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Objectives. To compare the differences in normalized average glandular dose (NAGD) between the breasts of healthy subjects and
those of cancer patients and to determine if the NAGD difference is associated with breast cancer risk and improves breast cancer
classification. Materials and Methods. Craniocaudal view and mediolateral view full-field digital mammography (FFDM) images
were obtained from 1682 healthy subjects whose breasts were categorized as Breast Imaging-Reporting and Data System (BI-
RADS) I or II and from 811 biopsy-confirmed unilateral breast cancer patients whose breasts on the contralateral side were
category I or II. Both populations were randomized into training and test sets. Multivariate logistic regression analysis was used
to build the breast cancer risk assessment model, and the area under the receiver operating characteristic curve (Az) was used to
evaluate the model. Twenty-two breast cancer patients who were originally categorized as BI-RADS I or II for both breasts, but
were diagnosed with unilateral biopsy-confirmed breast cancer subsequently, were included to validate the model. Results. The
NAGD differences in both FFDM images between tumor-bearing breasts and the healthy breasts of patients were significantly
higher than those in healthy subjects (P < 0:001). The model with NAGD differences had a higher Az value than the model
without NAGD differences. While there was no NAGD differences between originally healthy breasts of breast cancer patients,
significant NAGD differences between now tumor-bearing breasts and the then previously healthy breasts were found in both
FFDM images. Conclusions. NAGD differences between both breasts can be included in the breast cancer risk assessment model
to evaluate breast cancer risk.

1. Introduction

Breast cancer is the leading cause of death among women
globally [1, 2]. In China, breast cancer incidence in recent
years has been the predominant contributor to overall cancer
incidence in women [3]. Full-field digital mammography
(FFDM) is the most effective method for breast cancer
screening [4–6]. With the advancement of this technology,
early cancer diagnosis has been largely improved because of
its ability to detect small-sized lesions [7, 8].

Previous studies have shown that identifying women at
high risk of developing breast cancer can improve their
survival rate and reduce the mortality rate of breast cancer
[9, 10]. A breast cancer risk assessment model was first
proposed by Gail et al. [11, 12] in 1989 to identify women
with a higher risk for breast cancer for further screening
and possible preventive therapies. A logistic regression model

was later developed and validated to predict the probability
of developing breast cancer for a woman based on the odds
ratio (OR) of classical risk factors [13]. A detailed family
history was also incorporated as an independent factor for a
breast cancer risk assessment model [14]. However, because
these models are solely based on demographic information,
they have low positive predictive values; thus, a breast cancer
risk assessment model that includes more predictive cancer
risk factors is clinically needed.

Image analysis of FFDM images has been widely used to
determine women at high risk for breast cancer. A computer-
ized mammographic parenchymal pattern measurement was
developed to evaluate the texture feature difference between
healthy subjects and cancer patients [10]. The convolutional
neural networks that extracted parenchymal features from
FFDM images were able to perform much better than the
conventional texture analysis to distinguish cancer risk
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populations through extensive application of deep learning
in imaging [15]. Furthermore, inclusion of radiomic texture
features provides a better classification for differentiating
between malignant and benign lesions [16]. Quantitative
parenchymal patterns are associated with breast cancer risk
and have higher discriminatory capability of image-
detectable power than classical risk factors used in existing
prediction models [17]. This finding is consistent with previ-
ous studies where the pattern of breast parenchyma is chan-
ged during breast cancer development [10, 15, 16, 18].

The average glandular dose (AGD) increases with breast
thickness but decreases with breast density [19]. Several stud-
ies have taken breast thickness and breast density into con-
sideration in FFDM images when AGD is measured [19–
21]. Previously proposed breast cancer risk models incorpo-
rated various legitimate risk factors. However, to the best of
our knowledge, the normalized average glandular dose
(NAGD) difference between the breasts of healthy subjects
and breast cancer patients has not been investigated.

Because breast cancer is a progressive disease, we hypoth-
esized that the changes in breast parenchyma might lead to
an increase in NAGD. Therefore, this study compared the
NAGD differences between the breasts of healthy subjects
and breast cancer patients, evaluated its association with
breast cancer risk, and assessed if the addition of NAGD dif-
ference as a risk factor could improve cancer classification.

2. Materials and Methods

2.1. Study Population. This retrospective study was approved
by the institutional review board. The necessity to obtain
written informed consent was waived. Women who under-
went FFDM screening examinations at Nanfang Hospital,
Southern Medical University, from 2014 through 2017 were
recruited for participation in our study. Information on clas-
sical breast cancer risk factors including age, age at menar-
che, menopausal status, parity status, age at first birth, and
first-degree family history of breast cancer were routinely
collected by means of a self-administered questionnaire for
every subject at the time of FFDM screening examinations.
Breast density was determined from the screening report of
radiologists.

The craniocaudal (CC) and mediolateral (MLO) view
images (Hologic Selenia Dimensions, Marlborough, MA,
USA) of the breasts from patients, who had undergone
FFDM screening examinations and biopsy at the hospital,
were sequentially acquired. The unilateral breast of eligible
patients had biopsy-confirmed breast cancer, and the contra-
lateral breast was categorized as I (negative) or II (definitely
benign) based on Breast Imaging-Reporting and Data System
(BI-RADS) category. CC-view and MLO-view FFDM images
of healthy subjects were sequentially collected at the hospital.
Eligible subjects included women of any age who had normal
screening mammograms with BI-RADS category I or II for
both breasts.

The selection of exposure settings depended on auto-
matic exposure control (AEC) systems. Two experienced
radiologists (more than 15 years in breast imaging diagnosis)
verified the final BI-RADS category for every subject. Exclu-

sion criteria were women who had prior breast cancer and
breast implants or had missing demographic information.

We collected two datasets for development and evalua-
tion of the breast cancer risk model. The first dataset con-
sisted of 1869 subjects (1261 healthy subjects and 608
cancer patients) and was used for risk model development.

Table 1: Breast cancer risk factors analyzed in the training and test
sets.

Risk factor
Training set (n = 1869) Test set (n = 624)
Healthy
subjects

Cancer
patients

Healthy
subjects

Cancer
patients

Age (y)

<45 556 210 137 56

45-55 568 239 220 80

>55 167 159 64 67

Total number 1261 608 421 203

Mean ± SD 46:4 ± 7:4 49:1 ± 10:5 48:4 ± 7:0 50:8 ± 10:6
#P value <0.001† 0.100‡ <0.001§ 0.051¶

Age at menarche

<13 143 64 54 20

13 254 133 82 32

14 239 94 99 42

15 229 102 69 24

>15 396 215 117 85

Mean ± SD 14:6 ± 1:9 14:7 ± 2:0 14:4 ± 1:7 15:0 ± 2:1
#P value 0.236† 0.074‡ <0.001§ 0.077¶

Menopausal status

Premenopausal 942 347 280 109

Postmenopausal 319 261 141 94
$P value <0.001† 0.001‡ 0.002§ 0.402¶

Parity

Nulliparous 45 27 12 9

Multiparous 1216 581 409 194
$P value 0.359† 0.481‡ 0.305§ 0. 997¶

Age at first birth

Mean ± SD 23:6 ± 5:6 23:7 ± 6:1 24:6 ± 5:4 24:1 ± 6:4
#P value 0.685† 0.444‡ 0.365§ 0.418¶

Family history of breast cancer

0 1220 595 410 201

≥1 41 13 11 2
$P value 0.177† 0.509‡ 0.072§ 0.121¶

BI-RADS density

Fatty 53 16 5 7

Scattered 149 112 49 45

Heterogeneous 958 422 318 133

Dense 101 58 49 18
$P value 0.512† 0.529‡ <0.001§ 0.224¶

Note: SD = standard deviation. #Student’s unpaired t-test, two sides. $Mann–
WhitneyU test. †Values are for healthy subjects versus cancer patients in the
training set. ‡Values are for healthy subjects in the training set versus healthy
subjects in the test set. §Values are for healthy subjects versus cancer patients
in the test set. ¶Values are for cancer patients in the training set versus cancer
patients in the test set.
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The second set consisting of 624 subjects (421 healthy sub-
jects and 203 cancer patients) was used for risk model
validation.

Twenty-two independent breast cancer cohorts, which
were originally categorized as I or II by the BI-RADS system
for both breasts during FFDM screening examinations but
were diagnosed with unilateral biopsy-proved breast cancer
at least 1 year later, were included for model validation.
The validation controls included 187 healthy subjects who
had cancer-free follow-up for at least 3 years.

2.2. Data Analysis. In all subjects, the AGD of each CC-view
and MLO-view FFDM image was extracted by MATLAB
2014a software from the DICOM headers. As AGD was asso-
ciated with breast thickness, we normalized the AGD by
thickness:

NAGD = AGD
breast thickness : ð1Þ

The NAGD differences between both breasts of the
healthy subjects were calculated by subtracting the value at
the left side from the one at the right side due to left-right
breast symmetry. However, the NAGD difference between
both breasts of cancer patients was calculated by subtracting
the value at the normal side from the one at the cancer side.

2.3. Statistical Analysis. Multivariate logistic regression anal-
ysis was used to determine the association between the vari-
ables and breast cancer risk. OR was used to assess the
association between breast cancer risk and NAGD difference.
Risk factors such as age, age at menarche, menopausal status,
parity status, breast density, and first-degree family history of
breast cancer were included for association analysis. Vari-
ables that were initially found to significantly improve pre-
diction were sequentially used to build a model for breast
cancer classification. The model performance of cancer clas-
sification was measured using the area under receiver operat-
ing characteristic (ROC) curve (Az). To ensure normality of
the recorded data, the Kolmogorov-Smirnov test was used
to assess all NAGD differences. The unpaired Student t-test

was used to assess the NAGD differences between healthy
subjects and cancer patients. All statistical analyses were per-
formed using SPSS 19 (SPSS Inc., Chicago, IL, USA), and the
level of significance was set at 0.05.

3. Results

To investigate whether NAGD differences between both
breasts of healthy cohorts and patients with breast cancer
were associated with breast cancer risk, we initially built a
training set for a breast cancer risk assessment model, includ-
ing 1869 subjects (1261 healthy subjects and 608 cancer
patients) and 624 subjects (421 healthy subjects and 203 can-
cer patients) as a test set to validate the established model.
The characteristics of the study population are shown in
Table 1. For the training set, the mean age of the cancer
patients was 49:1 ± 10:5 years, which was statistically higher
than the 46:4 ± 7:4 years of healthy subjects. For the test
set, the mean age of cancer patients and healthy subjects
was 50:8 ± 10:6 years and 48:4 ± 7:0 years, respectively. The
BI-RADS density of healthy subjects and cancer patients
was mainly in the heterogeneous category. Menopausal sta-
tus, parity, and first-degree family history of breast cancer
were treated as bicategorical variables in the analysis. The
analysis of Kolmogorov-Smirnov test showed that all the var-
iables were within Gaussian distribution (P > 0:05) in both
the training and test sets.

Figure 1 shows the NAGD values of the CC-view and
MLO-view FFDM images from healthy subjects
(Figure 1(a)) and cancer patients (Figure 1(b)). The NAGD
differences between both breasts of cancer patients were sig-
nificantly higher than those of healthy cohorts (Figure 1(c)).
The correlations between NAGD differences of CC-view and
MLO-view FFDM images with other confounding factors are
summarized in Tables 2 and 3. Age and menopausal status
were weakly associated with NAGD differences in both CC-
view and MLO-view FFDM images, but this difference was
statistically significant.

The area under the ROC curve (Az) for age, menopausal
status, and NAGD differences in the CC-view andMLO-view
FFDM images, which was calculated for their effectiveness in
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Figure 1: Box plots of the NAGD values of CC-view and MLO-view FFDM images from (a) healthy subjects and (b) cancer patients. (c)
NAGD differences in CC-view (P < 0:001) and MLO-view (P < 0:001) FFDM images between both breasts of healthy subjects and cancer
patients (∗significant difference from healthy subjects).
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differentiating cancer patients from healthy subjects, was
0:58 ± 0:01, 0:58 ± 0:01, 0:70 ± 0:01, and 0:72 ± 0:01, respec-
tively (Figure 2). The difference in Az values between age and
menopausal status did not achieve significance (P > 0:05).
However, the Az value for the NAGD differences in CC-
view and MLO-view FFDM images was significantly higher
than age and menopausal status (P < 0:05).

Although the OR for the NAGD differences in CC-view
and MLO-view FFDM images was reduced after adjusting
for the effects of other variables, the association between
NAGD differences and breast cancer risk persisted in the
multivariate analysis (Table 4). The NAGD differences in
CC-view (P < 0:001) and MLO-view (P < 0:001) FFDM
images, age (P = 0:014), menopausal status (P = 0:002), age
at first birth (P = 0:005), and parity (P = 0:001) were all fac-
tors that significantly contributed to the prediction of breast
cancer risk. Nonsignificant risk factors including age at men-
arche, family history, and breast density were also included in
the model as they improved the accuracy of the proposed
model. The logistic regression model with all nine factors
listed in Table 4 had an Az value of 0:77 ± 0:01 for the train-
ing set and an Az value of 0:75 ± 0:02 for the test set
(Figures 3(a) and 3(b)). The model without NAGD differ-
ences had an Az value of 0:61 ± 0:01 and 0:56 ± 0:02 for the
training set and the test set, respectively. The breast cancer

risk assessment model with NAGD differences as an addi-
tional factor was significantly improved compared to the
model without NAGD differences (P < 0:001).

Figure 4 shows the NAGD difference in CC-view and
MLO-view FFDM images between the breasts of healthy sub-
jects and cancer patients at the initial healthy state and later
follow-up state where one breast of the cancer patients had
a tumor. Expectedly, no significant NAGD differences were
found in the follow-up CC-view (P = 0:34) and MLO-view
(P = 0:97) FFDM images of healthy subjects. However, the
NAGD differences in both CC-view (P = 0:035) and MLO-
view (P = 0:043) FFDM images between both breasts of the

Table 2: Correlation between NAGD differences in CC-view FFDM
images with confounding variables.

Variables Correlation P value

Pearson product-moment correlation

Age 0.001 0.046

Age at menarche -0.0002 0.516

Age at first birth 0.0003 0.298

Spearman rank correlation†

BI-RADS density -0.023 0.248

Menopausal status 0.066 0.001

Parity 0.011 0.592

Family history of breast cancer -0.020 0.315
†The risk factors were treated as bicategorical variables in the analysis.

Table 3: Correlation between NAGD differences in MLO-view
FFDM images with confounding variables.

Variables Correlation P value

Pearson product-moment correlation

Age 0.051 0.010

Age at menarche 0.013 0.518

Age at first birth -0.020 0.324

Spearman rank correlation†

BI-RADS density -0.029 0.152

Menopausal status 0.081 <0.001
Parity 0.020 0.317

Family history of breast cancer -0.039 0.053
†The risk factors were treated as bicategorical variables in the analysis.
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Figure 2: ROC curves for classification of healthy subjects and
cancer patients based on age, menopausal status, and NAGD
differences in CC-view and MLO-view FFDM images.

Table 4: Multivariate logistic regression analysis of the effects of
NAGD differences in CC-view and MLO-view FFDM images on
breast cancer risk.

Variables OR P value 95% CI

Univariate analysis ∗

NAGD difference in CC view 4.83 <0.001 3.93, 5.95

NAGD difference in MLO view 6.05 <0.001 4.85, 7.55

Multivariate analysis†

NAGD difference in CC view 2.35 <0.001 1.83, 3.02

NAGD difference in MLO view 3.77 <0.001 2.91, 4.90

Age 1.02 0.014 1.00, 1.04

Age at menarche 1.04 0.141 0.99, 1.09

Menopausal status 1.56 0.002 1.18, 2.06

Age at first birth 1.04 0.005 1.01, 1.07

Parity 0.22 0.001 0.09, 0.52

Family history of breast cancer 0.59 0.108 0.30, 1.13

BI-RADS density 1.11 0.243 0.93, 1.33
∗The univariate analysis was used to examine the association between the
NAGD differences and breast cancer risk. †The multivariate analysis was
used to examine the independent contribution of breast cancer risk.
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cancer patients were significantly higher than those between
their previously healthy breasts.

4. Discussion

In this study, we found significantly higher NAGD differ-
ences in CC-view and MLO-view FFDM images between
tumor-bearing and healthy breasts of patients than those in
healthy subjects. The logistic regression model with NAGD
differences had a higher Az value than the model without
NAGD differences. Our results showed that the established
breast cancer risk assessment model including NAGD differ-
ences between both breasts could be clinically beneficial to
evaluate breast cancer risk for patients.

Breast cancer is the most common malignant cancer in
women, so predicting the risk or likelihood of individual
woman that will develop breast cancer in the future is an

important strategy to reduce cancer death [22, 23]. Previous
studies have found a high correlation between parenchymal
texture features extracted from the left and right breast due
to left-right breast symmetry [24, 25]. Zheng et al. [26] used
the feature of computed bilateral mammographic density
asymmetry in the sequential screening examinations to clas-
sify low- and high-risk subjects who could potentially
develop breast cancer. In our study, the finding that the
NAGD difference between both breasts of cancer patients
was significantly higher than that of healthy subjects in both
CC-view and MLO-view FFDM images suggested parenchy-
mal changes on cancer side of the breast after tumors develop
and that the changes in breast parenchyma might lead to an
increase in NAGD.

Breast density, age, and menopausal status are strong risk
factors associated with breast cancer in previous risk assess-
ment studies [22, 27]. However, we found that the NAGD
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Figure 3: ROC curves of the established model with and without NAGD differences in the (a) training and (b) test sets.
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(∗significant difference from healthy subjects).
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differences did not show a strong correlation with breast den-
sity (Tables 2 and 3). In addition, the correlation between
NAGD differences and other classical risk factors was also
low. These findings suggested that the NAGD difference
between both breasts could serve as an independent risk fac-
tor and is not associated with the established breast cancer
risk factors. In this study, we used the ROC method to com-
pare the ability of the NAGD differences in CC-view and
MLO-view FFDM images to differentiate healthy subjects
and cancer patients with regard to patients’ age and meno-
pausal status (Figure 2). The results showed that the NAGD
differences had a significantly higher accuracy for cancer
classification than age (P < 0:05) and menopausal status
(P < 0:05).

In this study, we built a logistic regression model that
incorporated demographic information and NAGD differ-
ences in CC-view and MLO-view FFDM images in large
healthy and cancer cohorts and also validated the model
using independent healthy and cancer subjects. The analysis
of follow-up healthy subjects and cancer patients indicated
that the NAGD difference between both breasts was posi-
tively associated with breast cancer risk. When the NAGD
differences between both breasts increased, the breast cancer
risk increased before the lesion became visible on FFDM
images.

It is worth noting that this study had some limitations:
the follow-up sample size was small; the robustness of the
model has yet to be demonstrated with other independent
test datasets; and the association of the NAGD differences
with other risk factors remains to be investigated. In conclu-
sion, our study demonstrates that the NAGD difference
between both breasts is a promising risk factor for differenti-
ating cancer patients from healthy subjects. Furthermore,
NAGD difference is strongly associated with breast cancer
risk and weakly with other known classical risk factors, sug-
gesting that it has the potential to serve as an independent
factor in a breast cancer risk assessment model.

5. Conclusions

We conclude that NAGD differences between both breasts
show promise as an independent risk factor and can be
included in the breast cancer assessment model. When
NAGD differences between both breasts increase, the breast
cancer risk increases before the lesion is readily perceived
by human eyes on FFDM images. For future work, a multi-
center study is needed to improve prediction accuracy and
robustness of the model.
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