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Hepatocellular carcinoma (HCC) is a common malignant tumor of the digestive system, and its early asymptomatic characteristic
increases the difficulty of diagnosis and treatment. This study is aimed at obtaining some novel biomarkers with diagnostic and
prognostic meaning and may find out potential therapeutic targets for HCC. We screen differentially expressed genes (DEGs)
from the HCC gene expression profile GSE14520 using GEO2R. Gene Ontology (GO) analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis were conducted by using the clusterProfiler software while a protein-protein
interaction (PPI) network was performed based on the STRING database. Then, prognosis analysis of hub genes was conducted
using The Cancer Genome Atlas (TCGA) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was utilized to
further verify the expression of hub genes and explore the correlation between gene expression and clinicopathological
parameters. A total of 1053 DEGs were captured, containing 497 upregulated genes and 556 downregulated genes. GO and
KEGG analysis indicated that the downregulated DEGs were mainly enriched in the fatty acid catabolic process while upregulated
DEGs were primarily enriched in the cell cycle. Simultaneously, ten hub genes (CYP3A4, UGT1A6, AOX1, UGT1A4, UGT2B15,
CDK1, CCNB1, MAD2L1, CCNB2, and CDC20) were identified by the PPI network. Five prognosis-related hub genes (CYP3A4,
CDK1, CCNB1, MAD2L1, and CDC20) were uncovered by the survival analysis based on TCGA database. The ten hub genes
were further validated by qRT-PCR using samples obtained from our hospital. The prognosis-related hub genes such as CYP3A4,
CDK1, CCNB1, MAD2L1, and CDC20 could be considered potential diagnosis biomarkers and prognosis targets for HCC. We
also use Oncomine for further verification, and we found CCNB1, CCNB2, CDK1, and CYP3A4 which were highly expressed in
HCC. Meanwhile, CCNB1, CCNB2, and CDK1 are highly expressed in almost all cancer types, which may play an important role
in cancer. Still, further functional study should be conducted to explore the underlying mechanism and biological effect in
the near future.

1. Introduction

Hepatocellular carcinoma (HCC) is the most predominant
primary liver cancer which ranks as the sixth most common
neoplasm (4.7% of the total cases) and the fourth major cause
of cancer mortality (8.2%) all over the world according to the

GLOBOCAN 2018 report [1], and its incidence has been
increasing in the recent decades [2]. Despite numerous
advancements into the treatment innovation of pharmaco-
therapy and operative treatment and even interventional
therapy, the overall survival of HCC still remains unsatisfac-
tory with little improvement in the last decade because of the
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high recurrence rate and intra- or extrahepatic metastasis [3].
Regretfully, HCC is generally diagnosed at advanced stages
or with distant metastasis owing to deficiency of early clinical
symptoms and unelucidated pathogenesis, which increases
the difficulty of treatment and leads to an unfavorable prog-
nosis [4]. Therefore, for early detection and better prognosis
of HCC, it is urgently needed to identify a novel biomarker
with diagnostic and prognostic significance.

With the coming of the age of big data, bioinformatics
has attracted widespread attention and gradually plays an
essential role in biomedical research and disease mechanism
exploration. According to recent bioinformatics analysis, the
MAPK and IGF1R signal pathway was related to obesity [5].
In particular in microarray analysis based on high-
throughput platforms, it is an invaluable and powerful
method to screen many differentially expressed genes
(DEGs) associated with tumorigenesis and progression from
gene expression profiles [6, 7]. Seven core genes are consid-
ered to be targets for developing therapeutics against both
familial hypercholesterolemia and atherosclerosis [8]. Net-
work analysis of transcriptomics data was used for the pre-
diction and prioritization of idiopathic pulmonary fibrosis
(IPF). Seven genes were related to IPF, and most pathways
were membrane transport and signal transduction [9]. The
systemic lupus erythematosus (SLE) dataset GSE30153 was
conducted for further analysis. Four genes were found to be
associated with SLE. And dysregulated pathways might be
associated with SLE development and progression [10].
However, every newly emerging thing has their superiority
and limitation. There is no doubt that the development of
bioinformatics and establishment of open databases assist
researchers in easily accessing abundant data from various
resource banks and go a step further [11, 12]. But it has
gradually been realized that only datasets with relatively large
sample sizes or multiple microarray datasets and integrated
bioinformatics approaches are able to decrease bias and
inaccurate results caused by limited sample size and hetero-
geneity of a single cohort [13, 14]. What is more, clinical
sample validation is a crucial step to improve the predictive
power and accuracy. For example, expression profiles
GSE6477 and GSE47552 were used, and 51 upregulated and
78 downregulated DEGs were identified. Survival analysis
was evaluated to verify key hub genes that could affect the
prognosis of multiple myeloma [15]. In addition, 10 hub
genes and four core genes were strongly linked to ovarian
cancer, for which we could provide potential molecular bio-
markers for diagnosis and treatment targets in the future
[16]. Bioinformatics is used to discover single-target special-
ized research. For example, ADAMTS9-AS1 influences pros-
tate cancer cell proliferation, and it functioned as ceRNA,
effectively becoming a sponge for hsa-mir-96 and modulating
the expression of PRDM16 [17]. Other researchers construct
an immune signature model based on seven immune-related
genes in the recognition of disease progression and prognosis
of lung squamous cell carcinoma patients [18].

In the present study, we made use of bioinformatics anal-
yses to screen DEGs from Gene Expression Omnibus (GEO).
Afterwards, Gene Ontology (GO) analysis, Kyoto Encyclope-
dia of Genes and Genomes (KEGG) enrichment analysis, and

a protein-protein interaction (PPI) network were employed
to obtain the in-depth understanding of the possible func-
tions of the DEGs and find out hub genes, respectively. Then,
prognosis analysis of hub genes was conducted using The
Cancer Genome Atlas (TCGA) database. At last, reverse
transcription quantitative real-time polymerase chain reac-
tion (RT-qPCR) was utilized to further verify the expression
of hub genes and explore the correlation between gene
expression and clinicopathological parameters. In brief, the
aim of this research is to provide valuable clues for pathogen-
esis mechanism elucidation of HCC and obtain some novel
biomarkers with diagnostic and prognostic meaning for
HCC. A flow process diagram presenting the experimental
design is displayed in Figure 1.

2. Materials and Methods

2.1. Data Acquisition. We downloaded the gene expression
profile of GSE14520 from the GEO datasets, an international
public and free repository for researchers to easily access the
raw data, processed data, or metadata (https://www.ncbi.nlm
.nih.gov/gds/) [19]. 220 normal liver tissues and 225 HCC tis-
sues were included in GSE14520, which was constructed
based on the GPL3921 platform ([HT_HG-U133A] Affyme-
trix HT Human Genome U133A Array) and GPL 571
platform ([HG-U133A_2] Affymetrix Human GeCnome
U133A 2.0 Array) from Jan 22, 2009.

2.2. Identification of DEGs. The raw data of the gene expres-
sion profile submitted by original authors was analyzed by R
version 3.5.1. In the present study, we apply GEO2R (https://
www.ncbi.nlm.nih.gov/geo/geo2r/), an online interactive
analysis tool, which allows users to analyze the degree of data
discrepancy between different groups in GEO to screen the
DEGs between cancerous and noncancerous samples. To
decrease the false positive rate, p values were adjusted in
accordance with the Benjamini-Hochberg false discovery rate
(FDR) method. And FDR < 0:05 and ∣logFC ∣ >1 were set as
the criteria to screen out DEGs.

2.3. GO Functional and KEGG Pathway Analysis of DEGs.
GO analysis is a predominant bioinformatics tool for annota-
tions of genes and their products, including three categories:
cellular components (CC), molecular function (MF), and
biological pathways (BP) [20]. KEGG is an aggregation of
databases which consist of information about genomes, bio-
logical pathways, diseases, and chemicals [21]. The cluster-
Profiler package was employed to perform GO functional
enrichment analysis and KEGG pathway analysis for DEGs
in R studio version 1.1.456. The adjusted p < 0:05 was
regarded as statistically significantly different (Figure 2(c)).

2.4. PPI Network Analysis and Identification of Hub Genes.
The interactional correlation of DEGs was assessed by the
Search Tool for the Retrieval of Interacting Genes (STRING)
online database (https://string-db.org), which contains a
great quantity of known and predicted protein-protein
interactions in organisms [22]. We defined the confidence
score > 0:9 as the cut-off criterion for the interaction between
the two proteins. Cytoscape, software for visualization of the
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topological network, was applied to visualize the PPI
network. Meanwhile, a scoring analysis of the protein
network was conducted by CentiScaPe 2.1, a plug-in compo-
nent of Cytoscape. Subsequently, proteins with top ten scores
were selected out as the hub genes in the network.

2.5. Survival Analysis of Hub Genes from TCGA Database.
There are comprehensive multidimensional atlases of key
genomic changes in various types of cancer in TCGA
(https://cancergenome.nih.gov/), which is a joint effort
between the National Cancer Institute (NCI) and National
Human Genome Research Institute (NHGRI) [23]. In this
study, we analyzed the prognosis value of hub genes using a
dataset of 364 case samples from TCGA database. Kaplan-
Meier curves for high- and low-expression groups were
drawn by the median value of each hub gene using the log-
rank method.

2.6. Patient Samples. A total of 59 pairs of HCC samples and
adjacent noncancerous tissues (distance from tumor > 5 cm)
were obtained from the Department of Hepatobiliary and
Pancreatic Surgery and Minimally Invasive Surgery of
Zhejiang Provincial People’s Hospital (Hangzhou, China).
It consists of 46 males and 13 females aged 30-77
(58:80 ± 10:99) years. None of the above patients received
preoperation radiotherapy or chemotherapy. The study has
been conducted with the World Medical Association Decla-
ration of Helsinki. Meanwhile, the protocol of the study
was approved by the Ethics Committee of Zhejiang Provin-
cial People’s Hospital (no. 2020QT043). And the informed
consent had been obtained from all included patients prior
to this research. In addition, the HCC samples and paired
adjacent noncancerous tissues were promptly frozen in liquid
nitrogen after removal from patients and stored at -80°C. All
the tissue specimens were pathologically confirmed as HCC,
and the clinical stage of the tumor was determined according
to the Cancer Staging Manual of the American Joint
Committee on Cancer (version 8, 2017) while the tumor path-
ological differentiation stage was defined by the Edmondson-

Steiner classification. The follow-up ended in October 2019
or at death.

2.7. RT-qPCR Validation Analysis. The specific protocols are
as follows: first, total RNA of matched samples was extracted
at 4°C temperature using the TRIzol reagent (Life Technolo-
gies, USA); second, the PrimeScript™ RT reagent kit (Takara,
Japan) was used for reverse transcription of RNA into com-
plementary DNA. Last, the RT-qPCR was carried out on a
ABI ViiA 7 Real Time PCR System (Thermo Fisher, USA)
with a SuperReal SYBR Green Premix Plus (Tiangen Biotech,
China) as a fluorescent dye. GAPDH was chosen as the inter-
nal reference in the present study. All the experiments were
in triplicate independently. All the primers of each hub gene
are shown in Table 1. The 2−ΔΔCt method was employed to
evaluate the relative expression of each hub gene [24].

2.8. Oncomine Verification. In order to further verify the
results, we used the Oncomine database (http://www
.oncomine.org) to screen hub genes which were AOX1,
CCNB1, CCNB2, CDK1, UGT1A4, and UGT2B15. The
Oncomine database is a comprehensive tumor gene expres-
sion dataset. It mainly summarizes the tumor sequencing
data of the GEO and ArrayExpress. In the Oncomine data-
base, we can check the expression of multiple genes in multi-
ple tumors. We tested the dataset of six differential genes in
the dataset of Oncomine.

2.9. Statistical Analysis. In the present study, the SPSS
25.0 statistical software package was applied for statistical
analysis. All continuous variables were expressed as mean ±
standard deviation (SD). The hub gene expression which was
calculated by 2−ΔΔCt methods was further processed by the
log2 transform. Student’s two-tailed t-test was utilized to
explore the association between gene expression and clinico-
pathological features of HCC patients. Graphpad Prism 8.0
was also applied to draw a diagram of pairing samples.
p < 0:05 was considered statistically significant.

3. Results

3.1. Identification of DEGs in HCC. GSE14520, which con-
tains 225 HCC tissues and 220 normal tissues, is a large-
sample gene expression microarray. In the present study,
we obtained the abovementioned gene expression profile
from GEO which was further analyzed. The result showed
that a total of 1053 DEGs were captured, 497 of which were
upregulated genes while 556 of which were downregulated.
A volcano plot was plotted by GEO2R to visualize the
distribution of DEGs (Figure 2(a)), using the false discovery
rate ðFDRÞ < 0:05 and ∣logFC ∣ >1 as screening criteria. For
better differentiation, significantly upregulated or downregu-
lated genes were shown by red or blue dots, respectively.
Moreover, a heatmap was also generated by GEO2R to
exhibit the relative expression levels of DEGs in GSE14520
(Figure 2(b)). Rows and columns represent different DEGs
and independent samples, respectively. Also, in the volcano
plot, red and blue separately represent up- and downregu-
lated DEGs. And the deeper the color, the more greatly the
relative expression of DEGs goes up or down.

Downloading GSE14520 from the GEO
database and identifying DEGs

GO and KEGG
pathway enrichment

analysis of DEGs

PPI network
construction and hub

gene identification

Prognostic analysis
of hub genes using

TCGA database

Validation of qRT-PCR in
clinical samples

Figure 1: Flow process diagram of present study. GEO: Gene
Expression Omnibus; DEG: differentially expressed gene; GO: Gene
Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes; PPI:
protein-protein interaction; TCGA: The Cancer Genome Atlas;
RT-qPCR: quantitative real-time polymerase chain reaction.
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Figure 2: Various results of bioinformatics analyses in DEGs and hub genes. (a) Volcano plot of the genome-wide detected in GSE14520. Red:
upregulated; green: no difference; blue: downregulated. FDR < 0:05 and ∣logFC ∣ >1 were set as the threshold. (b) Heatmap of 1053 DEGs
between HCC samples and normal tissues in GSE14520. The deeper the color, the more greatly the relative expression of DEGs goes up or
down. Red: upregulated; blue: downregulated. (c) GO analysis of the down- and upregulated DEGs in HCC. The y-axis presents
significantly enriched GO annotation terms, and the x-axis presents the different gene ratios. (d) The PPI networks of upregulated DEGs
in HCC. (e) The PPI networks of downregulated DEGs in HCC. The orange nodes represent upregulated DEGs while the blue ones
represent downregulated DEGs. The sizes of nodes mean the score levels of DEGs. A larger node represents a higher score. Solid line
between two nodes represents the interaction between two DEGs. DEGs: differentially expressed genes; FDR: false discovery rate; FC: fold
change; HCC: hepatocellular carcinoma; GO: Gene Ontology; PPI: protein-protein interaction.
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3.2. GO Analysis and KEGG Enrichment Pathways of DEGs.
For a more comprehensive understanding to the functional
characteristics, we applied GO and KEGG analysis to DEGs
using the clusterProfiler package. On the one hand, GO
analysis results showed that significant differences were
uncovered in 823 terms for downregulated genes while 499
terms for upregulated genes. As illustrated in Figure 2(c),
for downregulated DEGs, genes were mainly enriched in
“small molecule catabolic process” and “acid catabolic pro-
cess (including organic acid and fatty acid)” in terms of BP.
Regarding MF, the abovementioned DEGs were particularly
enriched in “cofactor binding.” As for the CC group, the
genes were strongly enriched in “blood microparticle.” For
upregulated DEGs, “chromosome segregation” has the high-
est enrichment of BP. With regard to the MF group, the main
enrichment functions included “tubulin binding,” “unfolded
protein binding,” and “single-stranded DNA binding.” And
in the CC classification, the genes were dominantly enriched
in the following components: “spindle,” “chromosomal
region,” and “microtubule.” On the other hand, KEGG
analysis uncovered that the pathways enriched by 368 down-
regulated DEGs were strongly associated with “chemical
carcinogenesis,” “fatty acid degradation,” “drug metabolism,”
“bile secretion,” and “peroxisome proliferator-activated
receptor (PPAR) signaling pathway” while 83 upregulated
DEGs were obviously enriched in “cell cycle,” “DNA replica-
tion,” and “pyrimidine metabolism” (Table 2). The above
results of two analyses concluded that these DEGs had a tight
association with cancer-related metabolism and cell prolifer-
ation and might modulate these two processes through mul-
tiple pathways.

3.3. PPI Network Establishment. Based on the STRING data-
base, the PPI network with upregulated DEGs or downregu-
lated DEGs was visualized by the Cytoscape software,
respectively. In terms of upregulated DEGs, the network con-
tained 496 nodes and 1515 edges with an average node of
6.11 (Figure 2(d)). As for downregulated DEGs, the network
consisted of 544 nodes and 885 interactions with an average
node of 3.25 (Figure 2(e)). Interestingly, in both up- and
downregulated gene networks, the p value of PPI enrichment
was <1 × 10−16. Furthermore, we employed Cytoscape to fil-
ter out proteins with top five scores as hub genes, separately.
The detailed information of ten hub genes with the highest
score is displayed in Table 1.

3.4. Prognosis Analysis of Hub Genes in HCC. We obtained a
total of 364 cases of correlative HCC clinical data from TCGA
database to further explore the prognosis value of each hub
gene by drawing the Kaplan-Meier curves. HCC patients were
divided into two groups depending on the expression level of
each hub gene. The results uncovered that only a half of hub
genes were tightly associated with the poor prognosis of
HCC, including CYP3A4, CDK1, CCNB1, MAD2L1, and
CDC20 (Figure 3). Moreover, only CYP3A4 was the downreg-
ulated gene among abovementioned prognosis-related hub
genes while the others were upregulated genes.

3.5. RT-qPCR Validation of Expression of Ten Hub Genes in
HCC Clinical Samples. To further validate the aforemen-
tioned bioinformatics analysis, the mRNA expression levels
of these hub genes were obtained by the RT-qPCR experi-
ment in 59 pairs of HCC and adjacent noncancerous tissues.

Table 1: The detailed information and primer sequences of ten hub genes screened out by PPI networks.

Category
Gene

abbreviation
Description Forward primer (5′-3′) Reverse primer (5′-3′)

Upregulated

CDK1 Cyclin-dependent kinase 1
CAGGTCAAGTGGTAGC

CATG
ACCTGGAATCCTGCAT

AAGC

CCNB1 Cyclin B1
AAGGCGAAGATCAACA

TGGC
CCAATGTCCCCAAGAG

CTGT

MAD2L1 Mitotic arrest deficient 2 like 1
CGGTGACATTTCTGCC

ACTG
GGTCCCGACTCTTCCC

ATTT

CCNB2 Cyclin B2
CTGTACATGTGCGTTG

GCAT
CTTGGAAGCCAAGAGC

AGAG

CDC20 Cell division cycle 20
CAGCAGAAACGGCTTC

GAAA
ACCCGAACATCATGGT

GGTG

Downregulated

CYP3A4 Cytochrome P450 3A4
TGAAAGAAAGTCGCCT

CGAA
CCAGATCGGACAGAGC

TTTG

UGT1A6
Uridine diphosphate glucuronosyl

transferase 1A6
CCGTGTTCCCTGGAGC

ATAC
AGGAAGTTGGCCACTC

GTTG

AOX1 Alcohol oxidase 1
AATTCCTCAGCAAGTG

CCCT
CGGAAGGCTGACACAA

ATTC

UGT1A4
Uridine diphosphate glucuronosyl

transferase 1A4
TGCCATACTTTTTCTG

CCCC
AACAGCCACACGGATG

CATA

UGT2B15
Uridine diphosphate glucuronosyl

transferase 2B15
CTGGAAGCTGTGGAAA

GGTG
CACCTCATGACCCCTC

TGAA

PPI: protein-protein interaction.
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As suggested in Figure 4, there were significant differences
between HCC samples and adjacent noncancerous tissues
in seven hub genes, including CYP3A4, AOX1, UGT1A4,
UGT2B15, CDK1, CCNB1, and CCNB2. Interestingly, each
of ten genes had the upregulation or downregulation ten-
dency in HCC as previously predicted by other microarray
and network analyses.

Besides, we explored the connection between clinicopatho-
logical parameters and expression levels of ten hub genes
(Supplementary Table S1). The unequal total number of cases
in each group is due to data missing in mRNA expression or
clinicopathological parameters of some samples. Statistical
analysis suggested that there were significant associations
between the expression of quite a few hub genes and variables
such as histological differentiation, satellite lesions, pN,
cirrhosis, and serum albumin. Speaking concretely, the
relative expression of CYP3A4 was notably associated with
histological differentiation and pN. The relative expression of

UGT1A6 was notably associated with cirrhosis and serum
AFP. And AOX1’s expression was remarkably related to
histological differentiation, satellite lesions, and vascular
cancer embolus while UGT1A4’s expression was remarkably
related to histological differentiation, satellite lesions, pN, and
cirrhosis. For UGT2B15, connections between expression and
parameters including tumor necrosis, satellite lesions, and pN
were significant. For CDK1, connections between expression
and parameters including histological differentiation and
serum CEA were significant. Cirrhosis and serum albumin
were proven to have a tight relation with CCNB1’s
expression. The relative expression of CCNB2 was tightly
associated with serum albumin. At last, CDC20’s expression
was remarkably related to serum AFP and albumin. Except
for MAD2L1, each hub gene had one or more than one
parameter associated with its expression level, which
confirmed that the majority of hub genes might become a
novel biomarker of HCC potentially.

Table 2: KEGG analysis of the down- and upregulated DEGs in HCC.

Category ID Description Gene ratio p value p.adjust

Downregulated

hsa05204 Chemical carcinogenesis 27/368 6:38E − 16 1:70E − 13
hsa00071 Fatty acid degradation 19/368 4:55E − 14 3:02E − 12
hsa00982 Drug metabolism-cytochrome P450 23/368 2:03E − 13 1:08E − 11
hsa04976 Bile secretion 19/368 8:13E − 10 2:16E − 08
hsa03320 PPAR signaling pathway 19/368 1:06E − 09 2:55E − 08

Upregulated

hsa04110 Cell cycle 11/83 1:04E − 07 2:03E − 05
hsa03030 DNA replication 6/83 2:41E − 06 0.000234

hsa00240 Pyrimidine metabolism 7/83 0.000124 0.008017

KEGG: Kyoto Encyclopedia of Genes and Genomes; DEGs: differentially expressed genes; HCC: hepatocellular carcinoma.
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Figure 3: Survival curves of ten hub genes in hepatocellular carcinoma.
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3.6. Oncomine Validation of Expression of Six Hub Genes in
Multicancer. Six genes of our own samples were found to
have expression difference by qPCR in hepatocellular carci-
noma. To ensure that these core genes are really meaningful,
we used the Oncomine database for further verification of
differential genes which are CDK1, AOX1, CCNB1, CCNB2,
CYP3A4, and UGT2B15. After comparing all datasets con-
tained in Oncomine, we found that there are four genes that
are different in HCC (Figure 5). They are CCNB1, CCNB2,
CDK1, and CYP3A4. It is worth noting that CCNB1,
CCNB2, and CDK1 are highly expressed in almost all kinds
of tumors, so it is possible that these three genes are essential
for the occurrence of tumors.

4. Discussion

Despite the great improvements on treatment approaches for
HCC in recent decades, such as from laparotomy liver
resection to laparoscopic hepatectomy or even liver trans-
plantation, radiofrequency ablation to transcatheter arterial
chemoembolization, and sorafenib to programmed cell
death-1, they had little effect to hinder the increasing mortal-
ity year by year [25]. In another word, to obtain a better prog-
nosis of HCC, regular surveillance and early diagnosis might
be the critical principles [26]. In recent years, with the rapid
development of various bioinformatics databases and high-
throughput researches, researchers could mix multiple bioin-
formatics methods to deeply explore the crucial pathogenesis
and clinical diagnosis or prognosis of different diseases from
the molecular plane [27]. For instance, Li et al. [12] uncov-
ered that TOP2A, CCNB1, and KIF4A might promote the
development of HCC, especially in proliferation and differ-
entiation. Furthermore, Zhou et al. [28] also screened 15
hub genes and pathways to identify potential prognostic
markers for HCC treatment by integrated bioinformatics
analysis. Regretfully, in spite of more and more discovery of
candidate biomarkers for HCC, there still are a portion of
patients who are unable to obtain early diagnosis and prog-
nosis prediction. Therefore, more reliable and credible
studies with validation in vivo and in vitro are preferred in
the future so that the conclusions of higher-level evidence could
be put into clinical practice or conducted in clinical work.

The present study downloaded the GSE14520 microarray
which consists of 225 HCC samples and 220 nontumor sam-
ples from the GEO database. Its relatively large sample size
and long time span could also reduce the correlative biases.
497 upregulated DEGs and 556 downregulated DEGs were
picked out by gene expression analysis of the whole genome
conducted on the abovementioned gene expression profile.
Subsequently, the results of GO analysis determined that
downregulated DEGs were associated with the fatty acid cat-
abolic process in biological pathways. As known to all, the
liver is a vital organ in the human body which is major in
metabolism.When HCC occurs, with the change of the inter-
nal environment and biological function of the liver, fatty
acid is immoderately used by cancer cells as cellular building
blocks to generate membrane structures and product signal-
ing molecules, which further leads to dysregulated fatty acid
metabolism [29, 30]. Interestingly, fatty acid degradation
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Figure 4: qRT-PCR validation of mRNA expression levels of ten
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method and log2 transform. The statistical significance was
evaluated using the paired t-test. qRT-PCR: quantitative real-time
polymerase chain reaction; HCC: hepatocellular carcinoma; ns: no
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was also significant in KEGG pathway analysis of downregu-
lated DEGs, which was in accordance with the results of GO.
What is more, the downregulated DEGs had a tight relation-
ship with PPAR signaling pathway as well according to the
KEGG analysis. Early in 2009, Cao et al. had already found
that HCC could be sensitized to 5-fluorouracil antitumor
activity through the activation of PPAR gamma signaling
pathway, which meant PPAR signaling pathway played piv-
otal roles in anticancer effect to HCC [31]. With regard to
upregulated DEGs, both GO and KEGG analyses indicated
that it was notably related to cell division and cell cycle. It
seems like reasonable because frequent cell proliferation
and accelerated cell cycle are both key points in tumorigene-
sis of HCC.

Ten hub genes were obtained by PPI, comprising
CYP3A4, UGT1A6, AOX1, UGT1A4, UGT2B15, CDK1,
CCNB1, MAD2L1, CCNB2 and CDC20. The former five
were downregulated genes and the latter five were upregu-
lated ones. More importantly, five hub genes were validated
to have a notable connection with prognosis based on TCGA
database. Only CYP3A4 is the downregulated gene among
the five prognosis-related hub genes, and another four genes
(CDK1, CCNB1, MAD2L1, and CDC20) were related to
mitosis in the light of results of pathway enrichment analyses.
Among these five hub genes associated with HCC overall sur-
vival, a good number of studies have revealed their essential
role in tumor. CDK1, which is a member of Ser/Thr protein
kinase family, encodes cyclin-dependent kinase 1. And the
latter plays an essential role in cell cycle G2/M transition,
which was verified by Wang et al. [32] and Gao et al. [33].
The protein encoded by CCNB1 was a kind of regulatory

protein involved in mitosis. Gu et al. illustrated in his study
that CCNB1 was an upregulated and prognosis related gene
in HCC using TCGA cohort [34]. MAD2L1 is an integral
part of the mitotic spindle assembly checkpoint, which
ensures that all chromosomes are correctly aligned on the
metaphase plate. And it was verified that increased expres-
sion of MAD2L1 might be a biomarker for diagnosis and
prognosis in patients with HCC [35]. CDC20 encodes a reg-
ulatory protein which interacts with the anaphase-promoting
complex/cyclosome in the cell cycle. Li et al. [36] obtained
CDC20 gene by molecular interaction networks and further
confirmed the high expression level in HCC tumors by
RT-qPCR, western blot and immunohistochemistry. CYP3A4
is 3A4 isoform of cytochrome P450 superfamily. Its encoding
protein is a kind of monooxygenase located in the endo-
plasmic reticulum, which catalyzes a good number of reac-
tions involving drug metabolism and lipid synthesis. And
glucocorticoid and some pharmacological reagents could
induce its expression [37]. Multivariate analysis uncovered
downregulation of the CYP3A4 gene as an independent
predictor for overall survival and early recurrence [38].
Based on existing literature, it is not difficult to discover
that all of upregulated genes (CDK1, CCNB1, MAD2L1,
and CDC20) are involved in the regulation of cell cycle,
while the downregulated gene CYP3A4 is mainly related
to the metabolism of diverse drugs and various lipid reac-
tions in vivo, which are consistent with the results of path
enrichment analysis.

GSE14520 contained clinical samples with 225 HCC
samples and 220 nontumor samples. This is a relative large
scale dataset. Some of researchers have used this cohort
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studied by their view of immune environment in primary
cancer. Li et al. have validated the GSE14520 and found that
there were multifunction-related subtypes which could affect
different immune and clinical characteristics [39]. Sun et al.
have found 33 immune gene pairs which could establish the
immune-related signature of prognosis. They found a link
between immune microenvironment and prognosis, which
could be a promising predictor for HCC patients [40]. These
two studies were promising for immune related prognosis
prediction of HCC. Our study were focus on the clinical sam-
ples for prognosis not only immune related, but for potential
diagnosis biomarkers and prognosis targets with external
verification. Other researchers have verified fourteen genes
related to cell signaling pathways which could be used to pre-
dict HCC recurrence [41]. The idea of this research is great
using GSE for external verification. Also presented in another
studies, Liu et al. have found a novel robust four-gene meta-
bolic signature for HCC prognosis prediction [42]. Ouyang
et al. identified a 12 hub gene-related DNA methylation-
driven genes which could be a risk and prognosis factor for
HCC patients [43]. Nomogram was included in these two
studies with the signature of some characteristics for overall
survival prediction. However, we performed not only the
hub genes which could lead to poor prognosis but also the
cell signal pathway for tumorigenesis. Further, we verified
our conclusion through external verification of patient tissue
samples. The cohort of the expression profile GES14520 was
also used to discover more specific topics, such as UBE2C for
the therapeutic target [44], a ceRNA network as a biomarker
for prognosis [45], and ten exosome-related hub genes as a
target for treatment [46]. All these researches partially or
fully used the cohort of GES14520. Furthermore, Liao et al.
have studied the diagnostic and prognostic values of mini-
chromosome maintenance (MCM) gene expression [47].
Ding et al. confirmed that downregulation of AGXT2L1 pro-
motes the lipogenesis of HCC cells. These two findings also
revealed some internal mechanism through GES14520. We
analyzed GES14520 to verify the signal pathways thoroughly
and further verified the hub genes by external verification.
According to these surveys, not only does this prove that
the results are authentic and credible by GES14520 but also
there are many different aspects that have not been fully
discovered. At last, we further confirmed six hub genes by
the Oncomine database. As Oncomine contains GEO and
ArrayExpress datasets, we finally used the Oncomine data-
base to reverify the expression of six hub genes in HCC.
We found that four genes are highly expressed in HCC,
among which four genes, CCNB1, CNB2, CDK1, and
CYP3A4, are highly expressed in tumors, while CCNB1,
CCNB2, and CDK1 are highly expressed in almost all cancer
types, which may be involved in the important tumorigenesis
or progression as mentioned above.

Although integrated bioinformatics analysis and clinical
sample validation were performed in the present study, there
were still some limitations: first, only one gene expression
profile GSE14520 was mined from the GEO database. It
may lead to less reliable and accurate results in differential
gene analysis compared with the multiple microarray study
in spite of the large size sample in GSE14520. Secondly, com-

pared with GSE14520, the important aspects of clinical sam-
ples recruited in this study, such as histological type, tissue
location, and clinical information, are almost the same.
Although there is selection bias, such as race and geography,
the prediction results are still credible by external verifica-
tion. Besides, due to uneven global population distribution
and unequal prevalence of the exposure risk factors, most
HCC cases (80%) are concentrated in sub-Saharan Africa
and Eastern Asia [2], and this is why we chose all cases from
Southeast Asia to ensure the academic value of this study.
Thirdly, a more comprehensive study contains the underly-
ing mechanism, and the biological effect should be further
conducted in the near future. At last, we only used 58 paired
samples for qPCR verification, but we still need to verify the
proteomics conclusions in the near future.

In conclusion, the tumorigenesis of HCC is a multigene
disease. This study employed a bioinformatics analysis by
using GSE14520 to analyze the DEGs. The aim of this study
is to provide a basis for in-depth understanding between
HCC and DEGs. In addition, the prognosis-related hub genes
such as CYP3A4, CDK1, CCNB1, MAD2L1, and CDC20
could be considered potential diagnosis and prognosis bio-
markers for HCC. Furthermore, we considered that multicell
signal pathways might affect the tumor progression which
could be the therapeutic and diagnosis targets for HCC.
Although the external verification is included in this study,
further functional study is still needed to validate the role in
DEGs and HCC.
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