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Propranolol has been used in the first-line therapy of infantile hemangioma (IH) for a number of years; however, the mechanisms
through which propranolol regulates IH are not yet fully understood. In the present study, microRNA (miRNA/miR) sequencing
analysis was performed to identify differentially expressed miRNAs in human umbilical vascular endothelial cells (HUVECs)
treated with propranolol. Cell viability and apoptosis were detected using CCK-8 assay and flow cytometry, respectively. Cell
migration was assessed using wound healing, Transwell, and tube formation assays. Methylation-specific PCR was then used to
investigate the promoter methylation status. The levels of oxidative stress indicators, including superoxide dismutase,
glutathione, and malondialdehyde were also detected. Finally, cell cycle analysis was performed using flow cytometry and
western blotting. It was observed that propranolol induced the upregulation of miR-206 in HUVECs, which was caused by
demethylation of the miR-206 promoter. Moreover, propranolol significantly inhibited the proliferation of HUVECs by
inducing apoptosis, while these phenomena were reversed by miR-206 antagomir. VEGFA was found to be a target gene of
miR-206. In addition, propranolol notably inhibited the migration and induced G1 arrest of the HUVECs, whereas these
results were eliminated by miR-206 antagomir. Collectively, the findings of the present study demonstrated that propranolol
may inhibit the proliferation and migration in HUVECs via modulating the miR-206/VEGFA axis. These findings suggest a
novel mechanism through which propranolol suppresses the progression of IH.

1. Introduction

Infantile hemangioma (IH) is the most frequent vascular
tumor occurring in infancy, and it affects ~5-10% of mature
neonates [1]. IH begins with the hyperplasia of endothelial
cells, which is followed by a period of extensive proliferation
and finally the involution phase [2]. In general, >20% of the
IHs are associated with severe complications, such as ulcer-
ations, visual impairment, airway obstruction, and conges-
tive heart failure [3]. Therefore, accurate diagnostic tools
and effective therapies are urgently required. Since the dis-
covery that propranolol can inhibit the growth of severe
hemangiomas in 2008 [4], propranolol has been widely used
as a first-line therapy [5]. Propranolol is a β-adrenergic
receptor antagonist, which can reduce heart rate and cardiac
contractility; thus, it is widely used in the treatment of
cardiac-cerebral vascular diseases [6–8]. However, the poor

responsiveness and recurrence in some patients require the
identification of novel drugs for future therapy [9, 10].

MicroRNAs (miRNAs/miRs) are classified as single-
strand noncoding RNAs expressed widely during physiolog-
ical or pathological processes [11]. In recent years, the role of
miRNAs in cancers has been extensively investigated. They
are well known to play a role in cancer cell proliferation
[12], migration [13], apoptosis [14], and in other cellular
processes. Meanwhile, miRNAs are known to mediate the
progression of IH. For instance, miR-33a-5p could inhibit
the tumorigenesis of IH via targeting HIF1α [15]; miR-
196b-5p could facilitate intercellular interaction in IH [16].
However, the role of miRNAs in IH warrants further inves-
tigation. In the present study, the differentially expressed
miRNAs in propranolol-treated human umbilical vascular
endothelial cells (HUVECs) were analyzed. Furthermore,
the association between propranolol and the differentially
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expressed miRNAs in HUVECs was investigated. The find-
ings of the present study provide a more theoretical founda-
tion for the propranolol treatment of IH. It is hoped that
these findings may also aid in the development of novel
drugs for IH therapy.

2. Materials and Methods

2.1. Cell Culture and Transfection. HUVECs were obtained
from the American Type Culture Collection (ATCC) and
cultured in EGM™ Endothelial Cell Growth Medium (Lonza
Group, Ltd.) in a humidified incubator at 37°C with 5% CO2.
The cells were then incubated with 0, 20, 40, 60, 80, or
100μM propranolol (Sigma-Aldrich; Merck KGaA) for
48 h, followed by analyses using various assays. miR-206
agomir, miR-206 antagomir, and negative control (Guang-
zhou RiboBio Co., Ltd.) were transfected into the HUVECs
using Lipofectamine 2000® (Thermo Fisher Scientific, Inc.).

2.2. Cell Viability Assay. Cell viability was determined using
Cell Counting Kit-8 (CCK-8) assay (Nanjing KeyGen Bio-
tech Co., Ltd.). The cells were plated in a 96-well plate and
treated with the reagents for 48 h; CCK-8 reagent was then
added to the cells for a further 2 h at 37°C. The absorbance
was then read at 450 nm using a Victor3™ microplate reader
(PerkinElmer, Inc.).

2.3. RNA Sequencing and Analysis of Differentially Expressed
miRNAs. The HUVECs were treated with or without propran-
olol and harvested for RNA extraction using TRIzol® reagent
(Invitrogen; Thermo Fisher Scientific, Inc.) following the
manufacturer’s guidelines. The concentration of RNA was
then quantified using a Nanodrop 2000 spectrophotometer
(Thermo Fisher Scientific, Inc.). RNA library data were gener-
ated from the Illumina Hiseq platform (Illumina, Inc.).
DESeq2 was used for the analysis of differentially expressed
miRNAs [17]. The selection criteria for the upregulated and
downregulated miRNAs were a P value < 0.05 and fold
change > 1:2, and a P value < 0.05 and fold change < 0:083,
respectively.

2.4. KEGG and GO Analysis for the Protein Targets of
Differentially Expressed miRNAs. The protein targets of differ-
entially expressed miRNAs were analyzed using miRTarBase.
ClusterProfiler software was used for Gene Ontology (GO)
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analysis. The GO database (http://www.geneontology.org/)
was used to annotate the functions of protein targets of differ-
entially expressedmiRNAs. The KEGG database (https://www
.genome.jp/kegg/) was used to determine the potential path-
ways of the protein targets of differentially expressed miRNAs.

2.5. Reverse Transcription-Quantitative PCR (RT-qPCR).
RNA extraction from HUVECs was performed using TRI-
pure RNA Extraction Reagent (ELK Biotechnology, Co.,
Ltd.). First, RNA was reverse transcribed into cDNA using
the EntiLink cDNA Synthesis kit (ELK Biotechnology, Co.,
Ltd.). The mRNA level was then determined using SYBR-
Green (ELK Biotechnology, Co., Ltd.) on a StepOne™ PCR
System (Thermo Fisher Scientific, Inc.). The specific primers

used were as follows: miR-206 forward, 5′-TGGAATGTAAG
GAAGTGTGTGG-3′ and reverse, 5′-CTCAACTGGTGTCG
TGGAGTC-3′; VEGFA forward, 5′-GAACTTTCTGCTGT
CTTGGGTG-3′ and reverse, 5′-GGCAGTAGCTGCGCTG
ATAG-3′. U19 and β-actin were used as the internal controls
for miR-206 and VEGFA, respectively. The relative mRNA
levels were quantified using the 2-ΔΔCq method [18].

2.6. Methylation-Specific PCR. HUVECs were treated with
80μM propranolol for 48h and then harvested for DNA
extraction using the Genomic DNA Extraction kit (ELK Bio-
technology, Co., Ltd.). Subsequently, DNA was subjected to
bisulfite modification following the manufacturer’s protocols
(Methylation-Gold kit; Zymo Research Corp.). The primers
for methylated (M) and unmethylated (U) PCR were synthe-
sized by Sangon Biotech, Co., Ltd. and were as follows: M for-
ward, 5′-TTGTATAAGAATAAGTTAGGGAAACG-3′ and
reverse, 5′-CCCAAACAAAAAACTCTTAACG-3′; and U
forward, 5′-GTTGTATAAGAATAAGTTAGGGAAATG-3′
and reverse, 5′-TACCCAAACAAAAAACTCTTAACA-3′.
Finally, 2% agarose gel was used to separate the PCR products.

2.7. Flow Cytometry. HUVECs were collected and resus-
pended in PBS supplemented with 0.5% FBS and 2mM
EDTA. After washing with PBS, the cells were stained using
the Annexin V-FITC/PI double staining kit (Nanjing Key-
Gen Biotech. Co. Ltd.). PI/RNase staining buffer (BD Biosci-
ences) was used for cell cycle analysis. All steps were
performed according to the manufacturer’s instructions.
Detection was performed using a flow cytometer (BD Biosci-
ences) within 1 h, and the data were analyzed using FlowJo
7.6 software (FlowJo LLC).

2.8. Wound Healing Assay. HUVECs were seeded in a 12-
well plate until they reached a confluency of 80%. A scratch
was then made in a straight line in the cell layer using a
100μl pipette tip. The cells were then washed twice with
PBS to remove the suspended cells and cultured in complete
medium. The same scratch area was photographed at 0 h
and 48 h under a microscope (Olympus Corporation).
Finally, the wound healing rate was calculated according to
the change in the wound area [19].

2.9. Transwell Assay. The Transwell migration assay was
performed using 24-well Transwell chambers with an 8μm
pore size (Corning, Inc.). First, 200μl HUVECs in serum-
free medium was added to the upper chamber of the well,
and 600μl complete medium was added to the lower cham-
ber. The unmigrated cells on the upper surface were then
removed using a cotton swab, and the migrated cells on
the lower surface were stained with 0.2% crystal violet
following 24 h of incubation. The images were captured
under a light microscope (Olympus Corporation).

2.10. Tube Formation Assay. Matrigel™ (BD Biosciences)
was applied to assess the tube formation ability of the
HUVECs. The 6-well plates were precoated with Matrigel
at 37°C for 1 h. The HUVECs were then seeded into these
wells and incubated for 24 h. The images of tube formation
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Figure 1: Continued.
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were captured under a microscope (Olympus Corporation).
Branching points and capillary lengths from three random
fields were analyzed using WimTube software (Wimasis).

2.11. Dual-Luciferase Reporter Assay. The potential associa-
tion between miR-206 and VEGFA was predicted using bio-
informatics tools, miRDB (http://www.mirdb.org) and
TargetScan (http://www.targetscan.org). The VEGFA 3′-
UTR sequences containing the wild-type or mutant miR-
206 binding sites were then constructed and inserted into
the pGL6 luciferase reporter vector (Beyotime Institute of
Biotechnology). HUVECs were cotransfected with the lucif-
erase reporter vector plus miR-206 agomir or control using
Lipofectamine 2000® (Thermo Fisher Scientific, Inc.).
Following 48h of transfection, the cells were harvested for
luciferase activity detection following the instructions
provided with the Dual-Luciferase Reporter Assay System
(Promega Corporation).

2.12. Western Blot Analysis. Total protein from was extracted
from the HUVECs and electrophoresed with 12% SDS-PAGE,
followed by transfer onto PVDF membranes (Invitrogen;
Thermo Fisher Scientific, Inc.). Subsequently, the membranes
were blocked with 5% skim milk and then incubated with the
following primary antibodies at 4°C overnight: VEGFA, p-
AKT, p-ERK (1 : 500), AKT, ERK, CDK4, Cyclin D1, and
cleaved caspase-3 (1 : 1,000). After washing with TBST three
times, the membranes were incubated with specific secondary
antibodies labeled with HRP for 1h. Finally, the membranes
were visualized using the ECL chemiluminescent substrate
kit (Thermo Fisher Scientific, Inc.) and analyzed using ImageJ
software (National Institutes of Health). The antibodies were

all obtained from Cell Signaling Technology, Inc. β-Actin
was used as the internal standard.

2.13. Detection of Oxidative Stress Indicators. The indicators
of oxidative stress, including superoxide dismutase (SOD)
activity, glutathione (GSH), and malondialdehyde (MDA)
content, were examined. All assays were performed as per
the manufacturer’s protocols (Nanjing Jiancheng Bioengi-
neering Institute).

2.14. Statistical Analysis. All experiments were repeated at
least three times. The data were analyzed using GraphPad
Prism software (GraphPad Software Inc.) and presented as
the mean ± SD. The Student’s t-test (two-tailed) and one-
way ANOVA were applied to compare results between 2
groups or among multiple groups. P < 0:05 was considered
to indicate a statistically significant difference.

3. Results

3.1. Profiling of Differentially Expressed miRNAs in Propranolol-
Treated HUVECs.HUVECs were treated with serial concentra-
tions of propranolol (0, 20, 40, 60, 80, or 100μM). The results
of the CCK-8 assay revealed that propranolol treatment led to a
concentration-dependent decrease in cell viability at 48h
(Figure 1(a)). Subsequently, miRNA-seq was performed on
three independent groups of HUVECs treated with or without
80μM propranolol. As shown in the clustering analysis of the
differentially expressed miRNAs (Figure 1(b)), 97 miRNAs
were identified to be upregulated (P value < 0.05; fold
change > 1:2), and 119 miRNAs were downregulated (P value
< 0.05; fold change < 0:833). Additionally, these differentially
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Figure 1: DEG analysis of HUVECs treated with propranolol. (a) Cell viability was determined by CCK-8 assay. N = 3, ∗P < 0:05, ∗∗P < 0:01
, all comparing with the 0 μM propranolol group. (b) Heat map showing the DEGs in cells treated with 80 μM propranolol comparing with
control cells. Red represents upregulated genes, green represents downregulated genes, and black represents unchanged genes, N = 3. (c)
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change < 0:833) miRNAs. (d) GO enrichment analysis of protein targets of DEGs. (e) KEGG pathway analysis of protein targets of DEGs.

4 BioMed Research International

http://www.mirdb.org
http://www.targetscan.org


expressed miRNAs were presented in a volcano plot
(Figure 1(c)). GO and KEGG analyses were then performed
to analyze the enrichment functions and pathways of the
upregulated target genes. GO analysis revealed that the upreg-
ulated targets were mostly involved in “cadherin binding,” “cell
substrate junction,” and “histone modification” (Figure 1(d)).
KEGG analysis revealed that the upregulated targets were
mostly focused in “Proteoglycans in cancer,” “Shigellosis,”
“cellular senescence,” and “Cell cycle” (Figure 1(e)).

3.2. Propranolol Exerts Antiproliferative Effects on HUVECs
through Demethylation of the miR-206 Promoter. As shown
by the results obtained for the differentially expressed miR-
NAs, miR-206 was one of the markedly upregulated miR-
NAs in the propranolol-treated HUVECs (Figure 2(a)).
miR-206 has been demonstrated to play a key role in the
vascular function of various cancer cells [20, 21]; thus, the
association between miR-206 and propranolol in HUVECs
was then investigated in the following experiments. The
results of RT-qPCR further demonstrated that treatment
with 80μM propranolol significantly upregulated the miR-

206 level in the cells (Figure 2(b)). As is known, methylation
in the CpG island can result in the downregulation of miR-
NAs [22]. Thus, methylation-specific PCR was performed to
verify the methylation status of the miRNA-206 promoter.
Compared with the control cells, propranolol treatment led
to a decrease in the M promoter and an increase in the U
promoter (Figure 2(c)). In order to further determine the role
of miR-206 in propranolol-treated HUVECs, miR-206 antag-
omir was transfected into the cells. RT-qPCR confirmed that
miR-206 antagomir notably decreased the expression of
miR-206 in HUVECs (Figure 2(d)). Furthermore, propranolol
significantly inhibited the growth of HUVECs by inducing
apoptosis (Figures 2(e) and 2(f)), while this phenomenon
was completely revered by miRNA-206 antagomir. Taken
together, propranolol significantly inhibited the growth of
HUVECs via demethylation of the miR-206 promoter.

3.3. Downregulation of miR-206 Reverses the Propranolol-
Induced Inhibition of the Migration of HUVECs. A previous
study suggested that propranolol can inhibit the migration
of HUVECs [23]. In order to further explore the role of
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Figure 2: Propranolol inhibits survival of HUVECs through demethylation of pre-miR-206. (a) Top-ten upregulated miRNAs in
propranolol-treated (80 μM) HUVECs comparing with control cells. (b) HUVECs were treated with 80 μM propranolol for 48 h, and the
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Figure 4: VEGFA is a target gene of miR-206. (a) Predicted binding sequences between miR-206 and VEGFA. (b) The relationship between
miR-206 and VEGFA was verified by dual-luciferase reporter assay. ∗∗P < 0:01, comparing with the agomir control group; ##P < 0:01,
comparing with the propranolol group; n = 3. (c) The mRNA level of VEGFA in HUVECs was detected with RT-qPCR after miR-206
antagomir transfection. (d)–(g) The protein levels of VEGFA, p-Akt, Akt, p-ERK, and ERK were determined by western blotting, and the
relative expression of proteins was normalized with β-actin. ∗∗P < 0:01, comparing with the control group; ##P < 0:01, comparing with
the propranolol group; n = 3.
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miR-206 in the propranolol-mediated inhibition of cell
migration, Transwell, wound healing, and tube formation
assays were conducted. As was expected, propranolol signifi-
cantly inhibited the wound healing rate of HUVECs, while
miR-206 antagomir notably reversed this effect (Figures 3(a)
and 3(b)). Likewise, Transwell assay further confirmed that
miR-206 antagomir reversed the propranolol-induced inhibi-
tion of cell migration (Figures 3(c) and 3(d)). In addition, the
results of tube formation assay indicated that propranolol sig-
nificantly decreased the number of branch points and the length
of capillaries, whereas these phenomena were notably reversed
by miR-206 antagomir. Taken together, the propranolol-
induced inhibition of cell migration was reversed by miR-206
inhibition.

3.4. VEGFA Is a Potential Binding Target of miR-206. To fur-
ther investigate the role of miR-206 in propranolol-treated
HUVECs, the potential target of miR-206 was searched using
themiRDB and TargetScan databases. Both databases revealed
that VEGFA may be a possible target gene of miR-206. The
binding sequences between miR-206 and the 3′-UTR of
VEGFA are presented in Figure 4(a). Furthermore, dual-
luciferase reporter assay revealed that miR-206 agomir signif-
icantly reduced the luciferase activity of wild-type VEGFA,
while it had no effect on the mutant one (Figure 4(b)). More-

over, miR-206 agomir notably suppressed the level of VEGFA
in HUVECs (Figure 4(c)). Additionally, propranolol decreased
the levels of VEGFA, p-AKT, and p-ERK inHUVECs, whereas
these phenomena were significantly reversed by miR-206
antagomir (Figures 4(d)–4(g)). All these results illustrated pro-
pranolol suppressed the proliferation and migration of
HUVECs through the regulation of the miR-206/VEGFA axis.

3.5. Downregulation of miR-206 Abolishes the Antioxidant
Capacity of Propranolol in HUVECs. Since propranolol has
been demonstrated to prevent angiogenesis via abolishing oxi-
dative stress [24], indicators of oxidative stress were then
detected. As shown in Figures 5(a) and 5(b), the activity of
SOD and the contents of GSH were decreased following
propranolol treatment; however, miR-206 antagomir reversed
these effects. In addition, the level of MDA was notably
increased by propranolol, and this effect was notably reversed
by miR-206 inhibition. All these data suggested that propran-
olol exerted its antioxidant effects on HUVECs through the
modulation of miR-206.

3.6. Downregulation of miR-206 Eliminates Propranolol-
Induced Cell Cycle Arrest of HUVECs. As revealed by KEGG
pathway analysis, the targets of the differentially expressed
miRNAs exhibited a close association with “Cell cycle,”
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Figure 5: Downregulation of miR-206 abolishes the antioxidant capacity of propranolol in HUVECs. Cells were treated with propranolol or
propranolol+miR-206 antagomir, the changes of (a) SOD activity, (b) GSH level, and (c) MDA level in HUVECs were measured,
respectively. ∗∗P < 0:01, comparing with the control group; ##P < 0:01, comparing with the propranolol group; n = 3.
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and previous reports revealed that miR-206 could inhibit the
cancer cell growth via mediation of cell cycle proteins [25,
26]. Thus, cell cycle behavior was then detected in the fol-
lowing experiment. As was expected, the expression levels
of CDK4 and cyclin D1 were decreased following proprano-
lol treatment, while miR-206 antagomir significantly reverse
these effects (Figures 6(a) and 6(b)). On the other hand, the
propranolol-induced upregulation of cleaved caspase-3
expression was notably reversed by miR-206 antagomir
(Figure 6(c)). Additionally, cell cycle analysis revealed that
G1 arrest induced by propranolol in the HUVECs was nota-
bly eliminated by miR-206 inhibition. Taken together, these

data suggested that the propranolol-induced cell cycle arrest
of HUVECs was eliminated by miR-206 inhibition.

4. Discussion

For decades, it has been known that miRNAs function as key
regulators of vascular diseases. In 2016, Strub et al. [27], for
the first time, found that miRNA-C19MC was a biomarker
of IH. The level of circulating C19MC was associated with
the IH tumor size and the response to propranolol treatment
[27]. Thereafter, other studies found that miRNAs regulated
the process of IH through various mechanisms. For example,
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Figure 6: Downregulation of miR-206 eliminates propranolol-induced cell cycle arrest in HUVECs. Cells were treated with propranolol or
propranolol+miR-206 antagomir. (a) The protein levels of CDK4, Cyclin D1, and cleaved caspase 3 were detected by western blotting.
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Li et al. [28] found that propranolol treatment led to the down-
regulation of miR-382 via the PTEN/AKT/mTOR pathway in
XPTS-1 cells. Mong et al. also revealed that the LIN28B/Let-7
signaling axis was involved in the propranolol-induced involu-
tion of IH [29]. As is known, due to its ability to decrease DNA
synthesis [30], miR-206 has been shown to reduce angiogenesis
[31], thus, suggesting that it may effectively inhibit cancer
development [20, 32]. Recent studies have demonstrated that
miR-206 can inhibit the proliferation, invasion, and migration
of a number of cancer cells [20, 33, 34]. Similar to these studies,
the present study found that miR-206 was involved in the anti-
angiogenic effects of propranolol on HUVECs.

Tumor angiogenesis involves endothelial cell proliferation
and migration, which are activated through the VEGF/-
VEGFR pathway [35, 36]. As aforementioned, miR-206 plays
an antiangiogenic role in different tumor types. There is
evidence to indicate that miR-206 targets the VEGFA/CCL2
signaling pathway to inhibit tumor progression [37]. Another
study found miR-206 suppressed the Met/ERK/Elk-1/HIF-
1α/VEGF-A pathway in CCL19-mediated colorectal cancer
cells [21]. In the present study, it was found that VEGFA
was a target of miR-206, and that miR-206 antagomir reversed
the propranolol-induced downregulation of VEGFA in
HUVECs. Another study also demonstrated that propranolol
reduced the expression of VEGF and VEGF-A via the
downregulation of miR-4295 in HUVECs [23]. Thus, there
may be other signaling pathways participating in this pro-
cess, which warrants further investigation into this matter
in the future.

In the present study, an important finding was that the
“Cell cycle” was involved in the upregulated miRNAs, as
revealed using KEGG analysis. The role of the cyclin D/CDK
axis in angiogenesis has already been documented [38].
Additionally, researchers have found that miRNAs affect the
progression of the cell cycle by targeting the CDK1 and 4/6
genes [39] or E2F transcription factor 8 [40]. Although the cell
cycle-related proteins were not found to be the direct target of
miR-206 in the present study, cell cycle arrest was observed in
the propranolol-treated HUVECs.

Another interesting finding of the present study was that
propranolol treatment decreased the methylation level of
pre-miR-206. DNA hypermethylation in the promoter is
the most frequent mechanism leading to downregulated
miRNAs [41]. Previously, researchers have found aberrant
methylation status of miRNAs in various types of cancer
[42, 43], and methylated miRNAs have been shown to be
involved in cancer cell proliferation [44, 45]. This finding
may lead to the better understanding of the mechanisms
through which propranolol regulates the progression of IH.

5. Conclusions

In conclusion, the findings of the present study demonstrated
that propranolol may suppress the proliferation andmigration
of HUVECs through the regulation of the miR-206/VEGFA
axis. These findings partly explain the mechanisms through
which propranolol regulates the progression of IH and may
aid in the development of novel therapies and drugs in the
future.
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