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Background. Rheumatoid arthritis (RA) is recognized as a chronic inflammatory disease featured by pathological synovial
inflammation. Currently, the underlying pathophysiological mechanisms of RA remain unclear. In the study, we attempted to
explore the underlying mechanisms of RA and provide potential targets for the therapy of RA via bioinformatics analysis.
Methods. We downloaded four microarray datasets (GSE77298, GSE55235, GSE12021, and GSE55457) from the GEO
database. Firstly, GSE77298 and GSE55457 were identified DEGs by the “limma” and “sva” packages of R software. Then, we
performed GO, KEGG, and GSEA enrichment analyses to further analyze the function of DEGs. Hub genes were screened
using LASSO analysis and SVM-RFE analysis. To further explore the differences of the expression of hub genes in healthy
control and RA patient synovial tissues, we calculated the ROC curves and AUC. The expression levels of hub genes were
verified in synovial tissues of normal and RA rats by qRT-PCR and western blot. Furthermore, the CIBERSORTx was
implemented to assess the differences of infiltration in 22 immune cells between normal and RA synovial tissues. We explored
the association between hub genes and infiltrating immune cells. Results. CRTAM, CXCL13, and LRRC15 were identified as
RA’s potential hub genes by machine learning and LASSO algorithms. In addition, we verified the expression levels of three
hub genes in the synovial tissue of normal and RA rats by PCR and western blot. Moreover, immune cell infiltration analysis
showed that plasma cells, T follicular helper cells, M0 macrophages, M1 macrophages, and gamma delta T cells may be
engaged in the development and progression of RA. Conclusions. In brief, our study identified and validated that three hub
genes CRTAM, CXCL13, and LRRC15 might involve in the pathological development of RA, which could provide novel
perspectives for the diagnosis and treatment with RA.

1. Introduction

Rheumatoid arthritis (RA) is recognized as a chronic inflam-
matory disease featured by pathological synovial inflamma-
tion, affecting roughly 1% of the world population [1].
Irreversible synovial inflammation and joint destruction
pose significant adverse effects on the quality of life for RA
patients. Currently, non-steroidal anti-inflammatory drugs
and disease-modifying anti-rheumatic drugs are the primary

clinical agents for the therapy of RA [2]. However, these
treatments are usually associated with adverse reactions,
including increased risks of infection and tumor prevalence
[3]. Early diagnosis and treatment of RA can significantly
delay the development of the disease and enhance the qual-
ity of life of patients [4]. Currently, the underlying pathogen-
esis of RA is not fully elucidated. Many studies showed that
identifying disease-related hub genes could better under-
stand the pathogenesis of disease [5, 6]. Therefore, the
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identification of novel hub genes in the synovial tissue will
unravel the underlying mechanisms of RA and facilitate
the development of effective treatment strategies.

In recent years, many studies have found that immune
cell infiltration plays a pivotal role in the development and
progression of RA. Key immune cells, such as macrophages,
plasma cells, T cells, and natural killer cells, are involved in
the pathogenesis of RA [7]. These cells secrete numerous
inflammatory mediators, including cytokines, chemokines,
and matrix-degradative enzymes, leading to joint inflamma-
tion and bone destruction. A study has indicated that plasma
cells play a vital role in the pathogenesis of RA [8]. Plasma
cells, also known as effector B cells, play a role in the
humoral immune response by producing large amounts of
cytokines in the immune system, including IL-17 and
TNF-α [9]. A large number of activated T cells invade the
synovial tissue and release many inflammatory cytokines,
causing inflammation in the synovial membrane of RA and
ongoing tissue damage [10]. In addition, macrophages con-
tributed to RA synovial inflammation via the generation of
pro-inflammatory mediators and further promoted the
pathophysiology of RA [11]. Nevertheless, the immune
modulatory mechanisms of RA in synovial tissue lacked
in-depth study. Moreover, investigating the association
between immune cells and hub genes could better elucidate
the pathogenesis of RA [12]. Consequently, the role of
immune cells in RA needs to be further evaluated and the
relationship between immune cells and hub genes needs to
be comprehensively explored.

Despite a great deal of research confirming the aberrant
expression of immune cells in RA, the role of the immune
system in RA is not yet fully elucidated [13]. Evidence has
demonstrated that imbalances in the immune system could
lead to synovial inflammation and the formation of synovial
vascular hyperplasia [14]. RA is an autoimmune disease, yet
it has a long course and poor prognosis, eventually leading
to joint deformity and even disability. Therefore, exploring
immune dysfunction in RA may help to provide relevant
insights into the etiopathogenesis of RA and contribute to
the development of new therapeutic strategies. Recently, bio-
informatics analysis of microarray data has contributed to
the understanding of the molecular mechanisms of RA
occurrence and development and identified potential hub
genes that might be potentially used for clinical diagnosis
of RA [15–17]. A study found that RPS29 and RPL10A were
highly expressed in the synovial tissues of RA patients by
bioinformatics analysis [18]. Based on the WGCNA, FADD,
CXCL2, and CXCL8 may be regarded as potential diagnostic
biomarkers for RA [19]. By bioinformatics analysis, FN1,
VEGFA, HGF, SERPINA1, MMP9, PPBP, CD44, FPR2,
IGF1, and ITGAM were recognized as the hub genes related
to synovial macrophages in RA [20]. Furthermore,
TNFAIP6/TSG6 and HSP90AB1/HSP90 were identified as
new biomarkers for RA by cross-tissue transcriptomic anal-
ysis leveraging machine learning approaches [21]. However,
there are some shortcomings in these findings. For example,
the sample sizes of some findings are too small and the
screening criteria too low to be representative. Besides, some
of the findings were not experimentally validated. Therefore,

there is an urgent need for more in-depth analysis and
experimental validation of potential biomarkers of RA for
a comprehensive study.

In the study, we attempted to identify vital molecular
factors to illustrate the underlying mechanisms of RA and
offer potential targets for the treatment of RA. Firstly, we
obtained RA datasets from the Gene Expression Omnibus
(GEO) database and recognized differentially expressed
genes (DEGs) by differential expression analysis
(GSE77298 and GSE55457). Secondly, enrichment analysis
was applied to these DEGs, including Gene Ontology
(GO), Kyoto Encyclopedia of Genes and Genomes (KEGG),
and Gene Set Enrichment Analysis (GSEA). Then, inte-
grated bioinformatics analysis and machine learning strate-
gies were employed to identify hub genes for validation
using other datasets (GSE55235 and GSE12021). Finally,
we estimated the immune profile of RA and the relationship
between immune cells and hub genes. To further verify the
above analysis results, we detected the mRNA and protein
expression levels of the hub genes in the synovial tissues of
RA rats. Collectively, these findings may provide novel
insights into the molecular immune mechanisms and reveal
potential novel approaches to the treatment of RA.

2. Materials and Methods

2.1. Data Collection. Gene expression datasets of RA were
searched and obtained from the public repository databases
GEO (http://www.ncbi.nlm.nih.gov/geo/) using the follow-
ing keywords: “Rheumatoid Arthritis” (keyword), “Homo
sapiens” (organism), “synovial tissue” (attribute name), and
“sample count” >20. The GSE77298 from GPL570 platform
was produced and included data of synovial tissues from 16
RA and 7 healthy control samples [22]. The microarray
dataset GSE55457 from the GPL96 platform contained 13
samples of RA synovial tissue and 10 samples of healthy
control synovial tissue [23]. The GSE55235 included 10 RA
synovial samples and 10 normal synovial samples on the
basis of the GPL96 platform [23]. The GSE12021 from the
GPL96 platform included 9 normal synovial samples and
12 RA synovial samples [24]. Clinical information for the
four datasets is presented in Supplementary Table 1.

2.2. Data Preprocessing and Differential Gene Expression
Analysis. Data statistical analyses were conducted using R
software v4.0.3 (http://www.r-project.org/) and Bioconduc-
tor (http://bioconductor.org/). The microarray data
GSE77298 and GSE55457 were processed and normalized
with the “limma” and “sva” packages of R software [25,
26], and batch correction was conducted using the Combat
function from the “sva” package. Then, we utilized the R
package “limma” to identify DEGs based on the datasets
(GSE77298 and GSE55457), and statistical significance was
set at log2FC > 2 and adjusted p value < 0.05. Differential
expression of DEGs was visualized with the R packages
“ggplot2” [27] and “pheatmap” (version 1.0.8).

2.3. Functional Enrichment Analysis. To explore the poten-
tial functional and molecular pathways of DEGs, we
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performed GO, KEGG enrichment analyses of DEGs by the
“clusterProfiler” package in R [28]. p < 0:05 was considered
to show the statistical significance. The GSEA was employed
to identify the most significant functional terms between the
RA and control groups. And the “c2.cp.kegg.v7.4.sym-
bols.gmt” from the Molecular Signatures Database
(MSigDB) (https://www.gsea-msigdb.org/gsea/index.jsp)
was used as the reference gene set. The significant differences
were identified with the p-value adjusted < 0.05.

2.4. Identification and Verification of Hub Genes. We further
screened signature DEGs associated with RA using least
absolute shrinkage and selection operator (LASSO) logistic
regression [29] and support vector machine recursive feature
elimination (SVM-RFE) [30] algorithms by five-fold cross-
validation, respectively. The LASSO logistic regression was
carried out the “glmnet” package in R [31]. The SVM-RFE
algorithm was applied with the “e1071” R package [32].
The DEGs screened by the two algorithms were overlapped
to obtain three genes as hub genes with the “venn” R pack-
age (version 1.7). The GSE55235 and GSE12021 datasets
were used as external datasets to validate the hub genes
screened by using the Wilcoxon rank test analysis. The
receiver operating characteristic (ROC) curves and area
under the curve (AUC) were also computed to evaluate the
predictive effectiveness of the algorithm using the R package
“pROC” [33]. And a two-sided p < 0:05 showed a statistically
significant difference.

2.5. Animal Experimental Design. Sixteen Sprague-Dawley
(160-180 g) rats were adaptive feeding for one week, half
male and half female. All rats were purchased from the
Experimental Animal Center of Southwest Medical Univer-
sity (Luzhou, China). First, 16 rats were randomly divided
into two groups (n=8 in each group): the control group
and the model group. Then, the model group rats were intra-
dermally injected with 0.15ml of Freund’s Complete Adju-
vant (FCA, Sigma) at the right hind footpad to establish an
adjuvanticity arthritis (AA) model [34], and the same vol-
ume of 0.9% saline was administered to the control group
rats. Significant swelling of the foot pad in the model group
indicated successful modeling compared to the control
group. Rats were sacrificed on day 8 of the experiment.
The synovial tissues of the rat were resected and placed in
liquid nitrogen for further analysis, and rats were euthanized
via cervical dislocation. All animal experimental procedures
were approved by the Institutional Ethics Committee of
South Western Medical University.

2.6. Evaluation of Foot Volume and Arthritis Score. Before
each rat was injected at the right hind footpad (day 0), we
measured the foot volume of each rat by a self-made foot
volume measurement device [35]. After the 7th day of
FCA injection, the right hind footpad volume of each rat
was again measured. On days 0, 3, and 7 of the experiment,
all rats were measured by arthritis score. The arthritis score
was used to evaluate the inflammation of joints in each
group of rats. The arthritis score was as follows: 0 points = -
normal; 1 point =mild redness or swelling of only regional
parts or toes; 2 points =moderate or mild swelling of feet,
pads, or ankles; 3 points = severe swelling of ankle joints or
complete swelling below ankle joints; and 4 points = severely
and highly swollen feet, toes, and joints, without stiffness or
deformity [36].

2.7. Quantitative PCR Analysis. The total RNA was extracted
from synovial tissue using RNAiso Plus (Takara, China)
according to the manufacturer’s protocol. Afterward, first-
strand cDNA was synthesized from total RNA using tran-
scriptor first-strand cDNA synthesis kit (Roche, Germany).
The relative mRNA levels of CRTAM, CXCL13, and
LRRC15 were measured with Stormstar SybrGreen qPCR
Master Mix (DBI, Germany). Besides, β-actin was used as
a reference gene for normalization of different transcript
values. According to gene sequences in the NCBI database,
specific primers were designed by the Primer Premier 5.0
software (Premier Biosoft, USA). The sequences of the
PCR primers are as shown in Table 1. The relative mRNA
expression levels were evaluated with the 2-ΔΔct method.
All PCR assays were performed in triplicate.

2.8. Western Blot Analysis. Western blot was performed as
previously described [37, 38]. Antibodies used in the study
are as follows: anti-CRTAM (1 : 1000; clone EPR23786-12,
AB272723, Abcam, UK), anti-LRRC15 (1 : 1000; clone
EPR8188, AB150376, Abcam, UK), and anti-GAPDH
(1 : 1000; clone 14C10, #2118, Cell Signaling Technology,
China). The expressions of CRTAM and LRRC15 protein
were analyzed by ImageJ software (http://rsb.info.nih.gov/
ij/index.html).

2.9. Correlation Analysis between Immune Cells and Hub
Genes. To further study the correlation of immune cell and
hub genes in RA, we used the CIBERSORTx (https://
cibersort.stanford.edu) to assess the differences of infiltra-
tion of 22 immune cells between normal and RA synovial
tissues. Then, the relationship between the 22 immune cells
was revealed using the “corrplot” package of R software.

Table 1: Primer sequences of hub genes.

Gene Forward Reverse

CRTAM 5′-GACGCCTTTCCAGCCAACT-3′ 5′-GTGGAACACTTCAGCACAACAG-3′
CXCL13 5′-CAGCCCTGCTTCTTCTACTGG-3′ 5′-GCTCACCTTGGAACACCTACAT-3′
LRRC15 5′-GACGCCTTTCCAGCCAACT-3′ 5′-GTGGAACACTTCAGCACAACAG-3′
β-Actin 5′-CAGGTCATCACTATCGGCAAT- 3′ 5′-CTTTACGGATGTCAACGTCACAC-3′
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Additionally, we also conducted a correlation analysis of 22
immune cells with hub genes by Spearman’s rank correlation
analysis. All analysis results were visualized using “ggplot2”
package, and p < 0:05 was considered statistically significant.

2.10. Statistical Analysis. All statistical analyses were per-
formed using the R version 4.0.3, SPSS 17.0, and GraphPad
Prism 8. The Wilcox test was used to compare the inter-
group difference between two groups. A p-value < 0.05 was
considered statistically significant.

3. Results

3.1. Identification of Differentially Expressed Genes. To study
gene expression in RA, we integrated the two microarray
datasets GSE77298 and GSE55457 into a complete dataset
using the “sva” R package. And differential expression anal-
ysis showed a total of 44 DEGs in the combined dataset, of
which 36 DEGs were upregulated and 8 DEGs were down-
regulated (Figure 1 and Supplementary Table 2).

3.2. Function and Pathway Enrichment. In the GO enrich-
ment analysis of DEGs (Figure 2(a) and Supplementary
Table 3), biological processes (BP) terms were related to
humoral immune response and regulation of immune
effector process; cellular components (CC) terms were
correlated with the external side of the plasma membrane
and inflammasome complex; and molecular functions
(MF) terms were associated with antigen binding and
immunoglobulin receptor binding. KEGG enrichment
analysis showed that DEGs were significantly enriched in
PPAR signaling pathway, cytokine-cytokine receptor
interaction, and IL-17 signaling pathway (Figure 2(b) and
Supplementary Table 4). To further clarify the differences

in functional and biological pathways between RA patients
and healthy controls, we performed GSEA analysis of the
DEGs and screened significant enriched signaling
pathways. As shown in Figures 2(c) and 2(d), and
Supplementary Table 5, cell adhesion molecules,
chemokine signaling pathway, cytokine-cytokine receptor
interaction, and autoimmune thyroid disease were enriched
in the RA group.

3.3. Identification of Hub Genes. After identifying DEGs, we
adopted LASSO regression analysis and SVM-RFE analysis
for feature selection. Firstly, we performed the LASSO anal-
ysis to identify 10 key genes (LRRC15, CXCL13, CRTAM,
DLGAP5, CXCL9, LDB3, PNOC, TNFRSF17, SGCA, and
ADH1B) from 44 DEGs (Figure 3(a)). Then, six signature
genes, including SDC1, LRRC15, CXCL13, CRTAM, IGLJ3,
and AIM2, were identified from 44 DEGs by the SVM-RFE
analysis (Figure 3(b)). By combining LASSO regression anal-
yses and SVM-RFE analyses, three hub genes related to RA
were screened, namely, LRRC15, CXCL13, and CRTAM
(Figure 3(c)).

3.4. Validation of Hub Genes. In order to ensure the signifi-
cance and accuracy of the results, two external datasets
(GSE12021 and GSE55235) were used for external validation
to validate three hub genes. The results displayed that
CRTAM, CXCL13, and LRRC15 were all significantly upreg-
ulated in RA tissues compared to normal tissues (p < 0:01)
(Figures 4(a) and 4(b)). In general, the findings confirm
the reliability of the above results. To evaluate the discrimi-
native power of hub genes for the purpose of RA tissue and
normal tissue, we performed ROC analysis on the two exter-
nal datasets. According to the ROC analysis results, three
hub genes had high performance in distinguishing between
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Figure 1: DEGs analysis in normal and rheumatoid arthritis cases. (a) The volcano plots for DEGs. There are 36 upregulated DEGs and 8
downregulated DEGs. (b) The heat map showing profiles of the DEGs.
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RA and normal tissue, suggesting that they could serve as
potential early diagnostic biomarkers. The ROC curve anal-
ysis showed that the AUC values of CRTAM, CXCL13, and
LRRC15 were 0.945, 0.961, and 0.943, respectively, suggest-
ing that the three biological markers had a high accuracy
of predictive value (Figure 4(c)).

3.5. Effect of FCA on Foot Volume and Arthritis Score
Variations in Rats. At day 0, there was no significant differ-
ence in foot volume and arthritis score between the control
group and the model group (p > 0:05) (Supplementary
Figure 1). Compared to the control group, the model
group of right foot volumes and arthritis scores were
significantly increased (p < 0:01) at day 7, which indicated
that building the AA rat model was successful.

3.6. qRT-PCR Validation of Hub Genes. We examined the
relative mRNA expression of CRTAM, CXCL13, and
LRRC15 in rats’ synovial tissue by qRT-PCR (Figure 5).
Compared to the control group, the mRNA expression of

CRTAM, CXCL13, and LRRC15 was remarkably higher in
the model group (p < 0:05).

3.7. Western Blot Validation of Hub Genes. We tested the
protein expression of CRTAM and LRRC15 in synovial tis-
sues of rats by western blot. As shown in Figure 6, the pro-
tein expression of CRTAM and LRRC15 was remarkably
increased in the model group compared to the control group
(p < 0:05).

3.8. Infiltration of Immune Cells. Furthermore, we also used
the CIBERSORTx algorithm to assess the levels of 22
immune cells’ infiltration (Figure 7). The results showed that
plasma cells (p < 0:001), T follicular helper cells (p < 0:001),
M1 macrophages (p < 0:001), B cells memory (p < 0:05),
gamma delta T cells (p < 0:05), and monocytes (p < 0:05)
had significantly higher expression in RA synovial tissues
compared to normal synovial tissues. As shown in
Figure 8, neutrophils and resting NK cells (0.62), follicular
helper T cells, and naive B cells (0.67) displayed significant
positive correlations, respectively. Neutrophils and M2
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Figure 2: The functional enrichment analyses of DEGs. (a) The GO analyses results. (b) The KEGG analysis results. (c) The GSEA analysis
revealing the five remarkable signal pathways in normal group. (d) The GSEA analysis depicting the five significant signal pathways in RA
group.
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macrophages (-0.51), gamma delta T cells, and M2 macro-
phages (-0.5) displayed a significant negative correlation,
respectively. Since these three genes were significantly
involved in immune-related pathways, we further evaluated
their association with immune cells. Results showed that
CRTAM displayed a positive correlation with plasma cells
(r =0.578, p < 0:001), and M1 macrophages (r =0.575, p <
0:001) showed a negative correlation with resting dendritic
cells (r = -0.393, p < 0:01) and activated NK cells (r
= -0.390, p < 0:01) (Figure 9(a)). Besides, CXCL13 showed
a positive correlation with plasma cells (r =0.719, p < 0:001
) and follicular helper T cells (r =0.691, p < 0:001) and a neg-
ative correlation with activated NK cells (r = -0.500, p <
0:001) and resting mast cells (r = -0.491, p < 0:001)
(Figure 9(b)). Furthermore, LRRC15 showed a positive cor-
relation with follicular helper T cells (r =0.499, p < 0:001)
and M1 macrophages (r =0.431, p < 0:01) and a negative
correlation with monocytes (r = -0.433, p < 0:01) and resting
dendritic cells (r = -0.417, p < 0:01) (Figure 9(c)).

4. Discussion

RA is pathologically manifested as chronic inflammatory cell
infiltration and pannus formation in synovial tissues, leading
to the destruction of articular cartilage and bone. Earlier

studies showed that chronic inflammatory cell infiltration
significantly affects the pathological processes of RA [39].
Immune cells are involved in mediating the inflammatory
response in RA, and abnormally active immune cells may
lead to excessive secretion of inflammatory cytokines, even-
tually exacerbating the course of RA [40, 41]. Therefore, the
identification of hub genes and genetic signatures, and ana-
lyzing the characterization of RA immune cell infiltration
are essential to assess the efficacy of various therapeutic
approaches for RA patients. Through the above analysis,
we screened three hub genes, namely, CRTAM, CXCL13,
and LRRC15, and performed further validation by qPCR
and western blot. In addition, the association between hub
genes and immune cell infiltration was further analyzed by
the CIBERSORTx algorithm. Collectively, we identified the
hub genes that are associated with RA by machine learning
and LASSO algorithms and investigated the role of immune
cell infiltration in RA, which could offer a basis for the diag-
nosis and treatment of RA.

In this study, we screened four datasets from the GEO
database associated with RA and normal synovial tissue. With
R software, a total of 44 DEGs were identified between RA and
normal synovial tissue, including 36 upregulated and 8 down-
regulated DEGs, respectively. GO analysis revealed that hub
genes were involved in regulating immune-related signaling
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Figure 3: Identification of hub genes related to RA. (a) The hub genes identified by the LASSO analysis. (b) The hub genes screened using
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pathways, including humoral immune responses, cytokine
activity, and cytokine-mediated signaling pathway. KEGG
analysis revealed that the PPAR signaling pathway, cytokine-
cytokine receptor interaction, and IL−17 signaling pathway
were related to DEGs. GO and KEGG enrichment studies
indicated that immune responses and immune cytokines were
involved in the pathological development of RA, leading to an
inflammatory response in the synovial of RA, which induced
joint pain and swelling. Next, we conducted GSEA analysis
to seek out potential pathways associated with RA. Besides,
three hub genes (CRTAM, CXCL13, and LRRC15) were
selected by LASSO regression analysis and SVM-RFE analysis.
To further validate the relationship between hub genes and
RA, 3 hub genes were analyzed via PCR and western blot.

We found that the mRNA expression levels of CRTAM,
CXCL13, and LRRC15 were highly expressed in the synovial
tissue of RA rats, and the protein expression of CRTAM and
LRRC15 was highly expressed in the synovial tissue of RA rats,
which was consistent with our previous screening results.

The class-I MHC-restricted T cell-associated molecule
(CRTAM) is an immunoglobulin that was initially
detected to be highly expressed in activated CD8+ T cells
and NKT cells [42]. CRTAM might promote IFN-γ secre-
tion, which contributes to an antitumor effect [43]. Early
studies demonstrated that CRTAM-deficient mice could
result in reduced protective immunity against viral infec-
tions in vivo [44]. The discovery of CRTAM+ NK cells
in the bone marrow of patients with acute lymphoblastic
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leukemia may have potential immune response suppressive
properties [45]. Many studies have confirmed that
CRTAM is closely associated with the inflammatory
response. CRTAM was found to enhance the degree of

inflammation in intestinal infections, which suggested that
CRTAM could be involved in the inflammatory immune
response [46]. Furthermore, the crtam−/− mice infected
with salmonella exhibit reduced Th17 responses and
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thereby decreased levels of inflammation, suggesting that
CRTAM may be one of the important contributors to
intestinal inflammation [47].

The C-X-C motif ligand 13 (CXCL13) is a key chemo-
tactic cytokine that promotes the migration and aggregation
of B lymphocytes and is widely involved in various immune
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responses [48]. A study suggested that the occurrence of RA
may be related to CXCL13 overexpression [49]. Clinical
studies confirmed that the serum expression level of
CXCL13 in RA patients was significantly higher than in
healthy controls [50]. Positive expression of CXCL13 was
closely correlated with the clinical severity of RA, suggesting
that it may be a predictive biomarker for RA treatment [51].
Moreover, the synovial fluid levels of CXCL13 were signifi-
cantly higher in RA patients than in healthy individuals
[52]. Furthermore, the expression level of CXCL13 was sig-
nificantly increased in the synovial tissue of CIA mice com-
pared to normal tissues, which was consistent with our
findings [53].

The leucine-rich repeat containing 15 (LRRC15) is a
leucine-rich transmembrane protein, that belongs to the
leucine-rich repeat superfamily. LRRC15 was involved in
cell-cell and cell-extracellular matrix interactions and per-
formed a key function in signal transduction [54]. Recent
studies identified that LRRC15 was an important factor con-

tributing to cartilage damage in osteoarthritis [55]. In addi-
tion, LRRC15 protein was found in the articular cartilage
of OA patients by immunostaining [55]. Previous studies
have also demonstrated that LRRC15 may play a vital role
in reducing bone resorption and promoting bone formation
by acting as a suppressor of NF-κB [56]. Furthermore,
LRRC15 was found to be overexpressed in aggressive cancer
cells, such as breast cancer [57], ovarian cancer [58], and
osteosarcoma [59].

To further explore the correlation between hub genes
and immunity, we also assessed 22 immune cell infiltration
levels in RA and normal samples. We found that plasma
cells, T follicular helper cells, M0 macrophages, M1 macro-
phages, gamma delta T cells, T regulatory cells, NK cells,
monocytes, resting dendritic cells, and resting mast cells
were significantly different between normal and RA synovial
tissues. Through the secretion of inflammatory cytokines,
the inflammatory cells in synovial tissue play a vital role in
the pathogenesis of RA. It has been found that in RA
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Figure 8: Correlation heat map of 22 types of immune cells.
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synovial tissue, a variety of inflammatory cells are recruited
and activated, including innate immune cells (plasma cells,
macrophages, dendritic cells, and NK cells) and adaptive
immune cells (T and B cells), which contribute to inflamma-
tion and damage in RA joints [60]. Previous studies have
revealed that immune cell infiltration was observed in the
synovial tissue of RA patients, including T cells, plasma cells,
dendritic cells, and macrophages, which was consistent with
our results [61]. Plasma cells could produce autoantibodies
upon activation and play a key role in the immune response
to RA [62]. Interestingly, a study reported found that the
number of plasma cells was significantly increased in the
bone marrow of RA mice [63]. T follicular helper cells were
a separate subset of CD4+ T cells and were essential for B-
cell-mediated immunity [64]. A study confirmed the pres-
ence of large numbers of T follicular helper cells in the syno-

vial tissue of RA patients [65]. Macrophages are central to
the pathophysiology of RA. Macrophages are conventionally
classified as pro-inflammatory (M1) and anti-inflammatory
(M2) functional types. They are a major source of pro-
inflammatory cytokines and chemokines, which promote
local tissue destruction and inflammatory responses in RA
by activating large numbers of immune and non-immune
cells and secreting various cytokines [66]. Dendritic cells
play a crucial role in the pathological development of RA
as initiators and modulators of adaptive immune
responses [67].

CRTAM suggested a positive association with plasma
cells, and T gamma delta cells and M1 macrophages under
the activation and negative associations with resting den-
dritic cells. CXCL13 showed positive associations to plasma
cells and T follicular helper cells and showed negative
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associations to resting mast cells and resting dendritic cells.
LRRC15 showed positive associations to T follicular helper
cells and a negative association with resting dendritic cells
and resting mast cell. It has been reported that CXCL13
was secreted by T helper follicular cells, which recruit B cells
to the germinal center (GCs) and participate in the immune
response [68]. In another study, it was reported that
CXCL13 is also produced by the peripheral helper T cells
in the RA joint [69]. LRRC15 belongs to the leucine-rich
repeat superfamily, and numerous studies have shown that
LRRC15 is induced and highly expressed in various tumor
types [58, 70]. Previous studies have demonstrated that
LRRC15 was found to have upregulated expression in RA
osteoblasts [71]. Due to the lack of research on RA-related
hub genes, further exploration of RA-related hub genes
and immune cell interactions is needed based on the above
screening results.

However, there are still a few limitations to our study.
Firstly, the valid sample size of the dataset in the GEO data-
base is too small, which leads to some bias in the bioinfor-
matics analysis. Additional samples need to be collected to
further assess the reliability of our predictive hub genes.
Because of the difficulty of collecting human synovial tissue,
we used synovial tissue from the classical AA rat model for
experimental validation. In the next work, we will try to
gather human synovial tissue samples to further study the
expression of hub genes in healthy subjects and RA patients.
Finally, the clinical value of our findings needs to be vali-
dated in further in vitro experiments and clinical trials.

5. Conclusion

In conclusion, we identified and validated three hub genes
(CRTAM, CXCL13, and LRRC15) in RA synovial tissue.
Besides, the relationship between hub genes and immune
cells was assessed to investigate the molecular mechanism
and biological functions of RA. The findings may provide
novel targets for the diagnosis and treatment of RA.
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