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Background. Currently, immunotherapy is widely used for breast cancer (BC) patients, and tumor mutation burden (TMB) is
regarded as a valuable independent predictor of response to immunotherapy. However, specific gene mutations and their
relationship with TMB and tumor-infiltrating immune cells in BC are not fully understood. Methods. Comprehensive
bioinformatic analyses were performed using data from The Cancer Genome Atlas (TCGA) and International Cancer Genome
Consortium (ICGC) datasets. Survival curves were analyzed via Kaplan-Meier analysis. Univariate and multivariate Cox
regression analyses were used for prognosis analysis. Gene set enrichment analysis (GSEA) was performed to explore
regulatory mechanisms and functions. The CIBERSORT algorithm was used to calculate the tumor-infiltrating immune cell
fractions. Results. We analyzed somatic mutation data of BC from TCGA and ICGC datasets and found that 19 frequently
mutated genes were reported in both cohorts, namely, SPTA1, TTN, MUC17, MAP3K1, CDH1, FAT3, SYNE1, FLG,
HMCN1, RYR2 (ryanodine receptor 2), GATA3, MUC4, PIK3CA, KMT2C, TP53, PTEN, ZFHX4, MUC16, and USH2A.
Among them, we observed that RYR2 mutation was significantly associated with higher TMB and better clinical prognosis.
Moreover, GSEA revealed that RYR2 mutation-enriched signaling pathways were related to immune-associated pathways.
Furthermore, based on the CIBERSORT algorithm, we found that RYR2 mutation enhanced the antitumor immune
response by enriching CD8+ T cells, activated memory CD4+ T cells, and M1 macrophages. Conclusion. RYR2 is
frequently mutated in BC, and its mutation is related to increased TMB and promotes antitumor immunity; thus, RYR2
may serve as a valuable biomarker to predict the immune response.

1. Introduction

Breast cancer (BC) is the most common malignancy in
women worldwide, with approximately 2.1 million new
cases in 2018 [1]. Although current comprehensive treat-
ments for BC, including surgery, chemotherapy, radiother-
apy, endocrine therapy, and targeted drug therapy, have
significantly improved the survival rate of patients, some
patients still develop tumor recurrence due to drug resis-

tance and eventually die [2]. In recent years, the discovery
of immune checkpoints has opened a new era in the treat-
ment of malignant tumors [3]. In clinical practice, immune
checkpoint inhibition targeting programmed cell death
receptor 1 (PD-1) and its ligand PD-L1 has been applied
to a variety of solid tumors and significantly improved the
overall survival (OS) of patients [4]. Currently, the American
Food and Drug Administration (FDA) has approved atezoli-
zumab (an inhibitor of PD-L1) in combination with albumin
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paclitaxel for first-line treatment of advanced triple-negative
breast cancer (TNBC). However, BC is a “cold” tumor in
immunotherapy [5]. In terms of overall efficacy, BC patients
do not benefit as much from immunotherapy as patients
with other solid tumors, such as non-small-cell lung cancer
and melanoma [6]. Thus, the use of effective immune
markers to screen out BC patients who are more likely to
benefit from immunotherapy is an important research direc-
tion. The most critical problem for BC immunotherapy is
how to choose the appropriate population and reasonable
predictors of immunotherapy efficacy to prolong the sur-
vival time of patients and improve their quality of life.

The PD-1/PD-L1 signaling pathway is the most inten-
sively studied pathway in immunotherapy [7]. Tumor cells
achieve immune escape using the PD-1/PD-L1 signaling
pathway to evade immune monitoring. Both tumor cells
and immune cells can overexpress PD-L1. When PD-1 on
the surface of T cells binds to PD-L1, the immune response
of T cells to tumor cells is inhibited, enabling tumor cells to
escape being killed by the immune system [8, 9]. PD-1 or
PD-L1 antibodies can block the binding between PD-1 and
PD-L1 and reactivate the immune response of T cells to
tumor cells [8]. Thus, high PD-L1 expression is considered
a good indicator for tumor immunotherapy. A meta-
analysis of advanced BC showed that PD-L1 not only is
related to the prognosis of advanced BC patients but also is
a biomarker for screening the appropriate population for
immunotherapy [10]. Although the expression level of PD-
L1 in tumors can be clinically assessed by immunohisto-
chemistry, PD-L1 expression in tumors is heterogeneous
and affected by previous chemotherapy and radiotherapy
[11, 12]. In addition, the methods for PD-L1 detection and
the critical value of positive PD-L1 expression are not
standardized [13]. Thus, the use of PD-L1 as a biomarker
for immunotherapy sensitivity is still limited.

Tumor mutation burden (TMB) is the total number of
nonsynonymous somatic cell mutations in tumor cells
[14]. Nonsynonymous mutations can produce neoantigens
recognized by the host immune system, thus triggering
removal by the immune system and inducing the host
immune response to scavenge tumor cells [15]. Therefore,
tumor cells with higher levels of TMB may be more easily
recognized by the immune system, which in turn triggers a
stronger immune response to checkpoint inhibitors [16]. It
has been confirmed that high TMB is associated with high
tumor immunogenicity in different types of tumors, and
the clinical response and survival rate of high TMB tumors,
such as melanoma, lung cancer, and colorectal cancer, are
significantly increased [17]. In a clinical trial, TMB was more
significantly correlated with response rates than the expres-
sion level of PD-L1 [18]. These results suggest that TMB
can be used as a tumor predictor of clinical benefit and a
prognostic factor and that it has the potential to play a key
role in predicting the efficacy of immune checkpoint inhibi-
tors. A recent study analyzed clinical research data on PD-1
inhibitors and PD-L1 inhibitors in 27 solid tumor types,
including BC, and found that TMB was significantly posi-
tively correlated with the objective response rate to immuno-
therapy [19]. TMB expression was significantly different

among different gene mutation subtypes of BC. TMB
expression was highest in TNBC patients, followed by
HER2-positive patients, while TMB expression was lowest
in patients with estrogen receptor- (ER-) positive, progester-
one receptor- (PR-) positive, and human epidermal growth
factor receptor-2- (HER2-) negative BC subtypes [20]. At
present, whether TMB can directly predict the efficacy of
immunotherapy for BC is still controversial, but some stud-
ies suggest that patients with a high TMB have a better prog-
nosis when stratified by gene mutation and analyzed in
combination with immune subtypes [21]. Therefore, high
TMB-related gene mutation analysis may be a good predic-
tor of immunotherapy efficacy, which can contribute to
screening for the appropriate population for BC immuno-
therapy. However, specific gene mutations and their rela-
tionship with TMB and tumor-infiltrating immune cells in
BC are not clear. Thus, this study is aimed at exploring
whether TMB and prognosis-related genes are closely
related to BC immunotherapy.

2. Materials and Methods

2.1. Data Acquisition. A total of 1222 RNA expression pro-
file samples of BC were downloaded from TCGA database
(http://portal.gdc.cancer.gov/projects), including 1109
tumor samples and 113 normal samples. The clinical infor-
mation of 1097 patients with BC was downloaded from
TCGA database. After excluding those patients with missing
clinical data, 980 samples were used for further analysis. The
somatic mutation data of 877 United States patients from
TCGA database and 508 European Union patients from
the ICGC database (http://dcc.icgc.org/releases/current/
Projects) were downloaded and extracted in Perl software
so that it can be analyzed in R software.

2.2. Classification of BC Based on TMB. TMB was defined as
the total number of somatic gene coding errors, gene inser-
tions, gene deletions, and base substitutions detected per
million bases. As described in previously published research,
only mutations that cause changes in amino acids were
counted [14].

2.3. Bioinformatic Analysis. As described in a previous study
[22], R (v4.0.2) was used for bioinformatic analysis. The 30
genes with the highest mutation frequency in TGCA and
IGGC databases were extracted with Perl. Somatic mutation
data for both American and European Union BC samples
were processed and visualized with the “GenVisR” package
[23]. The R package “venn” was used to screen for the same
mutated genes in both databases. The association between
mutated genes and TMB was analyzed and visualized using
the R package “ggpubr.” Due to the lack of survival informa-
tion in the ICGC database, patients from TCGA database
were sorted into two groups according to gene mutation
states. Survival curves were analyzed and visualized using
the R packages “survminer” and “survival.” Gene set enrich-
ment analysis (GSEA) was performed with GSEA software
(v4.1.0), and the conditions set included normalized
enrichment score ðNESÞ = 1000 and FDR p value < 0.05
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[24]. The selected gene sets for GSEA contained
“c5.go.bp.v7.2.symbols.gmt,” “c5.go.cc.v7.2.symbols.gmt,”
and “c5.go.mf.v7.2.symbols.gmt.” The CIBERSORT algo-
rithm was used to estimate the relative abundance of
immune cell infiltration in patients with different RYR2 sta-
tuses [25]. The number of permutations was set to 1000, and
a threshold p value of <0.05 was the criterion for the success-
ful computation of a sample. Matrix data visualization was
performed with the R package “corrplot.” Difference analysis
of infiltrating immune cells between the RYR2-mutant and
RYR2-wild-type groups was performed using the R package
“limma” and visualized with the R package “vioplot.”

2.4. Statistical Analysis. Statistical analyses were performed
with R software (version 4.0.2). Survival curves were ana-
lyzed using Kaplan-Meier survival analysis and a log-rank
test. Univariate and multivariate Cox regression analyses
were used for prognosis analysis. The correlation between
mutant genes and TMB was analyzed with a Mann–Whitney
U test. For all comparisons, a two-tailed p value < 0.05 was
considered statistically significant.

3. Results

3.1. Landscape of Somatic Mutations in BC. We first ana-
lyzed the mutations of the top 30 genes with high mutation
frequency in TCGA database (n = 877). As shown in
Figure 1(a), the mutation spectrum of the top 30 genes was
mainly missense mutations, and the five genes with the high-
est mutation frequencies were PIK3CA (36.7%), TP53
(35.8%), TTN (17.8%), CDH1 (13.0%), and GATA3
(11.3%). We then analyzed the genetic mutation profiles of
BC patients in the European Union in the ICGC database
(n = 508). The top 30 frequently mutated genes with high
mutation frequency and the pattern of somatic mutation
for the top 30 genes are illustrated in Figure 1(b), among
which the five most frequently mutated genes were TP53
(35.6%), PIK3CA (29.9%), TTN (18.9%), GATA3 (8.1%),
and MAP3K1 (7.5%).

3.2. Gene Mutations Associated with TMB. We further
screened out genes with high mutation frequency in both
databases via a Venn diagram. Our results demonstrated
that 19 frequently mutated genes reported in TCGA cohort
were also reported in the ICGC cohort, namely, SPTA1,
TTN, MUC17, MAP3K1, CDH1, FAT3, SYNE1, FLG,
HMCN1, RYR2, GATA3, MUC4, PIK3CA, KMT2C, TP53,
PTEN, ZFHX4, MUC16, and USH2A (Figure 2(a)). To fur-
ther investigate the relationship between these highly
mutated genes and TMB, the TMB value of each patient in
TCGA database was calculated, and patients were assigned
to the wild-type group or mutation group based on the 19
gene mutation statuses. The TMB score in BC ranged from
0.03 to 118.45 per Mb, with a median of 1.56 per Mb. As
shown in Figure 2(b), among these high-frequency mutated
genes in both databases, 14 of the 19 genes, including RYR2,
with a mutation type had a higher TMB value than those
genes with the wild type. Interestingly, patients with muta-
tions in MAP3K1 showed a lower TMB, and there was no

significant difference in TMB between the mutation group
and the wild-type group of the other 4 genes (CDH1,
GATA3, PIK3CA, and KMT2C) (Figure 2(b)).

3.3. RYR2 Mutation Associated with Prognosis. A previous
study reported that higher TMB indicated favorable overall
survival in BC patients [26]. To identify prognosis-related
gene mutations, Kaplan-Meier analysis was performed on
the TMB-related commonly mutated genes. The results
demonstrated that only RYR2 mutation (HR = 0:140; 95%
CI, 0.020–1.000; p = 0:021) was associated with a better
prognosis (Figure 3). However, the RYR2 mutation did not
remain statistically significant after considering age, sex,
TNM classification, and TMB status in the Cox regression
model (Figure 4).

3.4. Identification of Enrichment Pathways for Patients with
RYR2 Mutation. It is well known that TMB is an important
indicator to judge the efficacy of tumor immunotherapy
[17]. Thus, we next investigated whether RYR2 mutation-
enriched signaling pathways are related to immunity. GSEA
was performed, and the results showed that pathways were
significantly enriched in the RYR2 mutant group, including
antigen processing and presentation; antigen processing
and presentation of peptide antigen via MHC class I/II,
MHC class I/II protein binding, and NF-κB binding; regula-
tion of response to IFN-γ; and response to IL-12. These
results suggest that certain immune-related pathways are
associated with RYR2 mutations in BC patients (Figure 5).

3.5. Tumor-Infiltrating Immune Cells Associated with RYR2
Mutation in BC. According to the CIBERSORT algorithm,
we further assessed the association between RYR2 mutation
and tumor-infiltrating immune cells in the BC microenvi-
ronment. Our results demonstrated that the composition
of 22 immune cell types in each sample varied significantly,
and the infiltrating immune cells were mainly T cells and
macrophages in BC samples (Figure 6). In addition, we
observed that CD8 T cells, native CD4 T cells (low infiltra-
tion in both the RYR2 mutant and wild-type groups), acti-
vated memory CD4 T cells, and M1 macrophages were
more enriched in the RYR2 mutant-type group than in the
wild-type group (Figure 7(a)). Furthermore, the correlation
matrix results revealed that CD8 T cells had the strongest
positive correlation with activated memory CD4 T cells
and M1 macrophages but were negatively correlated with
M2 macrophages (Figure 7(b)). Moreover, M1 macrophages
were positively associated with activated memory CD4 T
cells and CD8 T cells and negatively correlated with M2
macrophages (Figure 7(b)).

4. Discussion

In our study, our data suggest that TMB and the prognosis-
related gene RYR2 are closely related to the immune
response of BC. These results support previous findings that
these immune cells play a major role in the tumor microen-
vironment and enhance the immune response against tumor
immune escape [27–29].
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Intracellular calcium ions (Ca2+) play an important role
in basic cellular physiology [30]. Accumulating evidence
has shown that intracellular Ca2+ homeostasis is disrupted
in tumor cells, and these changes are involved in genetic

mutations, cancer cell proliferation, apoptosis, and migra-
tion [31–33]. RYR2 is a member of the RYR family and a
major component of the Ca2+ pathway, which regulates the
release of Ca2+ from the sarcoplasmic reticulum into the
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Figure 1: Overview of frequently mutated genes in BC. (a) Waterfall plot showing the top 30 mutated genes in TCGA BC cohort. Left panel:
mutation frequency; right panel: different mutation types. (b) Waterfall plot showing the top 30 mutated genes in the ICGC BC cohort. Left
panel: mutation frequency; right panel: different mutation types.
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cytoplasm [34]. In an RYR2-positive prostate cancer cell line,
RYR-related Ca2+ mobilization augments tumor cell apopto-
sis [35]. Moreover, RYR2 expression is correlated with poor

prognosis in patients with thyroid carcinoma [36], and
strong RYR2 upregulation was found in a BC cell line upon
EGF-induced epithelial-to-mesenchymal transition [37]. In
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Figure 3: RYR2 mutation is associated with clinical prognosis. Kaplan-Meier curves of overall survival of the TMB-related mutated genes.
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Figure 5: RYR2 mutation is associated with immune-related pathways. Gene enrichment plots showing that a series of immune-related
pathways were enriched in the RYR2-mutant group. NES: normalized enrichment score. The p value is shown in each plot.
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addition to RYR2 expression alteration, a high RYR2 mutation
frequency is a common feature of numerous human malignan-
cies. RYR2 somatic mutation is widely observed in cervical can-
cer patients, and it is speculated thatRYR2 can be used as a target
for cervical cancer treatment [38].Cai et al. reported thatRYR2 is
a frequentlymutated genewith predicted neoantigens presented
byMHCclass I and class IImolecules and thus is a candidate for
lung adenocarcinoma immunotherapy [39]. Schmitt et al. dem-
onstrated that impairedRYR2 function due to somaticmutation
is a common event in the pathogenesis of head and neck cancer
[40]. For BC, RYR2mutation was found to be correlated with a
decreased BC risk restricted by PR, ER, and tumor stage [41].
In the present study, we found that RYR2mutation was associ-
ated with a favorable prognosis and increased TMB in BC
patients. TMB is the total number of somatic gene coding errors,
gene insertions, gene deletions, and base substitutions detected
per million bases [14]. High TMB in tumor cells produces more
neoantigens that can be recognized by the host immune system
and trigger the immune response [19, 42]. Thus, we speculate
that RYR2 mutation with a high TMB in BC might drive the
immune system to scavenge tumor cells.

The tumor microenvironment plays an important role in
the occurrence and development of BC [43]. The immune
microenvironment, composed of tumor-infiltrating lympho-
cytes, tumor-related macrophages, and other immune cells,
is an important part of the tumor microenvironment [44].

Under the influence of different cellular activation mecha-
nisms and cytokines, tumor-infiltrating immune cells produce
different immune responses, which can directly reflect the
local immune response of the tumor microenvironment [45].
The tumor-infiltrating immune cells in BCmainly derive from
the tertiary lymphoid structure and are dominated by two
opposing forces [46]. One is antitumor cells mainly composed
of CD4+ Th1 cells, CD8+ cytotoxic T lymphocytes (CTLs),
NK cells, M1macrophages, and dendritic cells, while the other
is capable of promoting tumor growth and includes CD4+
FOXP3+ T cells (Tregs), CD4+ Th2 cells, and M2 macro-
phages [47]. In our study, we found that samples with RYR2
mutation were more infiltrated by CD8 T cells, activated
memory CD4 T cells, andM1macrophages than samples with
wild-type RYR2, indicating that RYR2mutation may promote
antitumor immunity in BC patients. This finding is in line
with previous evidence indicating that RYR2 mutation and
its transcriptomic signature are associated with a favorable
outcome and immune infiltrates in basal-like tumors with
high PD1 and PD-L1 expression [48].

It is generally believed that CD8+ T cells destroy tumor
cells by binding to MHCI antigens [49], and the total num-
ber of CD8+ cells is positively correlated with tumor grade
and better patient prognosis in BC [27]. Meanwhile, mem-
ory CD4+ T cells inhibit the outgrowth of tumor cells by
promoting the proliferation of CD8+ cells [50]. The
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antitumor role of memory CD4+ T cells is also supported by
previous evidence showing that increased disease-free sur-
vival of BC patients is directly related to an increase in acti-
vated memory CD4+ T cells [28]. Macrophages are an
important type of immune cell in the tumor microenviron-
ment and mainly include classically activated M1 macro-
phages and alternatively activated M2 macrophages [51].
Generally, the prooncogenic phenotype of M2-type macro-
phages promotes the occurrence and development of tumors
by promoting tumor cell proliferation, inhibiting the tumor
immune microenvironment, modulating matrix remodeling,
and enhancing tumor angiogenesis [52–54]. In contrast, M1
macrophages are activated by Th1 cell factors; secrete
inducible inductors, such as IL-12, iNOS, and TNF-α;
and play a proinflammatory and antitumor role in the
tumor microenvironment [29]. In our study, we demon-
strated that the increased infiltrated immune cells in

RYR2-mutant BC were all antitumorigenic immune cells,
and CD8 T cells were positively correlated with activated
memory CD4 T cells and M1 macrophages, while CD8 T
cells, activated memory CD4 T cells, and M1 macrophages
were negatively correlated with protumorigenic M2 macro-
phages. Thus, we suggest that the change in tumor-
infiltrating immune cells induced by RYR2 contributes to
antitumor immunity in BC.

This research has some limitations. First, due to the lack
of clinical data in the ICGC database, we could not deter-
mine whether RYR2 mutations are also associated with
prognosis and tumor immunity in European Union patients.
Second, only informatics analyses were conducted in this
study, and further experimental validations are needed.
Third, we did not classify the different BC subtypes in this
study. However, the mutated genes and immune infiltrating
cells in different subtypes may be different [20, 55].
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Figure 7: RYR2 mutation is associated with tumor-infiltrating immune cells. (a) Violin plot displaying the differentially infiltrated immune
cells between the RYR2-mutant group and the RYR2-wild-type group. Blue represents the RYR2-wild-type group, and red represents the
RYR2-mutant group. The p value is marked in the figure. (b) Correlation matrix of immune cell proportions. Red represents a positive
correlation, and blue represents a negative correlation.
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In summary, antitumor immune cells are suppressed in
the tumor microenvironment, leading to a decrease in and
low activity of antitumor immune cells among tumor-
infiltrated cells [27, 56]. This is also the root cause of immu-
notherapy failure. In our study, we combined somatic gene
mutation and TMB analyses and found that RYR2 is fre-
quently mutated in BC. RYR2mutation was related to higher
TMB and better patient prognosis. More importantly, RYR2
mutation induced an antitumor immune response. These
findings reveal that RYR2 mutation could serve as a bio-
marker to predict the immune response in BC.
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