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Gastric cancer (GC), as an epidemic cancer worldwide, has more than 1 million new cases and an estimated 769,000 deaths
worldwide in 2020, ranking fifth and fourth in global morbidity and mortality. In mammals, both miRNAs and transcription
factors (TFs) play a partial role in gene expression regulation. The mRNA expression profile and miRNA expression profile of
GEO database were screened by GEO2R for differentially expressed genes (DEGs) and differentially expressed miRNAs
(DEMs). Then, DAVID annotated the functions of DEGs to understand the functions played in biological processes. The
prediction of potential target genes of miRNA and key TFs of mRNA was performed by mipathDB V2.0 and CHEA3,
respectively, and the gene list comparison was performed to look for overlapping genes coregulated by key TFs and DEMs.
Finally, the obtained miRNAs, TF, and overlapping genes were used to construct the miRNA-mRNA-TF regulatory network, which
was verified by RT-qPCR. 76 upregulated DEGs, 199 downregulated DEGs, and 3 upregulated miRNAs (miR-199a-3p/miR-199b-3p,
miR-125b-5p, and miR-199a-5p) were identified from the expression profiles of mRNA (GSE26899, GSE29998, GSE51575, and
GSE13911) and miRNA (GSE93415), respectively. Through database prediction and gene list comparison, it was found that among
the 199 downregulated DEGs, 61, 71, and 69 genes were the potential targets of miR-199a-3p/miR-199b-3p, miR-125b-5p, and
miR-199a-5p, respectively. 199 downregulated DEGs were used as the gene list for the prediction of key TFs, and the results
showed that RFX6 ranked the highest. The potential target overlap genes of miR-199a-3p/miR-199b-3p, miR-125b-5p, and
miR-199a-5p were 4 genes (SH3GL2, ATP4B, CTSE, and SORBS2), 7 genes (SLC7A8, RNASE4, ESRRG, PGC, MUC6, Fam3B,
and FMO5), and 6 genes (CHGA, PDK4, TMPRSS2, CLIC6, GPX3, and PSCA), respectively. Finally, we constructed a
miRNA-mRNA-TF regulatory network based on the above 17 mRNAs, 3 miRNAs, and 1 TF and verified by RT-qPCR and
western blot results that the expression of RFX6 was downregulated in GC tissues. These identified miRNAs, mRNAs, and TF
have a certain reference value for further exploration of the regulatory mechanism of GC.

1. Introduction

Gastric cancer (GC), as an epidemic cancer worldwide, has
more than 1 million new cases and an estimated 769,000
deaths worldwide in 2020, ranking fifth and fourth in global
morbidity and mortality [1]. Despite great advances in our
understanding of cancer, the causes of its occurrence and
progression are not fully understood. In general, the related
factors involved in the occurrence and development of GC
can be divided into genetic and epigenetic changes, as well
as environmental and lifestyle factors [2, 3]. The molecular

pathogenesis of GC has always been the focus of scientists.
In recent years, miRNA and transcription factors (TFs) have
become an important breakthrough direction in the diagno-
sis, prognosis, and targeted therapy of GC.

As a class of small noncoding RNAs (ncRNAs) composed
of 17-25 nucleotides [4], miRNAs regulate mRNA and protein
levels by guiding Argonaute (AGO) proteins to the 3′-UTR
region of mRNA leading to mRNA degradation [4–7]. Since
the incidental discovery of miRNAs in Caenorhabditis elegans
[8–12], accumulated evidence has shown that miRNAs play a
key regulatory role in biological processes in animals,
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especially in recent years, new achievements have been made in
the study of miRNAs and human cancers [13, 14]. Previous
studies have shown that in the diagnosis of GC, miR-940
showed 81.25% sensitivity and 98.57% specificity. The AUC,
sensitivity, and specificity of miR-21, miR-93, miR-106a, and
miR-106b combinations were 0.887, 84.80%, and 79.2%, respec-
tively [15, 16]. In addition, the expression of miR-204
(HR = 3:900, 95% CI 1.300-11.800) and miR-15a (RR = 1:950,
95% CI 0.470 9.130) was strongly associated with poor sur-
vival in patients with GC [17, 18]. Therefore, it is very
promising to complete the personalized management, diag-
nosis, and prognosis of GC through miRNA combination
in the future [19, 20].

TFs are proteins that bind to chromatin to activate or
inhibit transcription by helical binding of DNA to specific
regulatory sequences in the form of trans-activated or
trans-repressive domains. They are expressed in tissues spa-
tially, temporally, and sequentially during development, cell
renewal, or differentiation, and any change in their expres-
sion may lead to uncontrolled cell integrity or dynamic
homeostasis, leading to pathological changes [21], such as
diabetes [22] and cancers [23]. TFs are classified into differ-
ent families, reflecting the homology of their DNA binding
domains, thus, reflecting the binding sequence of DNA
[24, 25]. However, in-depth studies have found that TFs
can play a double-edged sword role, so they may play both
anticancer and oncogenic roles, even though TFs of the same
family may have two-way effects on the same cancer [26,
27]. Taking the role of SOX family TFs in the pathological
process of GC as an example, since the first discovery of
SRY protein as a TF involved in mammalian male determi-
nation, up to 20 members of SOX family have been identi-
fied in mammals [28, 29]. However, although they share a
DNA binding domain consisting of 79 amino acids, their
effects on GC cells are quite different [30]. For example,
SOX1 and SOX6 have anticancer effects; SOX3, SOX4, and
SOX5 have procancer effects; and SOX2, SOX7, and
SOX10 have both anticancer and procancer effects [31].
Therefore, to accurately understand the role of a TF in a cer-
tain cancer is the focus of cancer mechanism research and
treatment in recent years.

The aim of this study is to further understand the direct
regulatory relationship between mRNA, miRNA, and TFs.
Through the analysis of existing mRNA and miRNA expres-
sion profile data in the GEO database, the functional anno-
tation, and TF prediction of DEGs, target gene prediction
of DEMs was performed with the help of databases such as
DAVID, mipathDB V2.0, and CHEA3, respectively, and
the regulation network of miRNA-mRNAs and TF was
finally constructed based on the results above.

2. Material and Methods

2.1. Microarray Data. To identify DEGs and DEMs in the
pathogenesis of GC and build a regulatory network of
TF-miRNA-mRNA, we searched the Gene Expression
Omnibus (GEO) database with keywords such as “gastric
cancer,” “mRNA,” and “miRNA.”Only the data sets contain-
ing both GC tissue samples and control group information

and without any drug intervention before sequencing could
meet the criteria. Finally, 4 mRNA data sets (GSE26899,
GSE29998, GSE51575, and GSE13911) and 1 miRNA data
set (GSE93415) were selected for the follow-up analysis of
this work.

2.2. Identification of DEGs and DEMs. GEO2R (https://www
.ncbi.nlm.nih.gov/geo/geo2r/) is a software based on GEO
database to perform differential analysis on expression
profile chips. After the processing of 5 data sets using
GEO2R, DEGs and DEMs were screened out using adjust
p value < 0.05, ∣logFC ∣ >1 and adjust p value < 0.01,
∣logFC ∣ >1:9 as the criteria, respectively. The p value
adjusted by Benjamini Hochberg false discovery rate (FDR)
method can significantly reduce the false positive rate [32].

2.3. Biological Significance Analysis of DEGs. In order to fur-
ther understand the biological function of DEGs, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses were per-
formed via a database for annotation, visualization, and inte-
grated discovery (DAVID, https://david.ncifcrf.gov/home
.jsp). The cut-off criterion, p value < 0.05, was set to selected
GO terms and KEGG pathway enrichment analysis, and
then the analysis results were visualized through OriginPro
(2021b_Beta7) software and bioinformatics, an online data
visualization tool (http://www.bioinformatics.com.cn).

2.4. Prediction of miRNA Target Genes. miRpathDB v2.0
(https://mpd.bioinf.uni-sb.de/overview.html) is a multifunc-
tional online miRNA research site with a large database of
miRNA target genes. In order to comprehensively and accu-
rately excavate the regulatory relationship between miRNA
and mRNA in GC tissues, the potential targets of candidate
miRNA were comprehensively predicted by mipathDB v2.0,
and the possible miRNA-mRNA regulation was found by
comparing potential targets with DEGs.

2.5. Prediction of mRNA Transcription Factors. In the pro-
cess of gene transcription and expression, miRNA and TF,
respectively, play a partial regulatory role. Therefore, further
digging out key TFs after clarifying the regulatory relation-
ship between miRNA and mRNA is more conducive to in-
depth understanding of the pathological mechanism of GC.
TF prediction was performed via ChIP-X Enrichment
Analysis 3 (ChEA3). ChEA3, whose database contains a
collection of gene set libraries generated from multiple
sources including TF-gene coexpression from RNAseq
studies, TF-target associations from ChIP-seq experiments,
and TF-gene cooccurrence computed from crowd-submitted
gene lists, is a TFs enrichment analysis tool that ranks TFs
associated with user-submitted gene sets.

3. Patients and Samples

To further verify the reliability of the above bioinformatics
analysis, 4 pairs of clinical tissue samples from GC patients
were obtained from the First Affiliated Hospital of Zhejiang
Chinese Medical University. After surgical removal from the
patient, all tissue samples were stored in a -80°C cryogenic

2 BioMed Research International

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://david.ncifcrf.gov/home.jsp
https://david.ncifcrf.gov/home.jsp
http://www.bioinformatics.com.cn
https://mpd.bioinf.uni-sb.de/overview.html


refrigerator and kept cryogenic during the samples transfer
and nonexperimental disposal period. All biometric tests of
tissue samples were performed with the informed consent
of the patients. The Ethics Committee of the First Affiliated
Hospital of Zhejiang Chinese Medical University approved
the research (approval no.: 2017-K-002-01).

3.1. RNA Isolation and Quantitative Reverse Transcription-
PCR (RT-qPCR). Total RNA was extracted from tissue sam-
ples by Trizol method. First of all, 0.05 g tissue samples were
weighed and put into 1.0ml Trizol (Carlsbad, California,
USA) solution, fully ground, and then stood for 10min.
Then, 200μl trichloromethane (Xilong Chemical Co., Ltd.,
Guangdong Province, China) was added, shaken, and stood
for 2min, and the supernatant was extracted by centrifuga-
tion at 4°C 12000 rpm for 15min. Next, add the same
amount of isopropyl alcohol (Huadong Medicine Co., Ltd.,
Zhejiang Province, China) and rest overnight in the -80°C
cryogenic refrigerator. The next day, the samples were taken
out, and the supernatant was centrifuged at 4°C 12000 rpm
for 10min and washed twice with an appropriate amount
of 75% ethanol (Hangzhou Longshan Fine Chemical Co.,
Ltd., Zhejiang Province, China). Finally, 20-30μl nuclease-
free water (Promega Corporation, Wisconsin, USA) was
added for mixing.

Then, Revert Aid First Strand cDNA Synthesis Kit
(Waltham, Massachusetts, USA) was used to obtain cDNA
by the instructions, and the iTaqTM Universal SYBR@
Green Master Mix kit was used to detect the expression level
of mRNA. All primers (RFX6 forward: CATGGCAAGCC
GAGGAAGTGTC; RFX6 reverse: GGTATGTGGAGCAG
TGTGATGGAG) were synthesized by Sangon Bioengineering
(Shanghai) Co., Ltd. GAPDH (GAPDH forward: CGAGCC
ACATCGCTCAGACA, GAPDH; GAPDH reverse: CTGG
TGAAGACGCCAGTGGA) was used as endogenous control,
and all results were calculated and expressed as 2-ΔΔCt.

3.2. Western Blot. Clinical tissue samples were lysed in RIPA
lysis buffer, and protein concentrations were determined
using a BCA Protein Assay Kit (Thermo Scientific, MA,
USA). Tissue lysates were separated with SDS-PAGE gels
and transferred to a polyvinylidene difluoride (PVDF) mem-
brane (Millipore, Eschborn, Germany). The blots were
blocked in 5% milk for 1 h at room temperature. PVDF
membranes were incubated with the primary antibodies
overnight in a cold room at 4°C. Subsequently, bound pri-
mary antibodies were reacted with corresponding secondary
antibodies for 1 h at room temperature and evaluated with
by chemiluminescence.

3.3. Statistical Analysis. Statistical analysis was performed
through GraphPad Prism (version 6, San Diego, CA) soft-
ware. Student’s t-tests were utilized for the comparison of
two sample groups. Differences were considered as statisti-
cally significant when p < 0:05.

4. Results

4.1. Differentially Expressed Genes. Four mRNA expression
profiles from GEO database included 210 gastric cancer tis-

sues and 118 normal tissue samples. Four expression profiles
(GEO accession nos. GSE26899, GSE29998, GSE51575, and
GSE13911) identified 172 upregulated genes and 338 down-
regulated genes, 1068 upregulated genes and 767 downregu-
lated genes, 1319 upregulated genes and 1868 downregulated
genes, and 1001 upregulated genes and 2306 downregulated
genes, respectively. Common DEGs were composed of
upregulated genes and downregulated genes that overlapped,
respectively, among the four data sets. In the end, a total of
275 DEGs were obtained, including 76 upregulated DEGs
and 199 downregulated DEGs (Figure 1 and Table 1). In
addition, in the miRNA expression profile (GSE93415), three
DEMs were screened, which were miR-199a-3p/miR-199b-3p
with adjust p value = 3.02E-04 (log FC = 2:15675), miR-
125b-5p with adjust p value = 1.58E-04 (log FC = 1:98925),
and miR-199a-5p adjust p value = 9.38E-06 (log FC = 1:9549).

4.2. GO Terms and KEGG Pathway Enrichment. In order to
further understand the function and mechanism of these
DEGs, DAVID was employed to analyze GO terms includ-
ing biological process (BP), cell component (CC), and
molecular function (MF), as well as KEGG pathway, and
the results were illustrated. In the BP category, the upregu-
lated gene enrichment GO terms were mainly cell adhesion
(GO: 0007155) with p = 5:09E − 09 and extracellular matrix
organization (GO: 0030198) with p = 1:33E − 12, while the
downregulated gene enrichment GO terms were mainly
oxidation-reduction process (GO: 0055114) with p = 5:22E
− 07, digestion (GO: 0007586) with p = 3:21E − 12, and
xenobiotic metabolic process (GO: 0006805) with p = 1:70E
− 07. Besides, in the CC category, the upregulated gene
enrichment GO terms were mainly extracellular region
(GO: 0005576) with p = 5:56E − 11, extracellular space
(GO: 0005615) with p = 5:09E − 08, extracellular exosome
(GO: 0070062) with p = 0:0032, and extracellular matrix
(GO: 0031012) with p = 2:91E − 08, while the downregulated
gene enrichment GO terms were mainly extracellular exosome
(GO: 0070062) with p = 9:58E − 08, extracellular space (GO:
0005615) with p = 2:36E − 09, extracellular region (GO:
0005576) with p = 0:003517504, and integral component of
plasma membrane (GO: 0005887) with p = 0:015674589.
Moreover, in the MF category, the upregulated gene enrich-
ment GO terms were mainly protein binding (GO: 0005515)
with p = 0:009744135, while the downregulated gene enrich-
ment GO terms were mainly zinc ion binding (GO:
0008270) with p = 0:003724062 (Figures 2(a) and 2(c)). As
for the KEGG pathway, the most significant results were 31
downregulated genes involved in metabolic pathways
(Figures 2(b) and 2(d)).

4.3. miRNA-mRNA-TF Regulatory Network Construction. In
order to construct miRNA-mRNA-TF regulatory network,
mipathDB V2.0 was used to predict the list of potential
target genes of miRNAs and compare the list of lower DEGs,
and the results showed that the potential genes of miR-199a-
3p/miR-199b-3p, miR-125b-5p, and miR-199a-5p were 61,
71, and 69 in the list of downregulated genes, respectively
(Figure 3(a)). The results of the CHEA3 prediction show
that RFX6 ranks highest among the TFs involved in
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downregulated DEGs (Table 2). Moreover, in the list of
downregulated DEGs, the potential target genes of miR-
199a-3p overlap with the RFX6 downstream genes (RDGs)
in 4 genes, namely, SH3GL2, ATP4B, CTSE, and SORBS2.
The potential target genes of miR-125b-5p overlapped with
RDGs in 7 genes, which were SLC7A8, RNASE4, ESRRG,
PGC, MUC6, FAM3B, and FMO5. The potential target
genes of miR-199a-5p overlapped with RDGs in 6 genes,
which were CHGA, PDK4, TMPRSS2, CLIC6, GPX3, and
PSCA (Figure 3(b)). Finally, the miRNA-mRNA-TF regula-
tory network was constructed based on the above screened
17 mRNAs, 3 miRNAs, and 1 TF by Cytoscape 3.8.2 soft-
ware (Figure 4(a)).

4.4. Validation of Significant TF in GC Tissues. In order to
further verify the accuracy of the above bioinformatics
analysis results, the mRNA and protein levels of the signifi-
cant regulatory factor RFX6 were verified in 4 pairs of GC
tissues and normal tissues by RT-qPCR and western blot.
RFX6 activates transcription by forming a heterodimer with
RFX3 and binding to the X-box in the target gene promoter,
so the expression of RFX6 is positively correlated with
downstream genes. The validation results showed that the
expression of RFX6 mRNA and protein was significantly
downregulated, which suggested that the expression of RFX6
was positively correlated with the expression of downstream
genes (Figure 4(b)). Therefore, the above bioinformatics
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Figure 1: Screening of differentially expressed genes (DEGs). After the data sets of GSE26899, GSE29998, GSE51575, and GSE13911 were
processed by GEO2R, the common upregulated DEGs (a) and downregulated DEGs (b) were screened out according to the criteria of adjust
p value < 0.05 and logFC > 1 and adjust p value < 0.05 and logFC < −1, respectively.

Table 1: Screening of differentially expressed genes (DEGs).

Genes

Downregulated

IGF2BP3 COL1A1 CCNE1 FNDC1 S100A3 COL5A2 THY1 MARVELD3 SPP1 OLR1 ITGA2 TIMP1 BGN COL8A1
CDCA5 CKS2 TEAD4 MMP11 CDH3 MMP3 CRABP2 KRT80 FSCN1 LRP8 LIPG BMP1 PLA2G7 MFAP2 TFAP2A
COL4A1 TGIF1 SULF1 IL32 LAMC2 RARRES1 CLDN1 IGSF6 HAVCR2 APOC1 GINS2 COL12A1 ESM1 PLAU
SERPINB5 TGM2 FOXC1 FZD2 CST1 CLDN7 NDUFA4L2 HOXA10 ETV4 IER5L CAMK2N1 TNFRSF12A ISG15

ANGPT2 TMEM158 IFITM3 SERPINH1 FAP GJB2 THBS2 S100A10 SERPINE1 MSLN LY6E UPP1 COL6A3 COL10A1
F12 COL5A1 PMEPA1 HOXC6 CTHRC1 FJX1

Upregulated

EPB41L4B COL4A5 ISL1 GHR MAOA ZNF385B PRDM16 KIAA1324 GKN1 GHRL CELA3A APOBEC2 SULT1C2
FCGBP GPRC5C KCNJ13 AKR7A3 IRX3 DGKD SORBS2 KLF4 MT1G CYP3A5 GC ALDH6A1 C5 VSIG1 PDGFD
FAM3B KIT NTN4 TNFRSF17 CA9 SH3BGRL2 CBS ADH1C NPY IGFBP2 PIK3C2G SLC9A2 GCNT2 SST PLCXD3

ECHDC3 XYLT2 TPD52L1 ZBTB7C GGT6 PDK4 CXCL17 LYPD6B NR3C2 PDIA2 SLC22A23 TCEAL2 MT1E
ANXA10 CA4 ADHFE1 ADAM28 MUC6 OSBPL7 KRT20 HRASLS2 CTSE GIF ABCC5 RNASE1 MT1F SOSTDC1
ACACB RORC PNPLA7 VSIG2 FAM46C CHRM3 TMED6 SH3GL2 SCNN1G CKMT2 PSCA KCNJ16 REG3A TFF1
RPRM CYFIP2 FAM3D CKM FBXL13 RNASE4 ST6GALNAC1 DERL3 PTGER3 COBLL1 DNASE1 CXCL14 LDHD
PROM2 FBP2 AKR1B10 SOX21 ARL14 AADAC GSTA4 ATP4A POU2AF1 UGT2B15 CKB CD36 LRRC17 RAP1GAP
IGFALS TSC22D3 PIGR CDH2 MAL AQP4 CHGA RAB26 MT1M ESRRG APLP1 VILL TMEM171 CPA2 ABCA8

RAB27B FA2H ADH7 PDILT AMPD1 SULT2A1 GAMT TFF2 CCKBR HPGD RBPMS2 ARRDC4 SCGB2A1 SLC7A8
ADA TMPRSS2 DUOX1 LIPF DPT GUCA2B CYP4X1 CAPN13 TCN1 EPN3 SLC2A12 SORBS1 ENPP5 LIFR NQO1
CD79A CYB5R1 CYP2C18 FGA ALDH3A1 FUT9 PTGR1 AZGP1 ALDH1A1 FMO5 IRX2 CA2 LTF GATA5 ATP4B
BCAS1 SIDT2 SLC26A9 ADH1A CHIA METTL7A FAM189A2 SSTR1 PGC MYRIP FABP4 KCNE2 FAM107A GPX3
PPP1R3C MT1H SIGLEC11 PTGS1 ALDOB KLK11 DNER MAMDC2 C1orf116 CLDN18 HDC RASSF6 SELENBP1

CLIC6 TRIM50
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Figure 2: Annotation of differentially expressed genes (DEGs). The screening results were divided into two groups, upregulated genes and
downregulated genes, for enrichment analysis by a database for annotation, visualization, and integrated discovery (DAVID). Gene
Ontology (GO) terms included biological processes (BP), cellular component (CC), and molecular function (MF), and the top five most
significant items in each group and Kyoto Encyclopedia of Genes and Genomes (KEGG) results were illustrated. (a) and (b) The
upregulated gene group. (c) and (d) The downregulated gene group.
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Figure 3: Screening of miRNA-mRNA-TF regulatory network nodes. (a) Among the 199 common downregulated DEGs (down-DEGs)
screened from the mRNA expression profile, the overlapping genes with the potential targets of differentially expressed miRNAs (DEMs)
were identified. (b) The DEMs targets overlap with the RFX6 downstream genes (RDGs).
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analysis results are proved to be credible from the perspective
of experiment.

5. Discussion

According to the data released by the Global Cancer Obser-
vatory (GCO), in 2020, there were 1,9292,789 new cancer
patients in the world, among which 1,089,103 were GC
patients, accounting for 5.6%, ranking the fifth. The research
on the mechanism of GC and the development of new drugs
have always been the shining research direction of medical
and scientific researchers.

In this study, DEGs and DEMs were screened out from
the existing mRNA and miRNA expression profiles, and
the potential targets of DEMs and TF of DEGs were pre-
dicted through the database, so as to construct miRNA-
mRNA-TF regulatory network and further understand the
pathogenesis of GC. First of all, in the 4 mRNA expression
profiles containing 210 GC tissues and 118 normal tissues,
275 DEGs were screened using adjust p value < 0.05,
∣logFC ∣ >1 as the criterion, among which 76 genes were sig-
nificantly upregulated in GC tissues compared with normal
tissues, while the remaining 199 genes were significantly
downregulated in GC tissues compared with normal tissues.
Second, to further understand the mechanism of DEGs in
biological processes, GO terms and KEGG pathway
enrichment analysis were conducted for the upregulated
genes and downregulated genes, respectively, and the results
showed that the downregulated genes with a higher pro-
portion of DEGs had more obvious enrichment. Then,
using adjust p value < 0.01, ∣logFC ∣ >1:9 as the criterion,
three miRNAs, including miR-199a-3p/miR-199b-3p
(adjust p value = 3.02E-04, log FC = 2:15675), miR-125b-
5p (adjust p value = 1.58E-04, log FC = 1:98925), and miR-
199a-5p (adjust p value = 9.38E-06, log FC = 1:9549), were
screened out from a miRNA expression profile containing
20 GC tissues and 20 normal tissues, which were overex-
pressed in GC tissues relative to normal tissues. After screen-
ing the DEMs, to explore the regulatory relationship between
miRNA and mRNA and construct miRNA-mRNA regula-

tory network, the potential targets of miRNAs were predicted
by the mipathDB V2.0 data platform, and some of the 199
low-expressed genes that might be regulated by miR-199a-
3p/miR-199b-3p, miR-125b-5p, and miR-199a-5p were
obtained by using the Venn diagram. Finally, the prediction
of TFs, 199 significantly low-expressed genes were used to
predict key TFs that played an important role in the progres-
sion of GC cases. The prediction results showed that RFX6
ranked the highest in the average of multiple databases,
suggesting that RFX6 may play a key regulatory role in
the pathogenesis of GC. RT-qPCR results confirmed that
the expression of RFX6 was significantly changed in clini-
cal GC tissues.

miRNAs affect gene expression by regulating the transla-
tion and degradation of mRNA, and the promotion or inhi-
bition effect of this mechanism on cancer cells has been
reported in recent years [33]. It was found by retrieval that
the significantly upregulated expression of miR-199a-3p,
miR-125-5p, and miR-199a-5p in GC cells and tissues ana-
lyzed in this study has been reported many times. In 2003,
a computational prediction of miR-199a’s identity was made
based on the conservatism of miR-199a among humans,
mouse, and puffer fish [34]. The expression of miRNA in
zebrafish was verified, and the ends of the miRNA were
localized by cloning. The two miRNA sequences were
named miR-199a and miR-199a∗ (from the 3 ‘arm), respec-
tively. It has been reported that both of these two miRNA
expression forms are expressed in humans and are named
as miR-199a-5p and miR-199a-3p, respectively [35]. Func-
tional studies have shown that miR-199a-3p can signifi-
cantly promote the proliferation and inhibit apoptosis of
GC cells in vivo and in vitro. It has been found in clinical
studies that the overexpression of miR-199a-3p is associated
with tumor size, Lauren stage, depth of invasion, lymph
node metastasis, distant metastasis, TNM stage, and progno-
sis [36]. Moreover, in stage I, II, and III tumors, the high
expression of miR-199a-3p is associated with a significantly
reduced 5-year survival rate. In addition, luciferase report
assay demonstrated that miR-199a-3p directly targeted the
expression level of ZHX1 regulatory protein. Therefore,
researchers hypothesize that the oncogenic activity of miR-
199a-3p may be related to the direct targeting and inhibition
of ZHX1 [37]. Similar to miR-199a-3p, miR-199a-5p can
promote the migration and invasion of GC cells, and its
expression level is related to tumor diameter, lymph node
metastasis, and TNM stage. However, the difference was that
the expression level of miR-199a-5p was not associated with
Lauren staging and distant metastasis [38]. Different from
miR-199a-3p and miR-199a-5p, the role of miR-125b-5p in
the pathogenesis of GC is not fully understood, but the iden-
tification results at the cell level and tissue level indicate that
miR-125b-5p is significantly upregulated during the devel-
opment of GC [39]. In addition, in a study on drug resis-
tance, it was found that STAT3 may be a potential target
of miR-125b-5p, and the signaling cascades involved in the
regulation of chemotherapy drug resistance in GC [40].

In addition to these identified miRNAs, other mRNAs in
the miRNA-mRNA-TF regulatory network have also been
individually reported, in addition to CTSE, SORBS2,

Table 2: The top 10 transcription factors of prediction results.

Rank Transcription factors Mean rank

1 RFX6 12

2 FOXA3 14

3 TFCP2L1 15.33

4 GATA5 18.67

5 MYRFL 26

6 ISX 26

7 FOXA2 26.5

8 ISL1 30.67

9 CDX1 31.33

10 FOXA1 34

This prediction is the result obtained by integrating multiple databases.
Different databases have different rankings, so the higher the mean rank
is, the more accurate it will be.
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TMPRS, and RNASE4. For example, as a negative regulator
of Wnt signaling pathway, ESRRG plays a tumor suppressor
role in GC [41]. Moreover, the β subunit of the gastric H+,
K+-ATPase encoded by ATPase H+/K+ Transporting Beta
Subunit (ATP4B) are decreased in GC cells and tissues due
to the interaction between DNA methylation and histone
acetylation [42, 43]. Previous studies have found that if
ATP4B expression level is restored, it can inhibit the prolif-
eration, activity, migration, invasion, tumorigenicity, and
induction of apoptosis of GC cells, and its tumor-
suppressive effect may be played through the regulation of
mitochondrial metabolism and apoptosis pathway [44].

Besides, pepsinogen C (PGC) belongs to the aspartic
protease family, which is expressed in situ in gastric mucosa,
expressed in serum, and expressed ectopic. It is secreted by
the gastric host cells and has an activation effect on pepsin
C and can digest polypeptides and amino acids [45]. In the
process from superficial gastritis to atrophic gastritis and
finally to the formation of GC, the positive level of PGC con-
tinues to decline, which indicates that the in situ expression
of PGC may have a negative correlation with the formation
of GC [46]. And the results showed that the expression of
MUC6 was decreased in GC tissues, but surprisingly, there
was no significant difference between the expression of
MUC6 in GC tissues and the gender, tumor site, lymphatic
infiltration, clinical stage, metastasis, Lauren intestinal type,
diffuse type, and mixed type GC tissues [47].

As for the only TF, RFX6, a member of the RFX (regula-
tory factor X-box binding) family of winged-helix transcrip-
tion factors [48], which is downstream of Neurog3 and
upstream of many other islet transcription factors in the islet
development factor hierarchy, is required for differentiation
of four of the five islet cell types [49]. In prostate cancer, on
the one hand, clinical data showed that the upregulated
expression of RFX6 was associated with the risk of tumor
progression, metastasis, and biochemical recurrence [50].
In addition, RFX6 has also been reported to be differentially
expressed in melanoma, liver cancer, GC, and other cancer
tissues, but the further molecular mechanism remains to
be explored.

6. Conclusion

In conclusion, in this study, 76 upregulated DEGs, 199
downregulated DEGs, and 3 upregulated DEMs (miR-
199a-3p/miR-199b-3p, miR-125b-5p, and miR-199a-5p)
were identified from the expression profiles of mRNA
(GSE26899, GSE29998, GSE51575, and GSE13911) and 1
miRNA (GSE93415), respectively. Through database predic-
tion and gene list comparison, it was found that among the
199 downregulated DEGs, 61, 71, and 69 genes were the
potential targets of miR-199a-3p/miR-199b-3p, miR-125b-
5p, and miR-199a-5p, respectively. 199 downregulated
DEGs were used as the gene list for the prediction of key
TFs, and the results showed that RFX6 ranked the highest.
The potential target overlap genes of miR-125b-5p and miR-
199a-5p were 4 (SH3GL2, ATP4B, CTSE, and SORBS2), 7
(SLC7A8, RNASE4, ESRRG, PGC, MUC6, Fam3B, and
FMO5), and 6 (CHGA, PDK4, TMPRSS2, CLIC6, GPX3,
and PSCA), respectively. Finally, we constructed a miRNA-
mRNA-TF regulatory network based on the above 17mRNAs,
3 miRNAs, and 1 TF and verified by RT-qPCR and western
blot results that the expression of RFX6 was downregulated
in GC tissues. These identifiedmiRNAs, mRNAs, and TF have
a certain reference value for further exploration of the
regulatory mechanism of GC. It is worth noting that, given
the complexity of miRNA and TF crosstalk, these regulatory
relationships need to be treated with caution.

Data Availability

The datasets of GSE26899, GSE29998, GSE51575,
GSE13911, and GSE93415 were downloaded from the
GEO database.
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Figure 4: Construction of miRNA-mRNA-TF regulatory network and validation of RFX6 expression level. (a) Three miRNAs (miR-199a-3p/
miR-199b-3p, miR-125b-5p, and miR-199a-5p) and transcription factor (TF) RFX6 coregulate gene expression in the miRNA-mRNA-TF
regulatory network, and miRNAs negatively regulate their expression levels by binding to the mRNA 3′-UTR region of 17 genes. RFX6
activates transcription by forming a heterodimer with RFX3 and binding to the X-box in the target gene promoter. (b) and (c) Compared
with normal gastric tissue, RFX6 was significantly downregulated in GC tissue.
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