects of EFH in DSS-induced colitis in mice. The protective
effects of EFH may be associated with the regulation of the
gut microbiota, suppression of the NF-κB pathway, and
subsequent downregulation of inflammatory mediators.
Our investigation provides experimental evidence for the
pharmaceutical application of EFH in the treatment of UC
and encourages further study of this fruit.
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