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Objectives. We conducted the present study to identify novel hub candidate genes in the pathogenesis of type 2 diabetes mellitus
(T2DM) and provide potential biomarkers or therapeutic targets for dealing with the disease. Methods. We conducted weighted
gene coexpression network analysis on a series of the expression profiles of the pancreas islet of T2DM patients obtained from
the Gene Expression Omnibus database to construct a weighted coexpression network. After dividing genes into separated
coexpression modules, we identified a T2DM-related module using Pearson’s correlation analysis. Then, hub genes were
identified from the T2DM-related module using the Maximal Clique Centrality method and validated by correlation analysis
with clinical traits, differentially expressed gene analysis, validation in other datasets, and single-gene gene set enrichment
analysis (GSEA). Results. Genes were divided into 16 coexpression modules, and one module was identified as a T2DM-related
module. Four hub candidate genes were identified, and MEDAG was a novel hub candidate gene. The expression level of
MEDAG was positively correlated with hemoglobin A1c (HbA1c) and was evidently overexpressed in the pancreas islet tissue of
T2DM patients compared with normal control. Analyses on two other datasets supported the results. GSEA verified that
MEDAG plays essential roles in T2DM. Conclusions. MEDAG is a novel hub candidate of T2DM, and its irregular expression in
the pancreas islet plays vital roles in the pathogenesis of T2DM. MEDAG is a potential target of intervention in the future for
the treatment of T2DM.

1. Introduction

Diabetes mellitus (DM) is a prevalent metabolic disease
leading to multiple complications, high mortality, and heavy
economic burdens. Globally, one in 11 adults are suffering
from DM, 90% of whom are type 2 diabetes mellitus
(T2DM) patients [1].

The most significant pathophysiological characteristics of
T2DM are decreases in insulin secretion capacity and periph-
eral insulin sensitivity [2]. Islet β-cell dysfunction is the most
important cause of T2DM, and researchers have developed
various medications to deal with T2DM accordingly. How-
ever, as the pathogenesis of T2DM has not been completely
clarified, the disease has not been conquered yet. Thus, it is

an urgent mission for us to identify more hub candidate
genes in T2DM for exploring the mechanism and developing
more therapeutic approaches for T2DM.

With the rapid development of gene chip and next-
generation sequencing techniques, as well as the populariza-
tion of public databases, bioinformatics analysis has become
a new approach for identifying vital molecular components
in the pathogenesis of diseases. Weighted gene coexpression
network analysis (WGCNA) is a bioinformatics analysis tool
based on the hypothesis that the biological expression pattern
of genes obeys the characteristics of a scale-free network, and
the central factors in the network would be more easily found
out when the coexpression relationships are weighted [3].
The technique has been broadly used to explore new hub
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candidate genes, biomarkers, or therapeutic targets in various
kinds of diseases including acute diseases, chronic diseases,
infectious diseases, and tumors [4–7].

In the present study, we performed WGCNA on a series
of expression profiles of pancreas islet tissue of T2DM
patients and normal control obtained from the Gene Expres-
sion Omnibus (GEO) public database to construct a weighted
coexpression network. After confirming a T2DM-related
coexpression gene module, we performed systematical analy-
ses on it and identified hub candidate genes of T2DM. Then,
we validated the functions of known hub genes and explored
the functions of the newly identified hub genes. Depending
on the identification of the hub gene and exploration of
its potential roles in the dysfunction of insulin secretion
in the pancreas islet, we expect to provide novel insights
for explaining and treating the disease.

2. Materials and Methods

2.1. Data Collection. In the beginning, we exhibit the design
and overall procedures of the present research in a flowchart
(Figure 1). We searched the GEO database (https://www.ncbi
.nlm.nih.gov/geo/) with the keyword “type 2 diabetes melli-
tus”. Of all expression profiles of human pancreatic islet, we
selected GSE41762 [8] for WGCNA as it had relative more
T2DM samples than the other datasets (the dataset of
GSE41762 contains 20 T2DM samples and 56 normal
samples in all). For subsequently validating the conclusions
drawn inWGCNA, we collected another two datasets of pan-
creatic islet from the GEO database, including GSE38642
(containing 31 normal samples, 10 IGT samples, and 10
T2DM samples) [9] and GSE50397 (containing 68 normal
samples, 29 IGT samples, and 16 T2DM samples) [10]. We
downloaded the txt files of expression profiles of the three
datasets from the GEO database. The expression level of
genes has already been log2 transferred, and all the three
datasets were detected by the gene chip technique based on
the microarray platform of GPL6244.

2.2. Probe Annotation. Probe annotation was conducted to
convert the signal intensity quantified by probes into the
mRNA expression levels of genes. We performed this proce-
dure under R environment with the annotation platform file
of GPL6244. If a probe pointed to more than one gene sym-
bol, we took the first gene symbol in the platform file as the
detected gene. If a gene was detected by more than one probe,
we calculated the average of the probes as the expression level
of the gene.

2.3. Gene Filtering. The complete expression profile of
GSE41762 contains the expression level of 23304 genes after
probe annotation. Firstly, we excluded genes with missing
values from our study. Then, as genes of low variance are
regarded as noises for WGCNA and may affect the results
of the analyses, we filtered these genes and reserved genes
of top 5000 variance for subsequent bioinformatics analyses.

2.4. Sample Clustering.We conducted sample cluster analysis
using a hierarchical clustering method included in the
WGCNA package under R environment [3] to evaluate the
quality of the data.

2.5. Construction of theWeighted Gene Coexpression Network
and Division of Coexpression Modules. Rather than simply
estimating the coexpression relationships between genes with
Pearson’s correlations, WGCNA is aimed at constructing a
weighted network on the basis of Pearson’s coexpression net-
work in order to emphasize the pivotal relationships and
weaken the others.

Firstly, we evaluated the correlation relationships of
pairwise genes using Pearson’s correlation analysis and
constructed Pearson’s correlation matrix. Secondly, we
transformed Pearson’s correlation matrix into an adjacency
matrix (also known as scale-free network) with an appropri-
ate soft thresholding value (β value) for conducting exponen-
tiation. A bigger β value generally means a higher scale-free
fit index but worse mean connectivity of the whole network.
To balance the two factors, we decided the β value with the

Obtain the gene expression profile
of T2DM from GEO database

T2DM from related co-expression module

Enrichment analysis WGCNA sub-network

Top-10 potential hub genes

Real hub genes

Validation of the real hub genes

DEG analysis Expression-clinic correlation
with more GEO datasets Single-gene GSEA

Gene filtering and sample clustering

WGCNA

Figure 1: Complete procedures of our research.
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highest mean connectivity when the scale-free fit index
reached 0.85 as the most proper one and then constructed
the scale-free network according to the selected β value.
Finally, to further highlight the pivotal genes, we took
indirect connections into consideration by converting the
scale-free network into a topological overlap matrix (TOM).

After reevaluating the coexpression relationships through
constructing a weighted gene coexpression network, we
divided all genes into coexpressionmodules by average linkage
hierarchical clustering based on the TOM-based dissimilarity
measure. Thus, genes sharing related functions (coexpression
relationships) were divided into the same module and genes
carrying out separated functions would be divided into differ-
ent modules.

Additionally, we merged modules of high similarity
(higher than 0.75) with each other together.

2.6. Identification of Clinical-Related Gene Modules. The
owner of GSE41762 had provided some clinical characteris-
tics listed as follows: disease status (diabetes patients or
normal control), hemoglobin A1c (HbA1c), sex, age, and
body mass index (BMI). Our study mainly focused on the
hub genes related to T2DM, so we analyzed the correlations
between modules and disease status. We selected modules
of significant correlations (positive or negative correlations)
with T2DM for the following analyses.

Here, we assessed the reliability of the clinical-related
modules with the correlation between gene significance
(GS) and module membership (MM) for genes in a module
[3]. GS is defined as Pearson’s correlation of a gene with a
clinical trait, and MM represents Pearson’s correlation of a
certain gene in a module with the module eigengene (the first
principal component of a given module) of the module. If the
correlation coefficient between GS and MM is high in a
module, we could conclude that the genes in the module
contribute to the module and the clinical trait at the same
time to a great extent, and the module is worthy of excavation
of hub genes.

2.7. Enrichment Analyses. Enrichment analyses are con-
ducted to explore the biological functions of a cluster of
genes. The most frequently used methods include Gene
Ontology (GO) [11] enrichment analysis and Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) [12] pathway enrich-
ment analysis. We conducted enrichment analyses on genes
in clinic-related modules, respectively, with the clusterProfi-
ler package [13] under R environment. The cut-off criteria
for statistically significantly enriched terms were set as p <
0:01 and Benjamin-Hochberg-adjusted p value < 0.05. As
samples in our study were islet tissue, so if the results of
enrichment analyses show clues of impaired function of the
pancreas islet, we could conclude that genes in the module
were involved in the pathogenesis of T2DM.

2.8. Candidate Hub Gene Identification. As genes in the
T2DM-related module were regarded as participating in the
pathogenesis of T2DM, we extracted all genes as well as their
weighted coexpression relationships with each other and
constructed a subnetwork. Then, we analyzed the centrality

of each gene in the subnetwork by the Maximal Clique Cen-
trality (MCC) [14] method with cytoHubba (a plug-in of
Cytoscape software [15]) and introduced the conception of
the MCC value as a criterion for evaluating the centrality of
genes in the subnetwork. The higher the MCC value is, the
more significant the genes are. We confirmed genes with
top 10 MCC values as potential hub candidate genes in the
pathogenesis of T2DM.

2.9. Identification of a Real Hub Gene by Correlation Analysis
between Hub Genes and Clinical Traits. If the expression
levels of selected hub genes are related to specific clinical fea-
tures of the disease, we could conclude that the functions of
the genes play important roles in the progression of the dis-
ease. During the disease course of T2DM, HbA1c is a vital
indicator for the severity of the disease, so we conducted
Pearson’s correlation analysis between the expression levels
of top 10 potential hub genes (with top 10 MCC values)
and HbA1c to identify the real hub genes in T2DM. The cri-
teria for significant correlation were set as coefficient index
ðcorÞ > 0:4 and p value < 0.01.

2.10. Validation of a Hub Gene of T2DM with External GEO
Datasets. To further enhance the credibility of the conclu-
sions, we validated the correlation between hub genes and
HbA1c with two other datasets of T2DM obtained from the
GEO database (GSE38642 and GSE50397).

2.11. Validation of a Hub Gene by Differentially Expressed
Gene Analysis. The irregular expression levels of hub genes
in certain tissues usually make up the key factor of pathogen-
esis of the disease. We conducted differentially expressed
gene (DEG) analysis on the T2DM-related coexpression
module to validate our hub gene. DEGs were defined as genes
with ∣ log fold change∣ > 0:5 in a diabetes pancreas islet com-
pared with normal control and statistical significance of p <
0:01. DEG analysis was performed in GSE41762 using the
most frequently used R package for DEG analysis known as
limma [16].

2.12. Function Analysis for Real Hub Genes by Single-Gene
Gene Set Enrichment Analysis. Single-gene gene set enrich-
ment analysis (GSEA) [17] was an approach for exploring
the roles of a single gene in certain disease with the expres-
sion profile of the disease. If the aberrant expression level of
a certain gene is vital for a given disease, we have reasons to
believe that the expression patterns of other genes differ a
lot between high-expression and low-expression groups of
the given gene. Thus, we divided the samples (including
T2DM and normal) into high- and low-expression groups
of a certain real hub gene, so that we could conduct GSEA
on the hub genes, respectively, to explore their potential
functions in the disease. We performed GSEA using its
desktop tool [18] with a cut-off criterion of p < 0:05.

3. Results

3.1. Data Preprocessing. We got the expression profiles
containing the expression levels of 23304 genes after probe
annotation and retained 5000 genes for subsequent analyses
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after gene filtering. Result of sample clustering (Figure 2)
indicated that most T2DM samples gathered in the left
branches of the clustering tree, revealing relative satisfactory
intra-group consistency and inter-group difference of the
samples.

3.2. Construction of the Weighted Gene Coexpression Network
and Division of Coexpression Modules. The expression matrix
of the 5000 genes was finally transformed into a weighted
gene coexpression network according to the three procedures
mentioned above. The most essential procedure was the
selection of the β value, in which we decided 7 as the proper
one as it gave the network highest mean connectivity when
the scale-free fit index was above 0.85 (Figure 3).

After the construction of the weighted network, all 5000
genes were divided into 16 coexpression modules, and the
modules were provisionally labeled and named by their

colors (Figure 4(a)). Genes in grey modules were not belong-
ing to any coexpression modules.

The TOM adjacency correlations of all genes are visual-
ized as an adjacency heatmap (Figure 4(b)), revealing that
the genes were mainly coexpressed with genes in the same
module and had weak correlations with genes in different
modules. The adjacency analysis of genes indicated satisfac-
tory accuracy of module division.

3.3. Module-Clinic Correlation Analysis and Identification of
Clinic-Related Module. We assessed Pearson’s correlation
between modules and clinical traits (T2DM and normal con-
trol) to find out modules with significant influence on the
disease (Figure 5(a)). The results showed that the “salmon
module” (including 142 genes) was significantly related to
the clinical trait of T2DM (cor = 0:38, p = 7E − 4), and the
blue module was significantly related to the clinical trait of
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Figure 2: Sample cluster of all samples including T2DM and normal control.
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the normal control (cor = 0:31, p = 0:007). Genes in the
salmon module were deemed as playing a vital role in the
pathogenesis of T2DM, and genes in the blue module were
essential for keeping regular biological function in the
normal control. So we renamed the modules as T2DM-
related module and normal-related module, respectively, for
subsequent analyses.

The correlation between GS and MM for all genes in
T2DM-related and normal-related modules is shown in
Figures 5(b) and 5(c), and the correlation coefficient and
statistical significance were cor = 0:65 and p = 2:1E − 18 and
cor = 0:45 and p = 1E − 75, respectively, demonstrating
that the genes in the modules were significantly corre-
lated with the module eigengene and clinical characteris-
tics simultaneously.

Thus, we decided that both T2DM-related and normal-
related modules were worthy of further analyses.

3.4. Enrichment Analyses on Clinic-Related Modules. We
performed GO and KEGG enrichment analyses on genes in
two clinic-related modules, respectively, to clarify the main
dysfunction of biological processes in T2DM. We exhibited
some of the top-enriched GO-BP terms and KEGG terms
in Figure 6 and provided the complete results of significantly
enriched terms in Supplement Table 1.

For the T2DM-related module, GO enrichment analy-
sis indicated the participation of inflammatory response
and immune response in the pathogenesis of T2DM. Top
terms of GO-BP are listed such as “regulation of inflamma-
tory response” (gene count = 18, p = 1:15E − 08), “leukocyte
migration” (gene count = 16, p = 2:80E − 07), and “regulation
of T-helper 1 type immune response” (gene count = 5, p =
1:08E − 06). KEGG enrichment analysis provided similar
results, such as “cytokine-cytokine receptor interaction”

(gene count = 14, p = 4:23E − 07), “TNF signaling pathway”
(gene count = 8, p = 8:58E − 06), and “IL-17 signaling path-
way” (gene count = 5, p = 0:002).

For the normal-related module, GO enrichment hinted
the dysfunction of insulin secretion. Enriched terms are listed
as “insulin secretion” (gene count = 49, p = 8:33E − 16),
“hormone transport” (gene count = 59, p = 2:20E − 13), and
“signal release” (gene count = 81, p = 1:52E − 17). Results of
KEGG enrichment were similar, for example, “pancreatic
secretion” (gene count = 24, p = 8:31E − 08), “insulin secre-
tion” (gene count = 19, p = 5:11E − 06), and “type II diabetes
mellitus” (gene count = 10, p = 0:001).

3.5. Candidate Hub Gene Identification. We here aimed to
identify a hub candidate gene in the pathogenesis of T2DM,
so we constructed a subnetwork of WGCNA with all genes
and their weighed coexpression correlation coefficients in
the T2DM-related module. By MCC analysis (Figure 7), we
decided 10 potential hub genes in the pancreas islet blamed
for T2DM: MEDAG, EDNRB, DDX21, SERPINF1, ELK3,
IL33, SMOC2, IL24, CLMP, and MFAP4. These 10 genes
had the highest MCC value in the subnetwork and thus had
the strongest coexpression relationships with other genes in
the whole subnetwork.

3.6. Identification of Real Hub Genes. We analyzed the
correlation between the expression levels of the 10 potential
hub genes and HbA1c, respectively, using Pearson’s correla-
tion analysis to identify the real hub genes involved in T2DM.
According to the criteria mentioned before, MEDAG (cor =
0:404, p = 0:001), SERPINF1 (cor = 0:532, p = 6:98E − 6),
IL33 (cor = 0:451, p = 2:02E − 4), SMOC2 (cor = 0:422, p =
5:66E − 4), IL24 (cor = 0:438, p = 3:35E − 4), CLMP (cor =
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Figure 4: Construction of the weighted coexpression network. (a) A dendrogram of all genes and the division of the modules (before and after
merging). (b) Adjacency heatmap of all genes involved in the coexpression network. The depth of the color represents the intensity of
coexpression relationships.
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0:420, p = 6:06E − 4), andMFAP4 (cor = 0:440, p = 3:03E − 4)
are identified as real hub genes for T2DM.

3.7. Validation of a Hub Gene with External GEO Datasets of
T2DM. The essential role of a gene in a disease should be eas-
ily validated in external datasets if the conclusion is robust, so
we reassessed the correlation between gene expression and
clinical trait in external datasets obtained from the GEO

database (GSE38642 and GSE50397). After the validation,
MEDAG, SERPINF1, IL33, and IL24 still reached the criteria
for the real hub gene of T2DM. The correlation between
HbA1c and gene expression level is shown in Figure 8.

3.8. Validation of a Hub Gene by DEG Analysis. Ninety-two
genes were detected as DEGs in the T2DM-related module,
including 53 up-regulated genes and 39 down-regulated
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Figure 5: Identification and validation of clinic-related modules. (a) Correlation analysis of all modules with clinical characteristics.
Correlation coefficient and statistical significance of each module are given in each cell, and the color represents the correlation coefficient.
(b) Correlation of GS and MM in the salmon (T2DM-related) module. (c) Correlation of GS and MM in the blue (normal-related) module.
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genes in the T2DM pancreas islet compared with the normal
control. The four hub candidate genes were all identified as
DEGs. SERPINF1 was the top 5 upregulated gene, MEDAG

was the top 7 upregulated gene, IL33 was the top 17 upregu-
lated gene, and IL24 was the top 19 upregulated gene. Details
of all DEGs are available in Supplement Table 2.
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Figure 6: Results of enrichment analyses: (a) top 10 significant terms of GO-BP enrichment analysis of the T2DM-related module; (b) top 10
significant terms of KEGG enrichment analysis of the T2DM-related module; (c) top 10 significant terms of GO-BP enrichment analysis of
the normal-related module; (d) top 10 significant terms of KEGG enrichment analysis of the normal-related module.
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3.9. Function Analyses for Real Hub Genes by Single-Gene
GSEA. We performed GSEA on MEDAG, SERPINF1, IL33,
and IL24 to explore the role of the genes in the course of
T2DM. We performed KEGG enrichment using single-gene
GSEA.

Results of single-gene GSEA would give some clues about
the functions of the four genes. We exhibited the top 10 sig-
nificant items of single-gene GSEA for MEDAG, SERPINF1,
IL33, and IL24 in Figure 9. The results indicated that the four
genes play direct roles in the course of T2DM. For example,
MEDAG is involved in the signal pathway of “type 2 diabetes
mellitus” and “mature onset diabetes of the young.” In “type

2 diabetes mellitus,” the expression levels of INS and GCK
were significantly downregulated. SERPINF1may participate
in oxidative stress as the change of its expression is involved
in the signal pathway of “peroxisome.” IL24 may function in
inflammation. All four genes are significantly related to the
metabolism of carbohydrate.

4. Discussion

In the present study, we attempted to explore the hub
candidate genes in the pathogenesis of T2DM using the com-
bination of bioinformatics analysis and clinical analysis. We
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conducted WGCNA on the pancreas islet expression profile
of T2DM patients and normal control in the dataset of
GSE41762 and constructed a weighted coexpression network

successfully. Genes were then divided into 16 modules. After
identifying a T2DM-related module and a normal-related
module, we performed enrichment analyses to explore the
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Figure 9: Results of single-gene GSEA: (a) single-gene GSEA of MEDAG; (b) single-gene GSEA of SERPINF1; (c) single-gene GSEA of IL33;
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function of the genes in the two modules. Then, we con-
structed a subnetwork consisting of all genes in the T2DM-
related module and screened out the top 10 central genes in
the module using the MCC method and identified these
genes as potential hub genes in T2DM. We then conducted
correlation analysis between the expression levels of the top
10 potential hub genes and the level of HbA1c of all samples
and confirmed SERPINF1, MEDAG, IL33, and IL24 as four
real hub genes of T2DM and validated the conclusion with
two external GEO datasets (GSE38642 and GSE50397).
DEG analysis supported that these genes are irregularly
expressed in the pancreas islet of T2DM patients. Finally,
single-cell GSEA verified and explored the vital roles of the
hub genes in T2DM. With all the results above, we conclude
that SERPINF1,MEDAG, IL33, and IL24 are four hub candi-
date genes in the pathogenesis of T2DM. The functions of
SERPINF1, IL33, and IL24 in the pancreas islet of T2DM
patients have been partly clarified in previous reports.
MEDAG is a novel hub candidate gene identified by our
study.

The pathogenesis of T2DM is still not completely clari-
fied but could be simply come down to two aspects: dysfunc-
tion of insulin secretion capacity and peripheral insulin
resistance [2]. The dysfunction of insulin secretion is the
most significant factor in the mechanism of T2DM and was
the focus of our study as we aimed to analyze the expression
profile of the pancreas islet. The dysfunction of insulin secre-
tion is caused by the decrease in mass and insulin secretion
capacity of islet β-cell. Studies have found that T2DM
patients have 24% to 65% reduction in the mass of islet β-cell
[19–21], which may be caused by an increased rate of apopto-
sis [22, 23] rather than decrease in frequency of cell division
or regeneration [24]. The decrease in insulin secretion capac-
ity is the result of multiple factors mainly including dediffer-
entiation of islet β-cell [25], glucose toxicity caused by high
level of blood glucose [26], lipotoxicity caused by disorders
of lipid metabolism [27], chronic nonspecific inflammation
of the pancreas islet [28], and deposition of serum amyloid
[29]. Nevertheless, the pathogenesis of T2DM has not been
fully explained, and the management of T2DM remains a
challenge for physicians. Our study was thus conducted in
order to help complete the mechanism study of T2DM by
analyzing the mRNA expression level in the pancreas islet.
The four hub candidate genes were all positively correlated
with the severity of T2DM. However, it is hard to say whether
the hub genes are risk factors or compensatory protective
factors in T2DM.

Reports have already partly clarified the roles of SER-
PINF1, IL33, and IL24 in T2DM. SERPINF1 encodes the
serpin family of peptidase inhibitors 1, and its most studied
member is known as pigment epithelium-derived factor
(PEDF), which is a multifunctional glycoprotein secreted by
adipocytes. Researchers have found that the genetic variant
in the gene locus encoding PEDF is related to higher risk of
T2DM [30] and contributes to the deterioration of T2DM
[31]. The protein encoded by IL33 is a cytokine acting as
the ligand of the IL1RL1/ST2 receptor. It was identified as a
protective factor for diabetes mellitus that reduces immune
cell infiltration, increases the number of insulin secretion islet

β-cell, and reduces apoptosis pancreas islet [32, 33]. IL24 is a
member of the IL10 family, which is significantly overex-
pressed in the pancreas islet of T2DM. IL24 is related to
endoplasmic reticulum stress, and anti-IL24 treatment could
improve glucose tolerance in T2DM [34].

It is worth mentioning that no reports have clarified the
role of MEDAG in diabetes mellitus. MEDAG encodes a
protein named mesenteric estrogen-dependent adipogenesis
and is also known as MEDA-4. The expression of MEDAG
in the pancreas islet has been identified by tissue-specific
transcriptomics analysis [35]. However, there are relatively
few researches concerning the functions of MEDAG.

MEDAG is located at 13q12.3 and is known to act as an
upstream regulator of peroxisome proliferator-activated
receptor gamma (PPARG), which has been verified as a key
regulator in adipose tissue and useful therapeutic target for
T2DM. MEDAG was newly identified as an adipogenic gene
capable of promoting differentiation of preadipocytes into
adipocytes. In mature adipocytes, upregulation of MEDAG
could increase lipid content and promote glucose uptaking.
On the contrary, knockdown of MEDAG results in decrease
in lipogenesis and glucose uptaking [36]. Although the func-
tion of MEDAG in the pancreas islet has not been clarified,
we speculate that it influences the course of T2DM by affect-
ing lipid metabolism and lipotoxicity.

In summary, our research has identified MEDAG as a
novel hub candidate gene expressed in the pancreas islet in
the pathogenesis of T2DM using WGCNA. It was the top 7
upregulated gene according to DEG analysis. The expression
level of MEDAG is significantly correlated with the level of
HbA1c. Three other simultaneously identified hub genes
(SERPINF1, IL33, and IL24) have been verified as playing
vital roles in T2DM, so that it is reasonable to believe that
our result has a high degree of credibility. Further, single-
gene GSEA has validated and explored the roles of MEDAG
in T2DM.

5. Conclusions

Our study proposed for the first time thatMEDAG is a novel
hub candidate in the pathogenesis of T2DM through con-
ducting a series of comprehensive bioinformatics analyses
on the expression profile of T2DM pancreas islet tissue.
MEDAG is possible to act as a new focus for molecular
mechanism exploration and a novel therapeutic target in
the future.
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