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Objective. To determine if osteosarcoma (OS) and Ewing sarcoma (EWS) of the pelvis based on MRI can be differentiated
using radiomic analysis. Materials and Methods. In this study, 3.0 T magnetic resonance (MR) data of 66 patients (40 males
and 26 females, mean age 27:6 ± 13:9 years) with pathologically confirmed OS or EWS of the pelvis (35 with OS and 31
with EWS) taken from April 2013 to December 2017 were retrospectively reviewed. T2-weighted fat-saturated (T2-FS) and
contrast-enhanced T1-weighted (CET1) images were manually segmented, and imaging features were extracted.
Independent-sample t-test, Spearman’s test, and the least absolute shrinkage and selection operator (LASSO) method were
used to select the most useful features from the original data set. The performance of radiomic analysis was investigated by
the area under the receiver operating characteristic (ROC) curve (AUC) analysis. Results. 385 initial features were extracted
from T2-FS and CET1 MR data. Nine features from T2-FS and 7 features from CET1 were selected by using the LASSO
method. The radiomic analysis to differentiate OS and EWS of the pelvis based on T2-FS and CET1 images using the
aforementioned selected features achieved AUC values of 0.881 (95% confidence interval (CI): 0.799–0.963) and 0.765 (95%
CI: 0.652–0.878), respectively. Conclusion. Radiomic analysis showed potential in differentiating OS from EWS of the pelvis,
in which T2-FS demonstrated better diagnostic value. To differentiate OS from EWS of the pelvis using our
multiparametric MRI-based radiomic analysis could preoperatively improve diagnostic accuracy and greatly contribute to
therapy planning.

1. Introduction

Osteosarcoma (OS) is the most common primary malignant
bone tumor in children and young adults, although it has a
special bimodal age distribution in the second decade of life
and late adulthood [1]. OS has a predilection for the meta-
physeal portions of long bones, such as the femur, tibia,
and humerus [2]. Ewing sarcoma (EWS) is a high-grade sar-
coma arising both in skeletal and extraskeletal locations; it is

the third most common primary bone sarcoma, following OS
and chondrosarcoma [3]. Moreover, EWS occurs predomi-
nantly in the bones of extremities and pelvis of children
and young adolescents. OS and EWS of the pelvis share many
characteristics and features compared with those arising in
other parts of the body. Given the deeper location in the body
than those in the extremities, pelvic malignancies are usually
larger when being diagnosed, thereby greatly affecting
treatment and outcome in consequence. Currently, most
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institutes treat OS and EWS patients with neoadjuvant che-
motherapy and subsequent wide surgical resection of the
tumor. However, preoperation treatment is different, in
which additional adjuvant chemotherapy is usually applied
to high-grade OS, whereas radiation therapy is used in
EWS [1]. Owing to different treatment strategies, the need
for early differential diagnosis exists. To conduct a definite
diagnosis, biopsy is necessary, although it cannot overcome
its invasiveness, sampling error, and potentially tumor
spread. A noninvasive reliable imaging technique which
helps distinguish OS from EWS is needed as a supplementary
differentiated method.

Owing to the superiority of soft tissue resolution, magnetic
resonance imaging (MRI) is now becoming a preferred tool
for diagnosing, staging, and monitoring lesions that originate
from bones and soft tissues, because it could precisely demon-
strate the extent and the size of the tumor. Given that such
osseous lesions are inconspicuously visible within fatty mar-
row on T1-weighted sequences, T2-weighted fat-saturated
(T2-FS) sequences and contrast-enhanced T1-weighted
(CET1) sequences have higher sensitivity in depicting lesion
morphology and the surrounding involving structures. Many
advanced techniques and sequences that may help in diagnos-
ing both osseous and soft tissue tumors have been established
[4, 5]; however, they may sometimes fail to provide a clear dif-
ferentiation, especially for OS and EWS because of their clini-
cal and morphological similarities.

The emergence of radiomics provides new methods on
differentiation, staging, monitoring tumors, and even detect-
ing tumor genetics. Radiomics has greatly broadened the
scope of conventional medical imaging in clinical oncology,
as opposed to only focusing on morphology as before. Radio-
mics assumes that medical images contain much vital under-
lying pathophysiology information by converting them into
mineable high-dimensional data that could be correlated
with clinical outcomes and for further use in clinical decision
support [6]. In recent years, radiomics has been mainly used
in oncology for staging malignant tumors [7], prediction of

lymph node metastasis [8, 9], tumor prognosis [10], predic-
tion of treatment response [11], or even prediction of the
cancer phenotype [12, 13].

In the present study, for the first time, we aim to prelim-
inarily evaluate the capability of radiomic analysis to differ-
entiate OS from EWS of the pelvis.

2. Materials and Methods

2.1. Study Population. In this institutional review and board-
approved retrospective study, informed consent was waived.
The clinical and pathology database was reviewed to identify
patients, and the inclusion criteria were as follows: (a)
patients who underwent histological biopsy or tumor resec-
tion with tumor tissues from the pelvis that were pathologi-
cally confirmed as OS or EWS, (b) patients who underwent
MRI at our institute (including T2-FS and CET1), and (c)
MR data acquired using the same system from the same ven-
dor (to minimize variations in image quality and signal
intensities). The exclusion criteria were as follows: (a) poor
imaging quality including obvious artifacts, (b) insidious
lesions that were poorly displayed on acquired images, and
(c) missing images or relevant sequences. Clinical data (age,
gender, and so on) were obtained by reviewing the medical
records. After adhering to these criteria, the study data set
of 66 patients (40 males and 26 females, age 10–87 years,
mean 27:6 ± 13:9 years) from April 2013 to December
2017 was finalized. These 66 histologically confirmed cases
included 35 confirmed OS and 31 confirmed EWS. Table 1
lists the characteristics of patients in this study. We iden-
tified the primary tumors as the locations of lesions for
the large lesions that involve more than one site.

2.2. MR Data Acquisition.MR images were all acquired using
a Discovery MR750 3.0T scanner (GE Healthcare, Milwau-
kee, WI, U.S.) with an eight-channel phased array body coil
for signal reception. Images were acquired by spin echo and
T1-weighted 3D gradient recalled echo with a 2-point Dixon

Table 1: Characteristics of patients and tumors.

Patient characteristics
OS EWS t/χ2 value p value

No. of patients 35 31

Age (years)

Mean ± SD (range) 30:7 ± 16:5 (13–87) 24:5 ± 9:6 (10–66) 1.846a 0.069

Gender (M/F)

Male 19 (47.5%) 21 (52.5%)
1.247b 0.264

Female 16 (61.5%) 10 (38.5%)

Location of tumors

Ilium 21 (56.8%) 16 (43.2%)

2.472b 0.781

Acetabulum 2 (66.7%) 1 (33.3%)

Pubis 5 (62.5%) 3 (37.5%)

Ischium 1 (25.0%) 3 (75.0%)

Sacrum & coccyx 5 (45.5%) 6 (55.5%)

Soft tissues 1 (33.3%) 2 (66.7%)

Note: a = t-test; b = chi-square test.

2 BioMed Research International



fat/water separation method (LAVA FLEX). In each study, a
T2-FS sequence and a CET1 sequence were included. Other
sequences such as T1-weighted fat-saturated images and gen-
eral T1-weighted and T2-weighted images without fat satura-
tion were excluded for analysis due to the retrospective data
imperfection. Intravenous administration was gadodiamide
injection (Omniscan®, GE Healthcare, Ireland) using a
weight-based dosing protocol (0.1mmol/L per kg body
weight), and the injection rate was 2.5mL/s. All sequence
parameters are described in Table 2. All MR data were
retrieved from the picture archiving and communication sys-
tem (PACS) of our institute and saved in the DICOM format
for further analysis.

2.3. Preprocessing of MR Images. Prior to radiomic analysis,
all images were transferred into itk-SNAP software (version
3.6.0, http://www.itksnap.org/) for segmentation. All lesions
were segmented manually by a radiologist with more than 7
years of MRI diagnostic experience. Another radiologist with
more than 10 years of MRI diagnostic experience was asked
for confirming the accuracy of segmentation. A revise was
made by two radiologists in case of disagreement on specific
image segmentation after discussion. Delineating the ROI,
including the entire tumor, peritumoral edema, and perios-
teal reactions, was performed on one image of each sequence.
The chosen slice or image demonstrated the maximum ante-
roposterior diameter of the lesion.

2.4. Radiomic Feature Extraction. Imaging features were
extracted using Analysis Kit software (A.K., GE Healthcare)
from T2-FS and CET1 data with manually segmented ROIs.
Statistical analysis was used to perform radiomic feature
extraction, which included histogram features, form factor
features, Haralick features [14], gray-level cooccurrence
matrix (GLCM) features (offset 1/4/7) [14], and gray-level
run length matrix (GLRLM) features (offset 1/4/7, [15–17]).
Some features are reported in Table 3.

2.5. Feature Selection Method. We used independent-sample
t-test, Spearman’s test, and the LASSO method to select the
most useful features associated with the differentiation of
OS and EWS from the original data set [19]. A p of 0.05
was considered statistically significant in independent-
sample t-test and Spearman’s test. The principle of feature
selection by the LASSO method is to restrain some feature
coefficients to zero by adjusting the parameter λ. Then, the
area under the receiver operating characteristic curve
(AUC) could be achieved versus log(λ) by using tenfold
cross-validation. The LASSO method has an advantage of
analyzing a large number of radiomic features with sparser
samples [20]. The result derived from LASSO is usually
robust and easy to be interpreted.

2.6. Statistical Analysis. We used R software (R Foundation
for Statistical Computing, Vienna, Austria. URL: http://
www.R-project.org) to perform the statistical analysis. The
“glmnet” package was used for LASSO logistic regression. A
p of 0.05 was considered statistically significant.

3. Results

3.1. Radiomic Feature Extraction/Selection. The study flow-
chart is presented in Figure 1. A total of 385 initial features
in total were extracted from original MR data. They were
divided into five types, including histogram features (n = 42),
form factor features (n = 9), Haralick features (n = 10), GLCM
features (offset 1/4/7) (n = 144), and GLRLM features (off-
set 1/4/7) (n = 180). By using independent-sample t-test,
Spearman’s test, and the LASSO method, potential predic-
tors were selected, as described in Table 4(a).

We mainly focused on the analysis of the features
extracted by using the LASSO method because the number
of features extracted by the other two methods was relatively
large, thereby increasing the difficulty for further analysis. Of
these, by using the LASSO method, we selected nine features
from T2-FS images and seven features from CET1 images

Table 2: MRI sequence parameters.

Sequence Plane Thickness (mm) Slices Matrix TR (msec) TE (msec)

T2-FS Axial 7 24 512 × 512 3800–4300 73-85

CET1 Axial 4 108–132 512 × 512 4.3 1.9

Table 3: Radiomic features used in the analysis.

Radiomic feature type References Radiomic features

Histogram Sutton [18] Mean, variance, uniformity, skewness, kurtosis, energy, entropy

Form factor / Volume CC, surface, surface volume ratio, compactness, maximum 3D diameter

Haralick and GLCM Haralick et al. [14] Entropy, inertia, inverse difference moment

GLRLM

Galloway [15]
Short run emphasis, long run emphasis, gray-level nonuniformity,

run-length nonuniformity, run percentage

Chu et al. [16] Low gray-level run emphasis, high gray-level run emphasis

Dasarathy and Holder [17]
Short run low gray-level emphasis, short run high gray-level emphasis,
long run low gray-level emphasis, long run high gray-level emphasis

Note: GLCM= gray-level cooccurrence matrix; GLRLM= gray-level run length matrix.
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that were the most powerful for the distinction between OS
and EWS (Figure 2). The selection result is shown in
Table 4(b).

3.2. Differentiated Performance. The sensitivity and specific-
ity of the distinction between OS and EWS using data from
T2-FS and CET1 are shown in Table 5. The radiomic models
based on T2-FS and CET1 images achieved the AUC values

of 0.881 (95% CI: 0.799-0.963) and 0.765 (95% CI: 0.652-
0.878), respectively, by using DeLong’s test, which are dem-
onstrated in Figure 3.

4. Discussion

In this paper, we assessed the ability of our newly established
radiomic model based on using multiparametric MR data to

Figure 1: Workflow of this study. [1] MR images acquired from a qualified study data set. [2] Tumor segmentation was performed on T2-FS
and CET1 MR images. Experienced radiologists contoured the tumor areas on MRI slices. [3] 385 features in total were extracted from
original MR data. [4] Independent-sample t-test, Spearman’s test, and the LASSO regression were used to conduct feature reduction.
[5] ROC analysis was used to evaluate the established model.

Table 4

(a) Numbers of radiomic feature selection by different methods

T2-FS CET1

Independent-sample t-test 141 60

Spearman test 27 10

LASSO 9 7

(b) Radiomic feature selection by the LASSO method

No. T2-FS CET1

1 Intercept Intercept

2 Correlation_All Direction_offset7_SD Min intensity

3 Surface volume ratio Inverse Difference Moment_All Direction_offset 7_SD

4 GLCM Energy_All Direction_offset4_SD GLCM Entropy_All Direction_offset 1_SD

5 Inverse Difference Moment_All Direction_offset 4_SD GLCM Energy_angle135_offset 7

6 Inverse Difference Moment_All Direction_offset 7_SD Volume MM

7 Cluster Prominence_All Direction_offset 7_SD Surface volume ratio

8 High Grey Level Run Emphasis_All Direction_offset 7_SD

9 Short Run High Grey Level Emphasis_All Direction_offset 7_SD

Note: GLCM= gray-level cooccurrence matrix.
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help differentiate OS from EWS of the pelvis. We evaluated
16 features that were extracted and selected by using the
LASSO method. Our radiomic model yielded favorable
results and constituted a new technique for the discrimina-
tion of OS and EWS. The AUC was high for both T2-FS
and CET1. High specificity was achieved when using data
both from T2-FS and CET1 (82.9% and 100%, respectively),

and the sensitivity was also high from T2-FS (74.2%). In
brief, we believe that the methodology developed in this work
may serve as a reliable additional tool for differentiation OS
from EWS.

Preoperative discrimination between OS and EWS of the
pelvis is difficult for clinical practice, although it could be per-
formed by using clinical data, such as age, gender, and other
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Figure 2: Radiomic features derived from T2-FS selected by using the least absolute shrinkage and selection operator (LASSO) binary logistic
regression model. (a) Selection of the tuning parameter (λ) in the LASSO model via tenfold cross-validation based on minimum criteria. The
lower x-axis indicates the log(λ), the upper x-axis indicates the number of features, and the y-axis indicates binomial deviances. Dotted
vertical lines indicate the deviance values for each model with a given λ. The vertical black dotted lines define the optimal values of λ. A λ
value of 0.07, with log(λ), -0.11 is chosen. (b) LASSO coefficient profiles of the 385 texture features. The nine selected features with
nonzero coefficients are indicated in the plot.
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accessory examinations, such as medical images. OS is the
most common primary malignant bone tumor, which origi-
nates from primitive bone-forming mesenchymal cells. It
has a bimodal age distribution, which is during adolescence
and older adulthood, respectively. OS of the pelvis is rarely
seen and only accounts approximately 8% of all sites [21].
EWS of bones represents the third most common primary
bone malignancy, which exceeded in prevalence only by OS
and chondrosarcoma. The incidence rate peaks within the
second decade of life. In terms of tumor location, EWS is
commonly seen at diaphysis of long bones and the pelvis,
though the most common site is still the extremities, which
is quite similar as OS [22].

Both OS and EWS demonstrate aggressive features at
radiography, reflecting their high-grade nature of malig-
nancy. Many common imaging characteristics are available,
such as bone destruction with a moth-eaten to a permeative
pattern, a variable amount of mineralized osteoid, various
types of periosteal reaction, and adjacent soft tissue mass
[23, 24]. Among imaging modalities, MRI is routinely used.
Marrow replacement and cortical destruction could be more

clearly seen on MRI with heterogeneous signal intensity. It
provides excellent tissue contrast, which is much better than
computed tomography (CT) and conventional radiography;
however, it could not clearly discriminate between OS and
EWS due to overlapping imaging characteristics and tumor
locations. For instance, most of small cell OS (a subtype of
OS) cases own the radiographic features including lytic bone
destruction, a soft tissue mass, and periosteal reaction, which
are also commonly seen in EWS cases. Furthermore, both
their cells are small and have round, hyperchromatic nuclei;
they might be mistaken from each other even by histologic
analysis [25]. Some advanced sequences to make differential
diagnosis have been investigated, such as diffusion-
weighted imaging (DWI) [4] and intravoxel incoherent
motion (IVIM) [26]. However, the ability of discrimination
is not satisfactory.

Radiomics is a new methodology that uses advanced
imaging features for differentiation, staging, monitoring
tumors, and even detecting tumor genetics. Compared with
traditional radiological diagnosis methods, radiomics could
provide ample information and improve diagnostic repro-
ducibility. Thus, the combination of radiomics with tradi-
tional MRI protocols is worth expecting because it may
develop into a model to weaken user dependence of interpre-
tation because the diagnostic accuracy highly depends on the
radiologist’s experience. Therefore, we decided to evaluate
the performance of differentiation ability using radiomic
analysis. The value of radiomics has been under investigation
for the past decade. Previous studies mainly focused on the
establishment of a radiomics nomogram for staging malig-
nant tumors [7], prediction of lymph node metastasis [8,
9], tumor prognosis [10], prediction of treatment response
[11], or even prediction of the cancer phenotype [12, 13].

To the best of our knowledge, this study is the first
that attempts to use radiomics to differentiate these two
osseous malignant tumors. The application we used is a
mature platform, and the radiomic features it provides
could describe the signal intensity, morphological charac-
teristics, and texture information of the lesions, thereby
possibly representing the information of the lesions com-
prehensively. As demonstrated, radiomics can indicate
additional information about the tumor’s underlying biol-
ogy than imaging morphology. For example, in Table 4,
the strong associations of High Grey Level Run Emphasis
extracted from the T2-FS data set could be explained from
the fact that patients possess large and irregular high sig-
nal intensity on T2-weighted images in the inner portion
of tumors, most likely representing necrotic areas. The
presence of these inner, long T2 signal irregular regions
suggests that the tumor is rapidly increasing in size and
might be more likely to be an OS.

For most oncological MR exams in our institute, T2-FS
and CET1 were contained. T2-FS could effectively depict
the border of lesions and demonstrate the overall cellular
density of lesions to a certain extent, whereas CET1 could
describe the vascularity of lesions, reflect the degree of malig-
nancy, and distinguish necrosis and solid tumors. Further-
more, previous studies that used such sequences for
radiomic analysis yielded favorable results [27, 28]. Thus,

Table 5: Differentiated performance based on T2-FS and CET1.

T2-FS CET1

Sensitivity 74.2% 22.6%

Specificity 82.9% 100%

AUC
0.881

(95% CI: 0.799–0.963)
0.765

(95% CI: 0.652–0.878)
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we set up our model using these two sequences. Based on our
results, features yielded from T2-FS perform better than
those from CET1, with higher AUC and sensitivity, thereby
possibly benefiting the patients who are allergic to contrast
media. We assumed that the first-order features selected into
the T2-FS model evaluate the intralesional heterogeneity,
thereby accounting for pathological characteristics that are
important for the distinction of OS and EWS. The selection
of mainly higher-order features demonstrates that texture
heterogeneity in different spatial directions was descriptive
of lesion classification.

Overall, the methodology proposed in this work was
found to possess high potential for discrimination of OS
and EWS. However, it also has some limitations. Firstly, its
retrospective nature comparatively reduces the level of evi-
dence. We only analyzed T2-FS and CET1 due to this nature
because quite a number of incomplete scans did not contain
other advanced sequences, such as DWI. The relatively small
data set was another limitation, and a larger patient cohort is
needed to create a more robust model. We excluded much
data because a part of patients with OS or EWS of the pelvis
did not undergo the contrast-enhanced MRI for some rea-
sons, such as claustrophobia, poor compliance, and potential
contrast media allergy. Furthermore, some patients’ clinical
features are incomplete, so we had to exclude this part.
Therefore, multivariables of rad-score nomogram establish-
ment were waived regretfully. Moreover, to minimize the
image variation, many items of data performed on different
3T systems were abandoned. Many published radiomic stud-
ies divided the patients into the training set and the valida-
tion set to validate the performance of the established
model. However, because of the small data set, this method
needed to be waived. Nonetheless, using the approach for
collecting such a scale of data in a single institution has not
been easy because of the relatively low morbidity of both dis-
eases, especially only for pelvic lesions. Further research
would expect improved performance by using other modali-
ties’ images, such as CT, plain films, or some other multipara-
metric MR images by conducting a prospective, multicenter,
rigorous designed study to solve the aforementioned issues.
In addition, to a certain extent, using a 2D manual segmenta-
tion of tumor (ROI was only drawn on the largest cross-
sectional area of the entire lesion) instead of a 3D automatic/-
semiautomatic method might affect the final result of radio-
mic feature analysis. Some features, such as lesion volume
and irregularity, could not be extracted to be further ana-
lyzed. However, because of the strong stability of our selected
radiomic features, the difference could be ignored. Moreover,
manual segmentation of the tumors by experienced
researchers has been applied in many previous studies and
yielded excellent results [29–31]. An automatically comput-
erized tumor segmentation method with high reliability
should be used in future studies.

5. Conclusions

To the best of our knowledge, there is no previously pub-
lished research in the literature using radiomic analysis to
differentiate OS from EWS. In our study, we identified that

there was a promising power for the distinction of OS and
EWS by using our multiparametric MR-based radiomic
analysis.
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