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Objective. Exploration of the underlying molecular mechanism of Jinchan Oral Liquid (JOL) in treating children with the
respiratory syncytial virus (RSV) pneumonia to provide new evidence for the clinical application. Methods. The active
components and target genes of JOL were screened by the TCMSP database. The targets of RSV pneumonia were obtained from
the GeneCards, OMIM, DrugBank, and PharmGKB database. Then, we constructed the active component-target network and
screened the core genes. The overlaps were screened for PPI network analysis, GO analysis, and KEGG analysis. Finally, result
validation was performed by molecular docking. Results. According to the screening criteria of the ADME, 74 active compounds
of JOL were obtained; after removing redundant targets, we selected 180 potential targets. By screening the online database, 893
RSV pneumonia-related targets were obtained. A total of 82 overlapping genes were chosen by looking for the intersection. The
STRING online database was used to acquire PPI relationships, and 16 core genes were obtained. GO and KEGG analyses
showed that the main pathways of JOL in treating RSV pneumonia include TNF signaling pathway and IL17 signaling pathway.
The molecular docking results showed that the active compounds of JOL had a good affinity with the core genes. Conclusion. In
this study, we preliminarily discussed the main active ingredients, related targets, and pathways of JOL and predicted the
pharmacodynamic basis and the potential therapeutic mechanisms of RSV pneumonia. In summary, the network pharmacology
strategy may be helpful for the discovery of multitarget drugs against complex diseases.

1. Introduction

Community-Acquired Pneumonia (CAP) is a leading cause
of hospitalization in children younger than five years [1].
Respiratory syncytial virus (RSV) is the most common viral
pathogen, especially in children under two years of age [2,
3]. More than 50 percent of the RSV hospitalizations
occurred in China younger than six months, and RSV infec-
tion showed significant seasonal patterns [4]. Palivizumab
was market-approved by the FDA for immunoprophylaxis
for RSV [5]. However, the clinical application was limited

because of its high cost. It is of crucial importance to find safe
and effective alternative therapies.

Traditional Chinese medicine has a long history of thou-
sands of years. The prominent feature of Chinese medicine
treatment is based on syndrome differentiation, and it
emphasizes the recovery of overall function. Jinshan Oral
Liquid (JOL) is a traditional Chinese compound prescription
developed by Children’s Hospital Affiliated to Soochow Uni-
versity. JOL comes from “famous doctors and prescriptions.”
It is mainly composed of four herbs: honeysuckle (Jin Yin
Hua: JYH), Scutellaria baicalensis (Huang Qin: HQ),
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bupleurum (Chai Hu: CH), and cicada slough (Chan Tui:
CT). Our previous study found that JOL is effective and safe
in treating children with respiratory syncytial virus (RSV)
pneumonia, and it can improve clinical symptoms and
shorten the length of hospital stay. However, the mechanisms
by which JOL exerts these effects remained unclear.

Network pharmacology [6, 7] is a broad discipline based
on systems biology and computer technology, which analyzes
the interaction network of “disease-gene-target-drug.” In this
study, we explored the potential molecular mechanism of
JOL in treating RSV pneumonia using network pharmacol-
ogy and molecular docking. The workflow of our study was
shown in Figure 1.

2. Methods and Materials

2.1. Screening of Active Ingredients and Target Genes. All
compounds of the four Chinese medicinal herbs in JOL were
collected and integrated by the Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform
(TCMSP, https://tcmspw.com/index.php). TCMSP, a plat-
form of Chinese herbal medicines, captures the relationships
between drugs, targets, and diseases [8]. The bioactive com-
ponents of JOL were selected based on the optimal toxicoki-
netic ADME rules reported in the literature, oral
bioavailability ðOBÞ ≥ 30%, and drug − likeness ðDLÞ ≥ 0:18
[9]. However, the number of active components of cicada
slough (CT) was zero according to the above screening cri-
teria. Therefore, we followed the TCMSP User Guide
(https://tcmspw.com/load_intro.php?id=43) and adjusted
the screening conditions as “OB ≥ 20%” and “DL ≥ 0:1.”
The related targets of JOL active ingredients were also
obtained from the TCMSP database. Then, the targets were
entered into UniProt (https://www.uniprot.org/). Through
retrieval and transformation, we finally got the gene symbol
of active ingredients.

2.2. Disease-Associated Gene Mining. The RSV pneumonia-
related target proteins were screened from four sources: (1)
the Human Gene Database (GeneCards, https://www
.genecards.org/), (2) Online Mendelian Inheritance in Man
(OMIM, https://omim.org/), (30 DrugBank database
(https://go.drugbank.com/), and (4) Pharmacogenomics
Knowledgebase (PharmGKB, https://www.pharmgkb.org/).
The keywords “respiratory syncytial virus pneumonia” were
used to obtain the disease-associated targets. All targets of
RSV pneumonia were gathered together, and the results were
visualized by R 3.6.3.

2.3. Construction of Active Component-Target Network and
Analysis. The active ingredients of JOL and the RSV
pneumonia-related targets were input into the Cytoscape
v3.8.0 software to construct a compound-target network.
Nodes represented the bioactive ingredients or targets in
the network, while the connections between the nodes repre-
sented the interactions.

2.4. Construction of Protein-Protein Interaction (PPI)
Network. Overlaps between JOL-related targets and RSV
pneumonia-related targets were screened by R 3.6.3 to clarify

the interaction between JOL and the disease. Then, the over-
lapping genes were put into STRING (https://www.string-db
.org/) database for PPI analysis. The condition was limited to
“Homo sapiens” for species. A high confidence level was set
at 0.700 so that we could get the appropriate required inter-
action score.

2.5. Identification of Core Genes and Network Visualization.
The CytoNCA plug-in in Cytoscape v3.8.0 was performed
for the identification of core genes. According to the topolog-
ical characteristics of the network, six parameters “Between-
ness Centrality (BC),” “Closeness Centrality (CC),” “Degree
Centrality (DC),” “Eigenvector Centrality (EC),” “Local
Average Connectivity-based method (LAC),” and “Network
Centrality (NC)” were selected to screen the core genes.
The critical targets for JOL treatment of RSV pneumonia
were screened based on the following criteria: BC ≥AvgðBC
Þ, CC ≥AvgðCCÞ, CC ≥AvgðDCÞ, EC ≥AvgðECÞ, LAC ≥
AvgðLACÞ, and NC ≥AvgðNCÞ. The core targets were
screened out after being extracted twice.

2.6. GO and KEGG Pathway Enrichment Analysis. With the
Bioconductor package in R software, Gene Ontology (GO)
enrichment analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analysis were performed. GO
enrichment mainly analyzed the biological process, cellular
composition, and molecular function of the targets. KEGG
pathway enrichment analyzed the vital biological pathways
of the targets.

2.7. Molecular Docking. Molecular docking simulation was
used to verify the credibility of the study. The structural for-
mula (SDF format) of the active ingredients was downloaded
from the PubChem database. Then, we use ChemBioDraw
3D software to create 3-dimensional chemical structures
and minimize the energy. The crystal structures of the core
genes were obtained from the RCSB PDB database and mod-
ified using PyMOL v2.4.0 software, including solvent and
organic removal. Before molecular docking, AutoDockTools
v1.5.6 software was used to add hydrogen atoms. The core
genes were used as receptors, and the active ingredients were
used as ligands. AutoDock Vina v1.1.2 was run to perform
molecular docking. The online Protein-Ligand Interaction
Profiler (PLIP web tool, https://plip-tool.biotec.tu-dresden
.de/plip-web/plip/index) was used to analyze the docking
results. Finally, PyMOL v2.4.0 software was chosen to visual-
ize the result. The conformation with the best affinity and the
lowest binding energy was selected as the final docking result.

3. Results

3.1. Active Components of Screening for JOL. In this study,
components of four herbal medicines in JOL were collected,
of which Jin Yin Hua (JYH, honeysuckle), Huang Qin (HQ,
Scutellaria baicalensis), Chai Hu (CH, bupleurum), and Chan
Tui (CT, cicada slough) were identified from the TCMSP
database. Based on the screening criteria of the ADME, 74
active compounds were retrieved after duplicated targets
were eliminated. These active compounds originated from
JYH (23 components), HQ (36 components), CH (17
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components), and CT (3 components), including five dupli-
cated targets. Details of the active component information
are shown in Supplementary Table 1. All the targets of the
active components were predicted by the TCMSP database.
After removing redundant ones, 180 potential targets of
JOL were finally obtained. By screening the GeneCards

database, OMIM database, DrugBank database, and
PharmGKB database, 893 RSV pneumonia-related targets
were selected (Figure 2(a)). A total of 82 overlapping genes
were obtained by looking for the intersection of the above
drug targets and the disease targets (Figure 2(b)). These 82
genes were selected as potential targets for further analysis.
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Figure 1: Research process of network pharmacology and molecular docking.
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Figure 2: Screening of JOL-RSV pneumonia common targets: (a) Venn diagram of RSV pneumonia-related targets; (b) Venn diagram of
drug-disease common targets.
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Figure 3: Network construction. (a) Common active component-target network. The circular nodes on the left represent active components,
while nodes on the right represent common targets. (b) PPI network of overlapping genes. (c) Identification of core genes.
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3.2. Common Active Component-Target Network and
Analysis. The active component-target interaction network
was constructed by Cytoscape v3.8.0 software (Figure 3(a)).
The circular nodes with different colors represented the
active components of JOL, and each edge described the rela-
tionship between the functional components and target
genes. Among those circular nodes, the green ones repre-
sented the active components of Scutellaria baicalensis, the
orange ones represented the active components of honey-
suckle, the red ones represented the active components of
bupleurum, and the dark blue ones represented the active
components of cicada slough. Based on the degree value, we
identified the top three active ingredients, namely, quercetin
(MOL000098), luteolin (MOL000006), and kaempferol
(MOL000422).

3.3. PPI Network Analysis. The STRING online database was
used to acquire PPI relationships of potential protein targets
of JOL as related to the treatment of RSV pneumonia, and the
results are shown in (Figure 3(b)). The PPI network was
shown to contain 82 nodes and 1581 edges, with an average
node degree of 38.6, an average local clustering coefficient
of 0.747, and a PPI enrichment p value of <1.0e-16. Network
nodes represented proteins, and the edges represented
protein-protein associations. The thickness of the lines
between nodes meant the confidence prediction of the inter-
action, and the thicker the line, the stronger the interaction
relationship between proteins.

3.4. Identification of Core Genes and Topological Network
Analysis. The CytoNCA plug-in of Cytoscape v3.8.0 software
was used to calculate the topology through network analyzer.
As shown in Figure 3(c), 82 protein nodes and 758 edges
were obtained for intersection genes. After screening with
BC > 13:88, CC > 0:26, DC > 14:00, EC > 0:07, LAC > 9:04,
and NC > 10:41, the first 36 proteins were obtained, with a

total of 397 edges. Then, after second screening with BC >
10:35, CC > 0:74, DC > 22:50, EC > 0:17, LAC > 15:79, and
NC > 18:06, the final 16 genes are shown in Table 1 (in
descending order of degree) and (Figure 3(c)), with a total
of 108 edges. Therefore, we speculated that the 16 core genes
encode proteins in pivotal roles.

3.5. GO and KEGG Analysis. To explore the mechanism of
JOL in the treatment of RSV pneumonia, we used R 3.6.3
software to perform GO and KEGG functional enrichment
analysis on the 82 drug-disease common genes. GO analysis
included three levels: biological process (BP), cellular compo-
nent (CC), and molecular function (MF). A total of 2475 GO
enrichment results were obtained, of which are BP 2305, CC
47, and MF 123. The top ten terms in BP, CC, and MF are,
respectively, shown in Figures 4(a) and 4(b). BP mainly
involved aspects of response to lipopolysaccharide, response
to molecule of bacterial origin, and response to oxidative
stress. CC was primarily related to the membrane raft, mem-
brane microdomain, and membrane region. MF was mostly
involved in cytokine receptor binding, cytokine activity,
and receptor-ligand activity. KEGG pathway analysis was
used to determine related signaling pathways associated with
the RSV pneumonia of JOL. A total of 155 KEGG enrichment
results were selected, and the 30 significant KEGG pathways
(q value < 0:05) are shown in Figures 4(c) and 4(d). Some
played essential roles, including AGE-RAGE signaling path-
way in diabetic complications, fluid shear stress and athero-
sclerosis, TNF signaling pathway, hepatitis B, Chagas
disease, IL-17 signaling pathway, and Kaposi sarcoma-
associated herpesvirus infection. The potential pathways
were mainly enriched in the categories of the inflammatory
response, fighting against viruses and other pathogens, signal
transduction, and immunologic regulation. Besides, we
extracted the relevant pathways as in Table 2.

Table 1: Topological analysis results.

Gene names Betweenness Closeness Degree Eigenvector LAC Network

TNF 38.06 0.95 33.00 0.23 20.12 31.65

IL6 35.21 0.95 33.00 0.23 20.55 31.97

JUN 23.88 0.88 30.00 0.22 19.80 27.35

MAPK8 32.28 0.88 30.00 0.21 17.93 25.81

AKT1 33.62 0.88 30.00 0.21 17.60 25.44

TP53 26.79 0.85 29.00 0.20 18.14 25.27

MAPK1 22.26 0.85 29.00 0.21 19.03 25.63

VEGFA 20.42 0.81 27.00 0.19 17.48 22.68

MMP9 17.80 0.80 26.00 0.19 17.31 21.55

IL1B 21.51 0.80 26.00 0.18 16.31 20.73

CXCL8 18.84 0.80 26.00 0.19 17.08 21.32

PTGS2 13.72 0.78 25.00 0.18 17.44 20.90

EGF 14.16 0.78 25.00 0.18 17.12 20.37

RELA 16.32 0.76 24.00 0.17 15.83 19.10

ICAM1 11.38 0.74 23.00 0.17 16.26 19.12

MAPK14 11.09 0.74 23.00 0.17 16.17 18.86
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3.6. Validation by Molecular Docking.Molecular docking can
simulate the interaction between ligand and receptor and
predict the affinity by calculating the binding energy. The
small-molecule ligand can spontaneously bind to the macro-
molecular receptor when the binding energy is lower than
zero [10]. When the binding energy was lower than
-5.0 kcal/mol, the two showed better binding activity [11].
In our study, the five core genes and three active ingredients
were used as receptors and ligands. The screening results
(Table 3) illustrated that the three active ingredients had a
strong affinity with the corresponding protein receptors.
Luteolin had the best binding to MMP9 through 6 interac-
tions, mainly including hydrophobic interactions and hydro-
gen bonds. Interactions between the ligands and the
receptors are shown in Figure 5.

4. Discussion

As the most common respiratory pathogen, RSV is a cause of
morbidity and mortality in those prematurely born infants
and children with high-risk factors [12]. Lower respiratory
tract infections (LRTI) caused by RSV include bronchiolitis
and pneumonia. Studies found that RSV-driven Th2-
immunity skewing was closely linked with airway restructur-
ing and asthma during childhood [13, 14]. As a hospital-
made preparation, JOL came from “famous doctors and pre-
scriptions” and was widely used in children infected with
respiratory viruses. Our previous clinical study found that
JOL is effective and safe in treating children with RSV pneu-
monia. We explored the underlying mechanisms through
network pharmacology to provide better clinical evidence.
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Figure 4: GO and KEGG analysis of drug-disease common genes. (a) Bar plot of GO analysis: top ten significantly enriched terms in BP, CC,
and MF, respectively. (b) Bubble chart of GO analysis: the darker the color, the smaller the q value. The larger the circle, the more target genes
are enriched. (c) Bar plot of KEGG analysis: top 30 significantly enriched terms. (d) Bubble chart of KEGG analysis.
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In the JOL’s active component-target network, a total of
180 targets affected by 74 active compounds in the JOL were
selected. There were three top important compounds, includ-
ing quercetin, luteolin, and kaempferol, identified as the
potential active ingredients of JOL.

As a natural flavonoid, quercetin showed several biologi-
cal activities, and it could block the adhesion of RSV [15].
Studies found that quercetin could interact with G protein
ectodomain of group A human RSV due to the stable combi-
nation between them [16, 17]. It was reported that quercetin
could alleviate inflammatory lung injury [18]. Luteolin is a
typical flavonoid compound and has been widely studied
for its effects, including antioxidant, anticancer, anti-inflam-
matory, and antiapoptotic [19]. Wang et al. found that luteo-
lin can decrease the titer of RSV and inhibit viral replication
[20]. Kaempferol, known as polyphenol, was a flavonol pres-
ent in different plants. Experimental studies confirmed that
kaempferol could inhibit inflammatory cell function by inhi-
biting the expression of cytokines and chemokines [21, 22].

Then, we retrieved 893 RSV pneumonia targets from
GeneCards, OMIM, DrugBank, and PharmGKB database.
Through target mapping, we found 82 targets in common
between active components and the disease targets and built
the connections of the “ingredient-target” network.

By constructing the PPI network, topological parameters
for the recognition of essential nodes were calculated. 16
genes were found to be the core genes of JOL in treating
RSV pneumonia. These genes were connected with host
immunity, oxidative stress, virus, and other pathogenic
microorganisms. We focused on the most relevant genes
that had previously been reported. Recent studies were per-
formed to evaluate the relative roles of IL-1B, IL-6, TNF-α,
CXCL8, and MMP9 in acute RSV infection [23–25]. IL6 is
a cytokine with multiple biological functions. IL-1B and
TNF are primary activators of IL6 expression [26]. The
expression of IL6 increased when the host developed with

infection, autoimmune disease, or cancer [27]. TNF-α
played a vital role in RSV-induced exacerbations in allergic
airway disease [28]. CXCL8 had been shown to be a chemo-
kine involved in neutrophil activation [29], while RSV infec-
tion could increase airway neutrophils [12]. MMP9 is a
member of the matrix metalloproteinase family [30]. Expres-
sion levels of MMP9 increased during RSV infection of air-
way epithelia, and it played an essential role in disease
severity [25]. Core genes such as TNF, CXCL8, IL-1B, IL-6,
and MMP9 were selected to perform molecular docking to
verify the interaction between active ingredients and target
genes, respectively.

GO and KEGG enrichment analysis revealed that JOL
could regulate the progress of immune pathways and virus
defense. The ten significant GO (BP) terms indicated that
JOL could control the pathogenic microbial stimulation and
the oxidative stress process during the treatment of RSV
pneumonia. KEGG pathway enrichment results showed
potential pathways. Most of the target genes were enriched
in the virus-related signaling pathways, TNF signaling path-
way, and IL-17 signaling pathway. Several studies [31–33]
have demonstrated that the TNF signaling pathway and IL-
17 signaling pathway were related to RSV infection. The
TNF signaling pathway plays a significant role in immune
regulation and inflammation [34]. Experimental evidence
demonstrated that TNF receptor blockade could reduce the
expression of cytokines and chemokines that closely related
to RSV infection [35]. IL-17 signals played an essential role
in both transcriptional and posttranscriptional levels [36].
The level of IL-17 increased after suffering from RSV, which
was linked to mucus secretion [37].

Serafini et al. reported that flavonoids could inhibit the
expression of proinflammatory cytokines/chemokines such
as TNF-α, IL-6, IL-1B, and IL-8 [38]. Evidence indicated that
flavonoids suppress the activation of NF-κB and MAPK, to
inhibit the expression of inflammatory cytokines [39]. Based
on the GO and KEGG results, our study indirectly showed
that the TNF signaling pathway and the IL17 signaling path-
way might play a significant role in treating RSV pneumonia
with JOL.

We also performed molecular docking to predict com-
plex interactions between the three active ingredients and
the protein targets. The binding energies could help to verify
the reliability of the docking results further, and the results
demonstrated good binding properties. All the binding
energy were less than -7 kcal/mol. The interaction points
indicated that quercetin, luteolin, and kaempferol might play
an important role in treating RSV pneumonia.

Table 2: Relevant pathways enriched by target genes.

ID Description GeneRatio q value Count

hsa04668 TNF signaling pathway 24/81 4.73e-25 24

hsa05161 Hepatitis B 26/81 6.24e-24 26

hsa04657 IL-17 signaling pathway 21/81 1.83e-22 21

hsa05167 Kaposi sarcoma-associated herpesvirus infection 26/81 3.93e-22 26

hsa05163 Human cytomegalovirus infection 25/81 3.15e-19 25

Table 3: Screening docking results between receptors and ligands.

Core genes (PDB
ID)

Active
ingredients

Binding energy
(kcal/mol)

TNF (3GWT) Quercetin -9.1

CXCL8 (5D14) Quercetin -7.9

IL-1B (5R8A) Quercetin -7.6

IL6 (1IL6) Quercetin -7.4

MMP9 (6ESM) Luteolin -10.8

TNF (3GWT) Kaempferol -9.1
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5. Conclusion

We analyzed the potential mechanism by which JOL effec-
tively treated RSV pneumonia based on network pharmacol-
ogy. A possible association between active ingredients and
core genes was discovered through the systematic strategy,
which further verified the reliability by molecular docking
technology. Therefore, traditional Chinese medicine such as
JOL may be an alternative approach for treating RSV infec-
tion. But there were still some limitations. Further experi-
mental validation is needed to support our research.
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