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Purpose. The incidence of papillary thyroid cancer (PTC) is increasing, and traditional diagnostic methods are unsatisfactory.
Therefore, identifying novel prognostic markers is very important. ciRS-7 has been found to play an important role in many
cancers, but its role in PTC has not been reported. This study was performed to evaluate the biological role and mechanism of
ciRS-7 in PTC. Material and Methods. The expression of ciRS-7 in PTC tissues and the matched adjacent tissues was
determined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The PTC cell lines (TPC-1 and
BCPAP) were used to evaluate the role of ciRS-7. ciRS-7-siRNA and overexpression plasmid were constructed and transfected
into PTC cells. A CCK-8 assay and colony formation assay were performed to explore the effects of ciRS-7 on cell proliferation.
Annexin V/PI staining and FACS detection were used to detect cell apoptosis. Wound healing assay was performed to detect
cell migration. A transwell assay was conducted to explore the effects of ciRS-7 on invasion and migration. Western blotting was
performed to evaluate protein expression. The luciferase reporter system was used to determine the underlying mechanism of
miR-7. Result. ciRS-7 was highly expressed in PTC tissues and cell lines compared with the corresponding controls. In vitro
study showed that ciRS-7 silencing suppressed proliferation, migration, and invasion of TPC-1 and BCPAP. Mechanistically, the
effects of ciRS-7 on invasion and migration may be related to epithelial-mesenchymal transition (EMT). ciRS-7 silencing could
attenuate effects on PTC cells induced by miR-7 knockdown. Epidermal growth factor receptor (EGFR), which was
demonstrated to be a target of miR-7, decreased significantly in ciRS-7-siRNA PTC cells. Overexpression of EGFR also
attenuated effects of PTC cells induced by silencing ciRS-7. Conclusion. ciRS-7 was significantly upregulated in PTC tissues, and
it promoted the progression of PTC by regulating the miR-7/EGFR axis. ciRS-7 is a promising prognostic biomarker and
therapeutic target in PTC.
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1. Introduction

Papillary thyroid cancer (PTC) is the most prevalent thyroid
malignancy, accounting for 80–85% of all thyroid cancers
[1]. The incidence of PTC has steadily and rapidly increased
over the past 40 years. Particularly, in the past five years, the
incidence has increased faster than that of any other type of
cancer. Although PTC has a good prognosis, 30% of patients
may develop persistent disease or relapse. Somatic
BRAFV600E mutation is used for diagnosing PTC, but its
prognostic effect remains controversial [2–4]. Most PTCs
are surgically removed and treated with adjuvant radioactive
iodine. Nevertheless, a fraction of PTCs progresses to meta-
static disease and/or does not respond to adjuvant radioac-
tive iodine therapy; the prognosis of these cases is poor,
with a 10-year survival rate of 10% [5–7]. New prognostic
markers useful for optimizing therapy and long-time
follow-up care must be identified. Circular RNAs are a class
of RNA molecules without 5′ and 3′ ends, cap structure, or
poly-A tail structure. Because of their circular configuration,
they are protected from degradation by RNases [8]. This is
advantageous compared to the use of linear RNA as markers
for diagnosis and prognosis [9]. Recent studies indicated that
circRNAs play a critical regulatory function in multiple phys-
iological and pathological processes. For example, circRNA_
102958 sponges miR-585 to promote the tumorigenesis of
colorectal cancer [10]. In nucleus pulposus tissues of inter-
vertebral disc degeneration, circRNA_104670 sponges miR-
17-3p to regulate matrix metalloproteinase-2 [11]. In partic-
ular, the role of circRNAs as miRNA “sponges” in tumori-
genesis and development has been widely investigated [9].
Unfortunately, although emerging evidences indicated that
circRNAs play a critical regulatory function in proliferation
and invasion of cancer cells, the study about functions of cir-
cRNA in PTC has just begun. Moreover, whether circRNAs
in PTC sponge to miRNAs and regulate the expression level
of downstream genes is also unclear.

Few evidence about functions and mechanisms of cir-
cRNAs exists at present.

ciRS-7, also named as cerebellar degeneration-related pro-
tein 1 antisense RNA (CDR1as) or CDR1NAT, comprises
1500 nucleotides and is predominantly present in the brain
of humans andmice [12]. It plays a significant role in the diag-
nosis, prognosis, and treatment of various malignant tumors,
as it targets microRNA-7 (miR-7) in multiple tumor types
[13]. In this study, we found that ciRS-7 expression was signif-
icantly elevated in PTC tissues and cell lines compared with
their normal controls. Upregulation of ciRS-7 is closely associ-
ated with poor prognoses. Mechanically, we demonstrated
that ciRS-7 could act as a sponge of miR-7 to upregulate the
level of EGFR and trigger PTC proliferation, invasion, and
migration. Our data revealed that ciRS-7 overexpression pro-
motes PTC progression via the miR-7/EGFR axis. ciRS-7
may be a prognostic marker and therapeutic target for PTC.

2. Materials and Methods

2.1. Human Tissues. A total of 17 patients at the First Affili-
ated Hospital of Zhengzhou University (Zhengzhou, China)

with PTC confirmed pathologically were enrolled in this
study. Fresh thyroid carcinoma tissues and adjacent normal
thyroid tissues located more than 3 cm away from the cancer
site were collected and immediately frozen in liquid nitrogen.
No patient had been administered therapy. The research pro-
tocol was approved by the Ethics Committees of the First
Affiliated Hospital of Zhengzhou University. All patients
provided informed written consent for all procedures. The
clinicopathological parameters were archived from the
medical record.

2.2. Cell Culture and Transfection. Human PTC cell TPC-1
and BCPAP and human thyroid follicular epithelial cell line
Nthy-ori 3-1 were acquired from American Type Culture
Collection (Manassas, VA, USA). They were cultured in Ros-
well Park Memorial Institute (RPMI) 1640 medium contain-
ing 10% fetal bovine serum (Gibco, Grand Island, NY, USA),
100U/mL penicillin, and 100μL/mL streptomycin. They
were incubated in a humidified chamber in an atmosphere
of 5% CO2 at 37

°C. ciRS-7-siRNA, ciRS-overexpressed plas-
mid, miR-7 mimic, miR-7 inhibitor, EGFR-overexpressed
plasmid, and the empty vectors were obtained from Genema
(Shanghai, China). Cell transfections were performed using
Lipofectamine 2000 reagent (Invitrogen) according to the
manufacturer’s instructions.

2.3. RNA Extraction and Quantitative qRT-PCR. The total
RNA from tissues or cells was isolated using TRIzol reagent
(Beyotime, Shanghai, China) according to the manufac-
turer’s instructions. Complementary DNA (cDNA) was
generated by reverse transcription using a PrimeScript™ RT
reagent kit (Takara, Shiga, Japan). Quantitative PCR was
performed with TB Green Premix Ex Taq™ II (TaKaRa) on
an ABI Prism 7900 sequencer (Applied Biosystems, Foster
City, CA, USA). U6 was used to normalize the level of
microRNA-7 expression, while GAPDH was used as an
internal control for the determination ciRS-7. The data were
analyzed using the 2-ΔΔCT method. Primer sequences were
synthesized by SanYa (Shanghai, China) as follows: ciRS-7,
R (reverse): 5′-TGTATCCAGAGTTACTTCCAGTGT-3′,
F (forward): 5′-TCAGCAGTTTCATCTTCTTCTTCA-3′;
microRNA-7, RT (reverse transcription): 5′-GTCGTATCC
AGTGCAGGGTCCGAGGTATTCGCACTGGAT CGAC
AACAAC-3′, R (reverse): 5′-CGCGCGTGGAAGACTA
GTGATTTT-3′, F (forward): 5′-AGTGCAGGGTCCGA
GGTATT-3′.

2.4. Western Blot Assay. All the cells and tissues were lysed in
RIPA buffer containing protease and phosphatase inhibitors.
Proteins were separated by 10% SDS-polyacrylamide gels
and transferred to polyvinylidene difluoride membrane
(Bio-Rad, Hercules, CA, USA). Membranes were incubated
at 4°C with anti-EGFR (1 : 1000; Abcam, Cambridge, UK),
anti-E-cadherin (1 : 1000; Abcam), anti-vimentin (1 : 1000;
Abcam), and anti-GAPDH (1 : 5000; Abcam) antibodies
overnight. Subsequently, membranes were incubated with
HRP-conjugated secondary antibodies. Protein expression
levels were visualized using electrochemiluminescence sub-
strates (Pierce, Rockford, IL, USA).
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2.5. Cell Proliferation Assay and Colony Formation Assay.
Cell proliferation was determined using a CCK-8 assay
kit (Dojindo, Kumamoto, Japan) according to the manu-
facturer’s instructions. Cells were seeded (100μL; 2 × 103
cells per well) into 96-well plates, and CCK-8 was added
at 0, 24, 48, and 72 h. Absorbance was measured at
450 nM using an enzyme-labeling instrument (Thermo
Fisher Scientific) afterward. For colony formation assay,
cells were seeded (500 cells per well) into six-well plates
and incubated for 10 days. The colonies were stained
and observed under a microscope.

2.6. Cell Apoptosis Assay. After transfection for 48 h, cells
were collected for cell apoptosis detection. The apoptosis
was measured using the PE Annexin V Apoptosis Detec-
tion Kit (BD Biosciences) according to the manufac-
turer’s instructions. FACSCalibur was employed to
detect the cell apoptosis. FACSDiva was applied to ana-
lyze the data.
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Figure 1: The expression of ciRS-7 in PTC. The expression of ciRS-7 in 17 pairs of matched PTC tissues and adjacent normal tissues was
measured by qRT-PCR (a). The expression of ciRS-7 in PTC cell (TPC-1 and BCPAP) and human thyroid epithelial cell line Nthy-ori3-1
was measured by qRT-PCR (b). The expression of ciRS-7 was knocked down by transfection of ciRS-7-siRNA and verification by qRT-
PCR. The expression of miR-7 was upregulated by ciRS-7 silencing (c). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.

Table 1: Correlation of clinicopathological features and ciRS-7
expression in PTC tissues.

Characteristics No. of cases P value

Gender

Female 14
0.15

Male 3

Age

<50 12
0.20>50 5

Cancer size

<1 cm 7
0.022>1 cm 10

Lymph node metastasis

Yes 5
0.015

No 12
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Figure 2: Continued.
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2.7. Scratch Test. Cells were seeded into six-well plates to
detect the wound healing capabilities. When the cells covered
80–90% of the dish, a 100μL pipette tip was used to make
four scratches at the same width in each well. PBS was used
to wash away the cells removed during scratching. Next, the
cells were cultured in fresh culture medium in an incubator.
An inverted microscope was used to observe the migration
distance of cells into the scratch area at 0, 6, 24, and 36h.
The assay was repeated three times.

2.8. Transwell Migration and Invasion. Transwell migration
assays were performed using a transwell chamber (Corning,
China). Transfected cells in serum-free medium were seeded
in the upper transwell chamber, and 500μL RPMI solution
that included 20% fetal bovine (FBS) serum was added into
the lower transwell chamber. After being cultured for 24
hours, cells were fixed with paraformaldehyde and stained
using crystal violet. An inverted light microscope was used
to quantify cell migration, and views were randomly
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Figure 2: The effects of ciRS-7 on PTC cell proliferation and apoptosis. Cell proliferation of PTC cells (TPC-1 and BCPAP) after ciRS-7-
siRNA, ciRS-7 overexpression, or negative control siRNA transfection was evaluated by CCK-8 assay (a, b). Images of colony formation
assay using TPC-1 and BCPAP cells and quantification analysis of colony numbers (c). Annexin V/PI staining and FACS detection were
used to detect cell apoptosis (d). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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Figure 3: Continued.
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observed to obtain the average results. Invasion assay was
conducted in accordance with the above procedures except
that the bottom membranes were coated with the diluted
Matrigel.

2.9. Dual-Luciferase Reporter Assay. A dual-luciferase
reporter assay was performed in stable PTC cells. Wild-type
(WT-EGFR) and mutant (MUT-EGFR) plasmids were con-
structed by Genema (Shanghai, China). Four groups includ-
ing microRNA-7/EGFR-WT-3′UTR, NC/EGFR-WT-3′
UTR, microRNA-7/EGFR-MUT-3′UTR, and NC/EGFR-
MUT-3′UTR were established. After transfection for 48h,
cells were collected for dual-luciferase activity assay using a
Promega Dual-Luciferase Reporter Assay System (Promega,
Madison, WI, USA).

2.10. Statistical Analysis. All statistical analyses were per-
formed using SPSS 20.0 software (SPSS, Inc., Chicago, IL,
USA). Significant differences between groups were estimated
using a two-tailed Student’s t-test, or the Wilcoxon test, as
appropriate. Variables with a P < 0:05 in univariate analyses
were subsequently used for multivariate analyses based on
Cox regression analyses. Two-tailed P values were calculated,
and statistical significance was set at P < 0:05.

3. Results

3.1. The Expression of ciRS-7 in PTC Tissues and Cell Lines.
To analyze the role of ciRS-7 in PTC, we measured the
expression of ciRS-7 in 17 pairs of PTC and their normal
counterparts. ciRS-7 was highly expressed in PTC tissues
(Figure 1(a)). ciRS-7 levels were also consistently higher
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Figure 3: The effects of ciRS-7 on PTC cell migration and invasion. Wound healing assay was conducted to assess the cell migration after
ciRS-7-siRNA, ciRS-7 overexpression, or negative control siRNA transfection (a, b). Transwell assays were conducted to assess the cell
migration and invasion abilities of PTC cells (TPC-1 and BCPAP) after transfection (c, d). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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in PTC cell lines TPC-1 and BCPAP than human thyroid
epithelial cell line Nthy-ori 3-1 (Figure 1(b)). In addition,
while the overexpression of ciRS-7 was significantly corre-
lated with large tumor size (P = 0:015) and lymph metasta-
sis (P = 0:022), it was not correlated with either age
(P ≥ 0:05) or gender (P ≥ 0:05) (Table 1).

3.2. Promotive Effects of ciRS-7 in PTC. To explore the func-
tions of ciRS-7, two short interfering (ciRS-7-s1 and ciRS-7-
s2) (Supplementary Materials (available here)) vectors were

transfected into TPC-1 and BCPAP cell lines (Figure 1(c)).
CCK-8 assay showed that ciRS-7 downexpression signifi-
cantly inhibits the in vitro proliferation of TPC-1 and
BCPAP (Figures 2(a) and 2(b)). This was confirmed by col-
ony formation assay (Figure 2(c)) and flow cytometry
(Figure 2(d)). In addition, decreased invasion and migration
in vitro were observed in ciRS-7-downexpressed TPC-1 and
BCPAP cells using wound healing assay (Figures 3(a) and
3(b)) and transwell assays (Figures 3(c) and 3(d)). Oppo-
sitely, overexpression of ciRS-7 promoted the proliferation,
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Figure 4: ciRS-7 silencing reduces EMT in TPC-1 cells. Cell lines exhibited a spindle-like, fibroblastic cell morphology after ciRS-7
silencing (a, b). Western blotting assay was conducted to analyze the expression of E-cadherin and vimentin (c, d). ∗P < 0:05,
∗∗P < 0:01, and ∗∗∗P < 0:001.
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migration, and invasion in PTC cell lines (Figures 2 and 3).
Collectively, the above results demonstrated that ciRS-7 plays
an oncogene role in PTC.

3.3. ciRS-7 Facilitated Epithelial-Mesenchymal Transition
(EMT) of PTC Cells. Since ciRS-7 silencing altered PTC cell
morphology such that both cell lines exhibited a spindle-like,
fibroblastic cell morphology (Figures 4(a) and 4(b)), we
hypothesized that ciRS-7 is involved in the epithelial-
mesenchymal transition (EMT) of PTC cells, which is a key
event associated with tumor metastasis and invasion. The
western blotting results were consistent with the conclusion
we expected. Vimentin levels were clearly lower in PTC cells
transfected with ciRS-7-siRNA than in negative controls. E-
cadherin expression was higher in the ciRS-7-siRNA group
than in cells transfected with ciRS-7-cRNA (Figures 4(c)
and 4(d)). These results indicate that downregulating ciRS-
7 suppresses EMT, which may explain the mechanism of
invasion and migration of PTC cells.

3.4. ciRS-7 Interaction with miR-7 in PTC. Previous studies
have suggested that ciRS-7 could sponge to miR-7. We eval-
uated the effects of ciRS-7 on regulating miR-7 in PTC cells.
Our results confirmed that silencing of ciRS-7 could signifi-
cantly increase the expression of miR-7 in both TPC-1 and
BCPAP (Figure 1(c)). To confirm that whether ciRS-7
inhibits miR-7 for promoting oncogenic potential, CCK-8,
colony formation, and transwell assays were performed in
the two cell lines with knockdown of miR-7 alone, ciRS-7
alone, or both. CCK-8 and colony formation assay revealed
that miR-7 knockdown increased the proliferation ability of
TPC-1 and BCPAP, and such effect was partially reversed

by silencing ciRS-7 (Figures 5(a)–5(d)). Consistently, ciRS-7
silencing attenuated the increased ability of migration and
invasion induced by miR-7 knockdown (Figure 5(e)). Those
results indicated that miR-7 is a participant in ciRS-7-
induced proliferation, migration, and invasion of PTC cells.

3.5. ciRS-7 Regulated EGFR by Sponging of miR-7. Bioinfor-
matics tools (TargetScan, miRBase, and PicTar) were used
to predict the potential target of microRNA-7 (Figure 6(d)).
Among the overlap target genes, epidermal growth factor
receptor (EGFR) was selected because of its role in cancer
development. To further confirm whether miR-7 regulates
the expression of EGFR directly, we constructed the wild-
type and mutated 3′UTR of human EGFR mRNA and
cotransfected with hsa-miR-7 mimic into TPC-1. We found
that miR-7 significantly reduced the luciferase intensity in
the cells cotransfected with wild-type 3′UTR of EGFR but
not the mutant one (Figure 6(e)).

Western blotting assay showed that the expression of EGFR
can be decreased by ciRS-7 silencing in TPC-1 and BCPAP
(Figure 6(a)). Therefore, we increased the expression of EGFR
in PTC cell. The results revealed that overexpressed EGFR
could reverse the effects of ciRS-7 silencing on proliferation
(Figure 6(b)), migration, and invasion (Figure 6(c)) in vitro.
The consistent results suggested that EGFR could be involved
in the promotion effects of ciRS-7/miR-7 on PTC cells.

4. Discussion

circRNAs have been reported to be participants in the devel-
opment of various cancers including thyroid cancers. As one
of the most extensively investigated circRNA, ciRS-7 is

miR-7 NC ciRS-7 ciRS-7/miR-7

miR-7 NC ciRS-7 ciRS-7/miR-7

M
ig

ra
tio

n
In

va
sio

n

ciRS-7
ciRS-7/miR-7

miR-7
NC

8000
BCPAP

6000

4000

N
um

be
r o

f c
el

ls

2000

0
Migration

⁎⁎

⁎⁎

⁎⁎

8000

10000

6000

4000

N
um

be
r o

f c
el

ls

2000

0
Invasion

BCPAP

⁎⁎
⁎⁎

⁎⁎

(e)

Figure 5: ciRS-7 silencing inhibited the promotion effect mediated by miR-7 knockdown. ciRS-7 silencing neutralized tumor cell
proliferation promoted mediated by miR-7 knockdown in TPC-1 and BCPAP (a–c). ciRS-7 silencing neutralized tumor cell proliferation
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known to modulate proliferation, invasion, and migration in
cancers including hepatocellular carcinoma, colorectal, gastric,
and lung cancers [14–16]. Experimental data indicated that it
could be a valuable biomarker and therapeutic target in esoph-
ageal squamous cell carcinoma (ESCC) [17]. In this study, we
investigated for the first time the function and mechanism of
ciRS-7 in PTC. Our qRT-PCR results showed that ciRS-7
expression was higher in PTC tissues than in normal samples.
Overexpressed ciRS-7 contributes to the aggressive clinical-
pathological factors such as large tumor size and lymph node
metastasis. Moreover, ciRS-7 silencing significantly inhibited
PTC proliferation, migration, and invasion in vitro. Overex-
pressed ciRS-7 promoted PTC proliferation, migration, and
invasion. Together with the consistent clinical data, the onco-
genic role of ciRS-7 in PTC was significantly supported.

Next, we explored the mechanism by which ciRS-7 affects
the development of PTC. After ciRS-7 silencing, PTC cells
transformed into spindle epithelium morphologically. We
hypothesized that ciRS-7 is involved in the epithelial-
mesenchymal transition (EMT) of PTC cells, which was acti-
vated during cancer and promoted migration and invasion
[18]. We detected the EMT biomarker E-cadherin and vimen-
tin; the level of E-cadherin was higher while vimentin was lower
when ciRS-7 was decreased after ciRS-7 silencing. EMT was
inhibited by ciRS-7 silencing, which could partly explain how
ciRS-7 silencing inhibited migration and invasion in PTC.

Our present study further revealed that ciRS-7 triggered
progression of PTC cells via regulating the miR-7/EGFR axis.
ciRS-7 contains 74 binding sites for miR-7 and binds densely
to it as an inhibitor. Previously, ciRS-7 has been shown to
block miR-7 and thereby reactivate genes suppressed by
miR-7 in the brain [19], islet cells [20], colorectal cancer
[21], lung cancer, and gastric cancer (GC) [22]. miR-7 has
been reported to be a tumor suppressor in various tumors.
In PTC, miR-7 suppresses cell growth and development via
downregulation of many oncogenic signaling pathway such
as CKS2/cyclin B2 and cdk1, p21-activated kinase-1
(PAK1). Our data provided another potential downstream

target of miR-7 when it is involved in proliferation, migra-
tion, and invasion in PTC.

EGFR is a member of the HER family of receptors and is
a receptor for members of the EGF family [23]. During tumor
progression, specific endogenous ligands activate down-
stream pathways including the Ras/Raf mitogen-activated
protein kinase (MAPK), Jak2/Stat3, and PI3K/AKT pathway
[24]. The EGFR/RAF/MAPK pathway is a well-known onco-
genic pathway which correlates with metastasis [25]. The
JAK/STAT3 signaling could promote invasion and metasta-
sis through activation of key metastasis-promoting genes
such as WASF3 [26]. The PI3K/AKT signaling pathway is a
crucial player in the regulation of different cellular and
molecular processes including cell growth, proliferation, cell
motility, and survival in PTC [27]. Furthermore, its thera-
peutic potential in human cancers has been addressed. In
lung cancer, EGFR has become a crucial therapeutic target
for patients with non-small-cell lung cancer. EGFR tyrosine
kinase inhibitors are the most promising clinical agents as
monotherapy for non-small-cell lung cancer [28]. Addition-
ally, data suggest that blocking EGFR can effectively increase
the antitumor activity of selumetinib in triple-negative breast
cancer, which may be related to the effect of this combination
on the activation of extracellular signal-regulated kinase 1/2
and AKT [29]. In PTC, EGFR was demonstrated to upregu-
late in about 55% of PTCs and is correlated with aggressive
behaviors of PTC [30].

Using publicly available algorithms (TargetScan,
miRanda, and PicTar), we identified EGFR as a potential tar-
get of miR-7. Luciferase reporter assay further demonstrated
their interaction. Moreover, we found that the protein level of
EGFR is decreased distinctly in ciRS-7-silencing cells. EGFR
overexpression significantly reversed the effects of ciRS-7
silencing on PTC cell proliferation, migration, and invasion,
indicating that EGFR was involved in the progression
induced by the ciRS-7/miR-7 axis in PTC. We believed that
ciR-7 inhibited proliferation, migration, and invasion of
PTC by targeting the miR-7/EGFR axis.
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Figure 6: EGFR mediated the promotion effects of ciRS-7/miR-7 axis on PTC cells. The expression of EGFR was decreased by ciRS-7
silencing in TPC-1 and BCPAP (a). Overexpressed EGFR could reverse the effects of ciRS-7 silencing on proliferation, migration, and
invasion (b, c). The conserved binding site in 3′UTR of human EGFR mRNA to miR-7 (d). Luciferase system analysis was used to
identify the direct binding of miR-7 to 3′UTR of EGFR (e). ∗P < 0:05, ∗∗P < 0:01, and ∗∗∗P < 0:001.
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5. Conclusion

Our results indicated that ciRS-7 promotes the genesis and
development of PTC by increasing the proliferation and
migration of PTC cells. Regulation of the ciRS-7/miR-
7/EGFR axis is a crucial molecular mechanism in PTC, and
this pathway may be a novel target for the diagnosis and ther-
apy of this cancer.
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