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Targeting death receptor-mediated apoptosis in T-cell acute lymphoblastic leukemia (T-ALL), an aggressive disease with poor
prognosis, is hindered by the inherent resistance of primary leukemia cells. Knowledge on therapeutic vulnerabilities in these
malignant cells will provide opportunities for developing novel combinatory treatments for patients. Using label-free
quantitative mass spectrometry and subcellular fractionation techniques, we systematically compared organelle-specific proteomes
between Jurkat cells, an in vitro model for T-ALL, and a Jurkat mutant with increased resistance to death receptor-mediated
apoptosis. By identifying several differentially regulated protein clusters, our data argued that extensive metabolic reprograming in
the mitochondria, characterized by enhanced respiration and energy production, might allow cells to evade DR5-mediated
cytotoxicity. Further analysis using clinical datasets demonstrated that the elevated expression of a three-gene signature, consisting
of SDHA, IDH3A, and ANXA11, was significantly associated with poor survival of acute leukemia patients. Our analysis therefore
provided a unique dataset for a mechanistic understanding of T-ALL and for the design of novel ALL treatments.

1. Introduction

T-cell acute lymphoblastic leukemia (T-ALL), accounting
for ~25% of all acute lymphoblastic leukemia (ALL), is a rare
and aggressive disease of the bone marrow. Compared to
pediatric T-ALL, the prognosis is usually much worse for
elder patients, where it is primarily diagnosed with highly
limited treatment options [1–3].

Dysregulated apoptosis is a hallmark for virtually all
malignancies, yet specific mechanisms are tumor type-
specific [4, 5]. In hematological malignancies such as leuke-
mia, evasion from apoptosis is often achieved by systematic
deregulation of two separate but related apoptotic signaling
pathways: the intrinsic pathway is mainly controlled by
BCL-2 family proteins and converges on the mitochondria

[6], while the extrinsic pathway is activated by TNF family
receptors such as death receptor 4 (DR4), death receptor 5
(DR5), or FAS upon receiving extracellular cues [7]. The
promise of targeting apoptotic pathways as a feasible thera-
peutic strategy in leukemia has been recently demonstrated
by the approval of venetoclax, a BH3-mimetic to inhibit
the antiapoptotic molecule Bcl-2. However, no inhibitors
within this class have been approved for T-ALL, although
preclinical studies using childhood ALL xenografts showed
potentials [8]. While the biological role of the extrinsic
pathway in ALL remains elusive, death receptor-mediated
signaling recently emerged as an attractive target for disease
intervention [9]. DR5 (also known as TNFRSF10B) is a type
II membrane receptor that has significantly elevated expres-
sion in numerous tumors but not normal tissues. Upon
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ligation by its natural ligand, the tumor necrosis factor-
related apoptosis-inducing ligand (TRAIL), DR5 is activated
through oligomerization and catalyzes the formation of the
death-inducing signaling complex (DISC), which in turn
activates downstream signaling events to induce apoptosis
in both mitochondrial-dependent and mitochondrial-
independent manners. Due to their tumor-specific cytotox-
icity, several humanized DR5-agonistic monoclonal anti-
bodies have been developed and approved to be able to
induce apoptosis in various tumor models [5–10]. Indeed,
a number of DR5 targeting agents, including multivalent
antibodies, antibody-drug conjugates, recombinant TRAIL
variants, and small molecules are currently under active
clinical evaluations with promising results in a number of
cancers, demonstrating the therapeutic value of DR5
[11–16]. Notably, the human T-ALL cell lines such as
Jurkat are among the most sensitive cells towards
in vitro and in vivo cytotoxicity of anti-DR5 antibodies,
providing initial support for the feasibility of their applica-
tions in T-ALL treatments.

However, clinical trials using DR5-agonistic antibodies,
either as monotherapy or combined with chemotherapy or
other targeted therapies, have been failed to show benefits
in leukemia, although safety profiles have been well docu-
mented [17]. A key reason for this disappointment is due
to the inherent resistance to DR5-induced apoptosis in
primary leukemia cells [18]. Mechanisms mediating the
resistance remain elusive, partly due to the lack of systematic
studies to identify previously unappreciated signaling nodes
critical for proper propagation of death receptor signaling
[19]. To systematically address this issue, we first established
a mutant Jurkat with drug-induced resistance toward
zaptuzumab, a novel DR5-agnoistic humanized monoclonal
antibody [15, 20]. Next, we quantitatively investigated prote-
omic difference between wild-type and mutant Jurkat cells
using organelle-specific proteome analysis and label-free
quantitative mass spectrometry. The high genetic similarity
between these two cell models allowed us to identify several
potential proteomic vulnerable points, characterized by
enhanced respiration and energy metabolism, in resistant
cells to confer resistance for DR5-targeted therapies. Further
analysis using clinical data from TCGA database identified a
three-gene signature, consisting of proteins involved in
energy metabolism, as a novel prognosis marker for acute
leukemia. Our work provided a rich referential dataset for
the design of novel DR5-targeting therapies for T-ALL.

2. Materials and Methods

2.1. Materials and Reagents. Cell Counting Kit-8 was from
Med ChemExpress (NJ, USA). Minute™ Cell Fractionation
and Protein Trafficking kit was from Invent(MN, USA). For-
mic acid (FA) was from Solarbio (Beijing, China). Protease
and phosphatase inhibitor cocktails were from Roche (Basel,
Switzerland). Trifluoroacetic acid (TFA), trypsin, and chem-
ical inhibitors were from Sigma (St. Louis, MO, USA). Water
was purified using a Milli-Q system from Millipore Co.
(Bedford, MA).

2.2. Cell Culture and Drug Treatment. Jurkat cells from
ATCC were grown in RPMI 1640 medium, supplemented
with 10% fetal bovine serum, 100U/mL of streptomycin,
and 100U/mL of penicillin in a humid atmosphere (5%
CO2 at 37

°C). To induce drug resistance, wild-type cells were
sequentially challenged with growth medium supplemented
with increasing amounts of zaptuzumab (a kind gift from
D. Zheng, PUMC, China) with an initial dose of 1.5 ng/mL
and one week interval. After a ten-round subculturing, the
resulting zaptuzumab-resistant variant, named as JurkatR,
could proliferate in 15000ng/mL zaptuzumab.

2.3. Cell Viability Determination. The cells were seeded at 1
× 105/100 μL in a 96-well plate and incubated overnight at
37°C. After exposed to the indicated concentrations of
zaptuzumab for two hours, cell viabilities were measured
using Cell Counting Kit-8, following the manufacturer’s
instructions.

2.4. Subcellular Organelle Enrichment by Differential
Centrifugation. Subcellular fractions were obtained using
the Minute™ Cell Fractionation and Protein Trafficking
kit. 5 × 107/sample Jurkat cells were used. Cell lysis
and subsequent preparation of subcellular fractions based
on differential centrifugation were following the manu-
facturer’s instructions.

2.5. Immunoblotting. Samples were mixed with SDS-PAGE
sample buffer and boiled. Proteins were separated on a
10% SDS-PAGE and transferred onto a nitrocellulose mem-
brane (Amersham Biosciences) at 100V for 90min. Indi-
cated proteins were identified by incubating with specific
antibodies and ECL.

2.6. Mass Spectrometry Sample Preparation. Subcellular frac-
tions were concentrated using 10 kDa ultrafiltration, resus-
pended in 50mM ABC, and tryptic digested. After 14000 g
centrifugation, the filtrates were desalted using a “spin-
tip”-modified solid phase with C18 filter membrane and
T4 pipette tip, followed by washing with 50% ACN/0.1%
TFA and 0.1% TFA, respectively, before eluting with 70%
ACN and lyophilization.

2.7. Mass Spectrometric Analysis and Database Search. Sam-
ples were reconstituted with 3% formic acid and automati-
cally loaded onto the C18 pulled column (ID at 75μm)
packed with 3mm ReproSil C18, separated at a flow rate of
200 nL/min and a gradient of 2% to 35% acetonitrile over
90min, and analyzed by mass spectrometry (TripleTOF
5600, AB SCIEX). Acquired raw files were analyzed by
MaxQuant software (version MaxQuant 1.6.2.0) using
Andromeda search engine and matched with UniProt human
database (version human_protein_faa_2013_0704.fasta) for
identification and label-free quantification.

2.8. Data Processing. For Gene Ontology analysis, website
tool of David (website: https://david.ncifcrf.gov/tools.jsp)
was used. The Kaplan-Meier survival analysis and mRNA
expression comparison in clinical samples were performed
using GEPIA2 (website: http://gepia2.cancer-pku.cn), an
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interactive web server for analyzing the RNA sequencing
expression data of tumor and normal samples from The
Cancer Genome Atlas (TCGA) and the Genotype-Tissue
Expression (GTEx) projects [21]. Protein expression com-
parison in tumors was performed with UALCAN (website:
http://ualcan.path.uab.edu), an web-based server for analyz-
ing mass spectrometry data of tumor and nontumor tissue
samples from the Clinical Proteomic Tumor Analysis Con-
sortium (CPTAC) project [22].

3. Results

3.1. Inducing Resistance to DR5-Dependent Cytotoxicity in
Jurkat Cells. The human acute lymphoblastic leukemia cell
line Jurkat is used as the in vitromodel for T-ALL in our study.
This cell line is highly sensitive to the cytotoxic effect of a DR5-
agonistic monoclonal antibody named zaptuzumab. To
establish a Jurkat variant resistant to zaptuzumab-mediated
killing, wild-type cells were subjected to long-term subcultur-
ing with increasing doses of zaptuzumab, to allow the sponta-
neous development of acquired drug resistance (Figures 1(a)
and 1(b)). This results in the isolation of a Jurkat-derived
mutant cell line (termed JurkatR thereafter) that has a signifi-
cantly increased IC50 towards zaptuzumab. The altered drug
resistance was not likely caused by DR5 receptor downregula-
tion as the mutant cell maintained a similar level of receptor
expression as the wild-type counterpart (Figure 1(c)). The
genetic similarity between parental Jurkat and its mutants
facilitates the identification of proteomic alterations associated
with drug resistance.

3.2. Organelle-Specific Proteome Mapping in Wild-Type and
Mutant Cells. Similar to other types of membrane receptors,
activated death receptors transduce extracellular signals to
eventually activate nuclear gene transcriptions via a sophisti-
cated intracellular signaling network which is regulated at
multiple subcellular compartments. To have an in-depth
coverage of the subcellular localization-specific proteome,
Jurkat and JurkatR cells were resuspended in detergent-free
hypotonic buffer and lysed by following the manual of the
Minute subcellular organelle separation kit (Invent Biotech),
a patented technique for efficient cell lysis by mild physical
force to minimize unwanted lysis of organelles. Differential
centrifugations were used to recover five subcellular frac-
tions enriched with plasma membrane protein (referred as
PMP), organelle membrane protein (referred as OMP), cyto-
solic protein (referred as CC), and nuclear protein (referred
as NP) (Figure 2(a)). The purity of each subcellular fraction
was evaluated by distributions of representative organelle-
specific markers using specific antibodies and immunoblot-
ting (Figure 2(b)). The results confirmed a sufficient separa-
tion between fractions. Next, total proteins from each
fraction were extracted, tryptic digested according to the
FASP protocol, and analyzed in one run by LC-MS (5600,
AB SCIEX). Raw data files were subsequently analyzed by
the MaxQuant software using the Andromeda search engine
to determine protein identities as well as their relative
abundance by label-free quantification (see Materials and
Methods for details). The results from two independent

biological replicates were highly reproducible, as examined
by the average Pearson correlation coefficients (R2 = 0:86
for Jurkat; R2 = 0:88 for JurkatR) (Figure 2(c)). To systema-
tically evaluate the quality of prepared subcellular fractions,
Gene Ontology (GO) enrichment analysis was performed
on identified proteins from each subcellular fraction. As
demonstrated by the biological process annotation for most
enriched subsets of proteins, the molecular profiles were
apparently fraction specific, validating again our fraction
preparations (Figure 2(d) and Fig. S1).

3.3. Systematic Signaling Network Rewiring and Enhanced
Mitochondrial Functions in Cells Resistant to DR5-
Mediated Apoptosis. To identify molecular characteristics
that may associate with altered drug sensitivity in mutated
Jurkat cells, we compared the size of their proteomes by
Venn diagram analysis. After combining MS data searching
files from four subcellular fractions, a total of 4,098 and
3,685 unique proteins were identified in Jurkat and JurkatR,
respectively (peptide and protein FDR at 1%). Overall, the
two proteomes have a 82.6% overlap (Figure 3(a)), consider-
ably higher than those observed in genetically unrelated
cells, where over two-thirds of the proteomes are different
[23]. While the data is consistent with JurkatR being a Jurkat
derivative, it is nevertheless surprising that as high as 17.4%
of the proteome need to be changed for the cell to evade
DR5-induced apoptosis, emphasizing the need for a system-
atic approach for understanding mechanisms of drug resis-
tance. Moreover, the two proteomes also exhibited
apparent quantitative differences, as judged by the dynamic
range of protein abundance (Figure 3(b), lower panel). A
further unsupervised hierarchical clustering analysis using
label-free quantification data identified three significantly
altered protein clusters in JurkatR cells (Figure 3(b), upper
panel). GO enrichment analysis indicated that proteins con-
sisting the clusters 1 and 3, significantly decreased in Jur-
katR, mainly involved in regulating gene transcription and
p53 signaling, whereas most proteins in cluster 2, upregu-
lated in mutated cells, belonged to the respiration and
energy metabolism machinery. This observation is further
supported by the analysis of most up- or downregulated pro-
teins (folds of change > 3; Figure 3(c) and Fig. S3). Interest-
ingly, when organelle-specific proteomes between two cells
were compared separately, the overlap in number of identi-
fied proteins decreased to between 43.5 and 68.8%, where
the NP-specific proteome being the most variable and the
PMP and the OMP-specific proteomes being the most stable
between cells (Figure 3(d), lower panel, and Fig. S2). This
observation was further supported by unsupervised hierar-
chical clustering analysis on the NP-specific proteome (the
most variable) and the OMP/PMM (the least variable prote-
ome) (Figure 3(d), upper panel). These results strongly
argued that the altered spatial organization of subcellular
proteomes in JurkatR played a more important role in shap-
ing cellular functions. We then performed GO analysis on
the most changed NP-specific proteome and identified two
protein clusters similarly reflecting protein patterns previ-
ously described in Figure 3(b), where proteins involved in
gene transcription were downregulated while those involved
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in regulating the respiration chain and energy metabolism
(Figure 3(d)), mostly found in the mitochondria (Figure 3(e)),
are upregulated.

Taken together, the above analysis identified that
enhanced mitochondrial function might serve as a key
mechanism for cells to acquire resistance for DR5-related
apoptosis.

3.4. Identification of a Three-Gene Signature as a Prognosis
Marker for Acute Leukemia. Given the central role of the
mitochondria in regulating apoptosis, dysregulated mito-
chondrial functions may result in increased survival of
tumors and poor prognosis. To further identify signaling
nods critical for the survival of leukemia patients, we syste-
matically performed the Kaplan-Meier survival analysis on
most significantly upregulated proteins as indicated in
Figure 3(c), using the GEPIA web server and TCGA datasets
(see Materials and Methods for details). Due to data avail-
ability, TCGA data on AML, genetically related to ALL,
was used instead. Although genetically distinguished, ALL
and AML were similarly treated in clinical. Moreover, sam-
ples acquired from AML patients highly express DR5 and
are sensitive to DR5-induced apoptosis [24, 25]. Therefore,
the analysis on AML is likely to have a reference value for
ALL. The Kaplan-Meier curve and log rank test analyses
revealed that elevated mRNA levels of SDHA, IDH3A, and

ANXA11 were individually associated with poor overall sur-
vival (OS) of AML patients (P < 0:05), while the three-gene
signature consisting of all three genes (SDHA, IDH3A, and
ANXA11) provided the highest predication power for OS
of leukemia patients (P = 9:8E − 06) (Figure 4(a)). Notably,
both the SDHA, an essential subunit of succinate dehydroge-
nase complex (SDC)/complex II, and the IDH3A, an isocitrate
dehydrogenase catalyzing the oxidative decarboxylation of
isocitrate, are mitochondrial proteins involved in regulating
energy production [26–28]. On the other hand, annexin
A11, or ANXA11, is a ubiquitously expressed member of the
multigene family of Ca(2+)-regulated phospholipid-
dependent and membrane-binding annexin proteins, acting
to regulate a variety of cellular functions including prolifera-
tion, protein trafficking, and apoptosis [29]. These findings
argued that dysregulated expression of SDHA, IDH3A, and
ANXA11 might play an important role in determine cellular
sensitivity apoptosis, thus serving as a potential vulnerability
for therapeutic intervention with DR5-targeting agents. In
supporting this notion, we showed that the expressions of
these three genes have a much wider dynamic range in AML
and several tumors compared to normal tissues, both at the
level of mRNA and protein (Figures 4(b) and 4(c)).

The above findings were summarized in a mechanistic
model where enhanced mitochondrial functions, especially
elevated activities of energy metabolic regulators such as
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SDHA and IDH3A, and phospholipid-dependent signaling
mediated by ANXA11, combined with decreased P53 signal-
ing and ER stress response-related signaling, collectively
contribute to the evasion of cell from death receptor-
mediated apoptosis (Figure 4(d)).

4. Discussion

The ability of DR5 to selectively induce apoptosis in numer-
ous cancers in vitro and in vivo ignited a series of enthusi-
asm to develop its agonists as therapeutics for AML and
ALL. However, relevant clinical studies so far have been dis-
appointing, partly due to poor understanding of underlining
mechanisms regulating cellular sensitivity towards DR5-
mediated cytotoxicity. To identify potential therapeutic
vulnerability in ALL for DR5-targeted therapies, we first
established a Jurkat derivative cell line that became resistant
to DR5-agonistic antibody zaptuzumab. Jurkat is an in vitro
cellular model for ALL. Subsequently, we systematically
compared proteomes between wild-type and mutant cells
by label-free quantitative mass spectrometry-based proteo-
mic analysis, assisted by subcellular fractionation tech-
niques, to identify proteomic changes necessary for cells to
escape from DR5-induced apoptosis. Our analysis revealed
an overall 17.4% qualitative difference between these two
proteomes, demonstrating an extensive rewiring of signaling
networks. Label-free quantification of subcellular fraction-
specific proteomes and GO analysis further defined three
main dysregulated protein clusters in drug-resisting Jurkat,
potentially leading to enhanced respiration and energy pro-
duction in the mitochondria and decreased transcription

regulation and p53 signaling in the nucleus, consistent with
the central role of the mitochondria in regulating apoptosis.
Further, the Kaplan-Meier survival analysis using TCGA
clinical mRNA databases on a group of most significantly
changed proteins identified three proteins, SDHA, IDH3A,
and ANXA11, correlated with poor prognosis of AML,
closely related to ALL, when highly expressed. Moreover, a
signature consisting all three genes significantly correlated
with poor survival of AML patients when overexpressed.

Notably, two of the proteins, SDHA and IDH3A, key com-
ponents of TCA, are involved in regulating energy metabolism
in themitochondria and considered to be actionable therapeu-
tic targets in several cancers. For example, loss of SDHA
enabling the utilization of glutamine as a fuel for the TCA
cycle sensitizes AML cells towards venetoclax, a FDA-
approved BCL-2 inhibitor [30], while overexpression of
IDH3A, the third member of the isocitrate dehydrogenases
(IDHs) family, has been associated with poor survival in breast
cancer and liver cancer [31]. The third protein, ANXA11, is a
mediator for Ca2+-dependent phospholipid signaling at the
plasma membrane. Aberrant ANXA11 functions are involved
in drug resistance and recurrence of systemic autoimmune
disease and cancer [32]. While further investigations are
required to establish clinical efficacy of these molecules, our
work argues for the requirement of extensive metabolic repro-
gramming in the mitochondria, along with Ca2+-dependent
phospholipid signaling at plasma membrane, for cells to
develop resistance to DR5-mediated killing. Our results pro-
vided a unique insight on mechanistic vulnerabilities in leuke-
mia cells, as well as opportunities to develop novel targeted
strategies for leukemia.
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Figure 4: Identification of a three-gene signature correlated with prognosis in acute leukemia. (a) Kaplan-Meier survival analysis of
indicated protein and signature using GEPIA web server and TCGA mRNA datasets on AML. (b) Protein levels of mRNA transcriptions
of indicated proteins from AML patients were compared. Red: tumors; grey: normal tissues. (c) Abundances of indicated proteins in
various cancer patients were compared using the UALCAN web server and CPTAC mass spectrometry datasets. Red: tumors; blue:
normal tissues. (d) A model to summarize the major proteomic alterations required for cells to develop resistance toward death receptor-
mediated apoptosis.
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