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Orthodontic tooth movement (OTM) is a tissue remodeling process based on orthodontic force loading. Compressed periodontal
tissues have a complicated aseptic inflammatory cascade, which are considered the initial factor of alveolar bone remodeling. Since
skeletal and immune systems shared a wide variety of molecules, osteoimmunology has been generally accepted as an
interdisciplinary field to investigate their interactions. Unsurprisingly, OTM is considered a good mirror of osteoimmunology
since it involves immune reaction and bone remolding. In fact, besides bone remodeling, OTM involves cementum resorption,
soft tissue remodeling, orthodontic pain, and relapse, all correlated with immune cells and/or immunologically active
substance. The aim of this paper is to review the interaction of immune system with orthodontic tooth movement, which helps
gain insights into mechanisms of OTM and search novel method to short treatment period and control complications.

1. Introduction

Orthodontic tooth movement (OTM) is a complicate remod-
eling of biological tissue in dentoalveolar complex. Classic
“pressure-tension” theory proposes that mechanical force is
capable of compressing periodontal ligament (PDL) and
reducing blood flow on the compression side [1]. Cytokine
secretion and oxygen tension decreasing lead to temporary
sterile inflammation [2], followed by a wide variety of
immune cells activation. The activated immune cells (e.g., T
cell) have been found to play a crucial role in orthodontic
treatment [3–5]. The immune–bone interaction has been
confirmed in different systemic diseases [6, 7]. Jiang et al.
reviewed the effect of immune-related cytokines on
orthodontic bone remolding [8], whereas they focused on
regulation of osteoclast/osteoblast. In fact, OTM has been
reported as a more complicated process than pure bone
remodeling. This review places a focus on other aspects in
OTM concerned by orthodontists and patients (e.g., cemen-

tum resorption, soft tissue remodeling, orthodontic pain,
treatment for patients with diabetes, and orthodontic
relapse). The multidimensional illustration of role of
immune in OTM takes on a critical significance to
understand underlying mechanisms and optimize clinical
strategies.

2. Alveolar Bone Remodeling

PDL is a fibrous structure connecting the cementum on the
tooth root surface to the alveolar bone and fix the tooth in
the alveolar socket [9], which makes tooth movement possi-
ble. PDL is compressible to attenuate the occlusal stresses.
When tooth subjects lateral force, it moves slightly along
the direction of force, and the actions of PDL are different
on the compression side and the tension side. On the com-
pression side, the vessels are squeezed and local ischaemia
ensues [10]. Moreover, oxygen tension changing incites an
increased anaerobic respiration in periodontal cells (e.g.,
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fibroblasts). Chemical microenvironment alteration contrib-
utes to the production of mediators (e.g., prostaglandins),
while adjusting the balance between osteoclast and osteo-
blast to enhance bone remodeling. Osteoclast differentiation
is facilitated, thus resulting in alveolar bone resorption on
the compression side. In contrast, the PDL fiber is stretched
on the tension side, meanwhile, osteoblast activity increases
and bone trabecula forms along direction of force applied.
Besides, cementum covered tooth root is less susceptible to
stress, thus revealing that tooth root will not remodel like
alveolar bone, which is the biological basement for ortho-
dontic tooth movement. Ultimately, intact tooth moves in
alveolar bone to relieve the compression of PDL.

2.1. Osteoclasts. Osteoclast is one of the critical bone cell
populations. Figure 1 presents the role and interaction of
osteoclasts with immune system in OTM. Osteoclasts
and osteal macrophages competitively differentiate from
myeloid progenitor. The myeloid progenitor can differentiate
into osteoclasts in the presence of macrophage colony-
stimulating factor (M-CSF) and receptor activator of NF-κB
ligand (RANKL), whereas it turns into mono macrophage
under the stimulus of M-CSF alone [11]. Moreover, it has
been confirmed that macrophage can affect osteoclast forma-
tion and activation [12]. First, activation of macrophage leads
to low pH and local bone demineralization to construct
attachment site for osteoclast [13]. Second, macrophage is
highly heterogeneous, which refers to different functional
phenotypes it exhibits in response to local changes in the
microenvironment, such as alteration of cytokines, pH-value,
and metabolite even oxygen concentrations [14]. For the sake
of understanding and discussion, it is generally categorized
into M1, proinflammatory, classically activated macrophages
associated to initial inflammation, and M2 anti-inflamma-
tory, alternatively activated macrophages which limits
inflammation and tissue injury. It is noticeable that macro-
phage polarization states are much more complex, and M2
macrophages can be further subdivided in M2a, M2b, M2c,
andM2d. However, roles of these subtypes in osteoimmunol-
ogy remain unclear, so below discussion is still based on
classic categorization. M1 macrophages secrete TNF-α and
IL-1β to induce osteoclastogenesis, while IL-4 and IL-10
released by M2 macrophages suppress osteoclastogenesis by
inhibiting NFATc1 [12], thus revealing that myeloid lineage
cells adjust its own differentiation direction by changing
external inflammatory environments. On the other hand,
the polarization states of macrophage are consecutively and
interconvertible, so the influences of macrophages on osteo-
clast are not fixed.

The interaction between innate immune and osteoclast
takes on a critical significance during OTM. To facilitate
osteoclast formation, M1/M2 macrophage ratio is increased
to exert a more significant proinflammatory effect [15, 16].
The enhancement can be achieved by TH1 cytokines
[17, 18] and NLRP3 inflammasome from periodontal liga-
ment cell (PDLC) [19]. Moreover, autophagy of periodontal
ligament stem cells (PDLSC), a kind of stem cell with multi-
lineage differentiation potential in periodontal ligament, can
promote M1 polarization via inhibiting the AKT signaling

pathway as well [20]. Besides, orthodontic mechanical force
affects innate immune cell by directly acting on macro-
phages. The macrophages subjected to compressive force
express cytokines rapidly after the application of force (e.g.,
MMP-8, TNF-α, IL-6, PGE-2, and VEGF) [21]. The above
cytokines facilitate immune cell recruitment, vessel growth
to aggregate inflammation, thus accelerating osteoclast dif-
ferentiation and tooth movement [22–25]. Notably, oxygen
plays a certain role in this regulation of macrophages since
TNF is inhibited partly by increased oxygen [26]. Thus,
hypoxia-associated protein (e.g., hypoxia-inducible factor-1
(HIF-1)) can be the target for modulating macrophages to
optimize orthodontic treatment. Complement is another
essential part of innate immunity, which has been considered
to affect bone homeostasis [27]. Ignatius et al. suggested that
osteoblasts and osteoclasts are capable of activating comple-
ment by cleaving complement component 5 (C5) to its active
form C5a. Furthermore, C3a and C5a induce osteoclast
formation even in the absence of RANKL and M-CSF [28].
The above findings reveal that complement is capable of
modulating osteoclast formation independently.

RANKL/RANK/OPG system has been confirmed as
the critical pathway for osteoblast to regulate osteoclast.
RANKL, one of the TNF family members, binds to RANK,
a receptor expresses on osteoclastic progenitor cells, to
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Figure 1: Mechanisms of action in the interaction of osteoclasts
with the immune system in orthodontic tooth movement.
Compression force squeezed capillaries to reduce oxygen tension,
which leads prostaglandins secretion by fibroblast and osteoclastic
activation. Myeloid progenitor differentiates to osteoclast in the
presence of M-CSF and RANKL, but to macrophage under
stimulus of only M-CSF. Macrophages can not only demineralize
bone to construct attachment site for osteoclast but also be
directly activated by compression force and alter immune
microenvironment to regulate osteoclast. T cells are capable of
enhancing macrophage M1 polarization and interacting with
microorganisms, which promote proinflammatory cytokine
secretion and osteoclast activity. Meanwhile, T cells and B cells
both express RANKL to facilitate osteoclast differentiation. In
addition, T cells express CD40L to bind to CD40 to induce B cells
to release OPG which competitively combined to RANKL to inhibit
osteoclasts.
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mature osteoclast [29]. By binding to RANKL and block-
ing it, OPG is a decoy receptor that plays a certain role
in the prevention of extra bone resorption as a bone pro-
tective factor [30]. Skeletal system achieves bone homeo-
stasis by maintaining dynamic balance between bone
resorption and deposition via RANKL/RANK/OPG path-
way. In orthodontic treatment, it has been found that
orthodontic force increases the concentration of RANKL
in gingival crevicular fluid, thus activating osteoclasts and
increasing the amount of experimental tooth movement
in rats [31, 32]. In contrast, the overexpression of OPG
in rat periodontium inhibits bone remodeling and OTM
[33]. However, RANKL/RANK/OPG system is easy to
intervene because they are expressed not only in osteo-
blast. Entire B cell lineage including B cell precursors,
immature B cells, and plasma cells account for about
64% of total OPG production. Meanwhile, B cell also
expresses RANKL that leads to bone loss. Both increase
as aging but OPG cannot fully compensate for endogenous
RANKL for the elders [34, 35]. When RANKL gene is
deleted from B cells in mice, bone loss arising from ovari-
ectomy is partially reversed [36]. The above research has
indicated that B cell can be a potential target to reverse
bone resorption resulted from age-associated OPG-
RANKL imbalance. Moreover, systemic immune system
diseases affect bone metabolism by modulating B cells.
The flow cytometry results have suggested that HIV-
infected individuals received B cell dysmaturity, thus con-
tributing to decreased bone mass and OPG, as well as
osteoporosis [37]. Meanwhile, B cell is considered a source
of RANKL to facilitate osteoclastogenesis in periodontitis.
The above evidence suggests that B cells can activate oste-
oclasts by regulating RANKL and OPG levels, and they
influence periodontium. However, the direct evidence sup-
porting that B cells directly modulate bone remodeling
induced by orthodontic force is scanty. The similar situa-
tion pertains to the T cell, another type of important
immune cell capable of regulating bone homeostasis. T
cells induce B cells by expressing CD40 ligand which
binds to CD40 on the B cell surface to release OPG
[38]. Li et al. [38] observed that T-cell-deficient nude mice
express lower level of B cell-derived OPG. Interestingly,
activated T cells can initiate bone destruction by releasing
TNF-α in inflammation and under pathological conditions
(e.g., estrogen deficiency) [39]. It is also capable of secret-
ing IFN-γ which polarize macrophages into M1 [40, 41]
and releasing RANKL which induces osteoclasts differenti-
ation by binding to RANK [42, 43]. Furthermore, inhibi-
tion of T cell-derived RANKL by microRNA-21 leads to
OTM retard in mice [4], thus revealing that the T cell
affects osteoclast activity in orthodontic treatment, which
can explain why T cell is required for OTM [3].

Besides directly regulating cells, immune system also
interacts with foreign microorganisms to affect bone homeo-
stasis. Recent reports showed that probiotics have impacts
on immune system and bone [44–47]. It is widely accepted
that probiotics can maintain bones by reducing inflamma-
tory factors. In particular, Sjögren et al. found that CD4+ T
cells along with TNF-α and IL-6 they secreted decline in

bone marrow, serum, and spleen in Germ-free mice, thus
indicating the decrease of osteoclastogenesis and the
increase of bone mass in absence of intestinal flora [48].
Despite oral cavity is a part of digestive system harboring
the second most abundant microbiota after the gastrointesti-
nal tract [49], the interaction between probiotics and oral
flora is still ambiguous compared to intestinal flora. On the
other hand, some study have reported that oral supplemen-
tation of Bacillus subtilis reduces alveolar bone loss in rats
with periodontitis [50] and decreases alveolar remodeling
in OTM [51], even though underlying mechanism remains
unknown. Anyway, more investigations are necessary, and
it is expected that probiotic therapy can be clinically used
in periodontal or orthodontic treatment in the future.

Hormone has been widely known as an essential regula-
tor of immune system, some of which significantly affect
osteoclasts. For instance, adrenal glucocorticoid (GC) is a
common inhibitor of immune system since it can suppress
cytokine secretion and induce immune cells death [52]. In
vivo experiment results have suggested that GC restrains
osteoclast activity via GC receptor [53]. Prostaglandin E2
(PGE2) is another widely known homeostatic factor domi-
nating in late/chronic stages of immunity [54]. PGE2 can
be synthesized by osteoblastic cell lineage and stimulate
osteoclast formation and differentiation [55, 56]. However,
some reports about hormones effect have been contradic-
tory. Kaji et al. suggested that dexamethasone enhances
osteoclast-like cell formation [57], and Take et al. observed
inhibition of human osteoclasts by PGE2in vitro [58]. The
above findings were achieved probably because hormone
target cells are so wide range that some of them modulate
osteoclast via other pathways. Another important bone
homeostasis-associated hormone is estrogen. Postmeno-
pausal women with deficient serum levels of estrogen face
a higher risk of osteoporosis [59]. Moreover, ovariectomy-
induced mice are considered the most common osteoporosis
animal model. Since estrogen significantly prevents osteo-
clast formation and differentiation while increasing apopto-
sis by binding to receptors [60], recent research has
suggested that mitochondrial deacetylase sirtuin-3 (Sirt3)
plays a certain role in the estrogen deficient-induced bone
resorption [61]. In addition, a considerable number of types
of immune cells express estrogen receptors (e.g., TH1, TH2,
mast cell, basophilic cell, B cell, dendritic cell, macrophage,
and native CD4+ T cell) [62]. Uehara et al. suggested that
immune cells play a role of mediator to bridge estrogen
and osteocytes and reviewed possible pathways [63].
Parathyroid hormone (PTH) is an 84-amino-acid peptide
hormone with great application potential in bone healing.
PTH increases the RANKL/OPG ratio to exert osteoclast
indirectly [64]. In the bone, PTH increases TNF production
[65] and activates T cells expressing CD40L directly [66],
positively correlated with osteoclast activity. However, it also
has proosteogenic activity since intermittent treatment with
PTH analogs is approved as bone anabolic osteoporosis
treatment strategy. Anyway, the above evidence emerges that
there is interaction of immune cells and osteoclasts.

The major origin of osteoclasts responsible for bone
resorption during orthodontic treatment has been found as
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preosteoclasts recruited from bone marrow [67, 68]. Inter-
estingly, recent studies have reported that some mature
immune cells of monocyte lineage can also differentiate into
osteoclast under specific stimulation. Dendritic cells (DCs),
the most potent antigen-presenting cells, have been found
to be transdifferentiated into active osteoclast in the presence
of RANKL and M-CSF [69]. Even mpeg1-positive macro-
phages can be recruited by Cxcl9l from osteoblast progeni-
tors to bone matrix and differentiate into osteoclasts [70].
Moreover, recruitment of osteoclast is correlated with
numerous immune cells and cytokines. T cell secretes
IFN-γ, RANKL, and IL-17A to induce inflammation-
promoting osteoclast commitment and bone loss [34]. Fur-
thermore, Wald et al. confirmed that osteoclasts, monocytes,
and neutrophils are recruited by γδT cells in mice during
OTM [71] (Figure 2).

2.2. Osteoblast. Osteoblasts refer to bone-building cells
derived from the mesenchymal/mesodermal lineage, which
have been identified in tension side of tooth in OTM [72].
During OTM, Cbfa1 and Runx2 have been found as the
earliest two transcriptional factors initiating bone formation
[29]. In addition, other proteins have been considered as
osteogenesis markers, including alpha-smooth muscle actin
(α-SMA), osteopontin (OPN), osteocalcin (OC), bone mor-
phogenetic proteins (BMPs), transforming growth factor-
beta (TGF-β), Indian hedgehog, and ostrix [29, 73]. Since
the term “osteoimmune” was coined firstly in a publication
which described regulation of osteoclastogenesis by T cells
[74], the interaction between osteoblast and immune system
gradually emerges. The osteoblast-osteoclast coupling is
widely accepted, and RANKL/RANK/OPG system referred
in the last sections is the most important coupling pathway
between them. Moreover, osteoclasts can enhance osteoblast
differentiation by expressing membrane-bound ephrinB2
that binds the EphB4 receptor on osteoblast precursors
[75], but osteoblast activation precedes commitment of oste-
oclasts [73]. As osteoclasts resorb bone matrix, factors from
the matrix are released to regulate osteoblast activity, which
consist of TGF-β and insulin-like growth factors (IGFs) [76].
It was reported that some coupling mechanisms between
osteoblasts and osteoclasts are involved in immunoregula-
tion. For instance, osteoblast lineage releases M-CSF [77],
vascular endothelial growth (VEGF) [78], and nitric oxide
[79] necessary for programming of osteoclast formation,
which all can interfere immune microenvironment.

In addition, osteoblast directly initiates inflammation
under certain conditions. IL-1β, C3a, and C5a promote the
release of IL-6 and IL-8 in osteoblast [28]. LPS induces
osteoblasts to express proinflammatory cytokines through
mitogen-activated protein kinase (MAPK) and nuclear fac-
tor-κB (NF-κB) signaling pathway [80]. Besides, osteoblasts
are the responsive cells for proinflammatory cytokines
(e.g., IL-1, IL-11, oncostatin-M, leukemia inhibitory factor,
and TNF-α). However, numerous studies have suggested
that inflammation has a negative effect on bone forming.
For instance, IL-1β inhibits human osteoblast migration
and differentiation [81]. TNF-α downregulates Runx2
expression and induces apoptosis in osteoblasts [76]. The

above findings have revealed that osteoblast contributes to
local inflammation, thus inhibiting osteogenesis from the
formation of a self-negative feedback regulatory mechanism.
However, effect of immune response is not always negative
for osteogenesis. It is reported that osteoclast-derived C3a
induces osteoblast differentiation [82], although Ignatius
et al. had negative results in another similar in vitro research
employing C3a and C5a [28]. Thus, further investigation is
needed.

B cells also interact with osteoblast. B cell is a key
regulator of fracture healing and inhibits excessive bone
regeneration by producing multiple osteoblast inhibitors
[83]. Osteolineage cells are considered to play a role in the
establishment of the niche where B lymphopoiesis occurs,
and abnormal osteoblastic function may result in the defect
of B lymphopoiesis [84]. Some evidence has suggested that
calvarial osteoblasts can support B-cell commitment and
differentiation from hematopoietic stem cells (HSCs) [85].
It is noticeable that B cell infiltration is observed in alveolar
bone loss induced by periodontitis, which is correlated with
activation of RANKL pathway as well as low levels of
memory B cells [86, 87]. However, the effect of interaction
between B cells and osteoblasts on tooth movement is still
illegible. In-depth research should be conducted.

Like osteoclast, osteoblast is also the target of immune-
associated hormones. Glucocorticoids inhibit osteoblasto-
genesis and promote apoptosis of osteoblasts, thus causing
osteoporosis during its long-term use [88]. Parathyroid
hormone acts directly on osteoblast and stimulates its differ-
entiation and formation via STAT3/β-catenin during OTM
[89–91]. Li et al. also observed upregulated osteogenic pro-
teins OC, ALP, and IGF-1 in the gingival cervical fluid of
mice after intermittent parathyroid hormone treatment
[92]. There is substantial evidence to support the effect of
estrogen deficient on bone mass and bone microarchitecture
[93–95]. This is because estrogen deficient destroys directly
bone forming induced by osteoblast, though this effect is
milder than activation of osteoclast. Another possible reason

Mpeg1-positive
macrophages 

Dendritic cells

Osteoclast

Differentiate

Osteoclast

Myeloid
progenitor

γб T cell

Figure 2: Sources of osteoclasts in alveolar bone. Osteoclast can be
derived from myeloid progenitor, mpeg1-positive macrophages,
and dendritic cells. Meanwhile, it can be recruited by γδT cell as
well.
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can be increased inflammatory cytokines levels in the post-
menopausal patients (e.g., TNFα, IL-1β, and IL-6), which
have impact on bone homeostasis [93]. In brief, the interac-
tion between hormone and osteocyte should be considered
during orthodontic treatment of patients with special hor-
monal status.

3. External Root Resorption

Alveolar bone remodels under compression while tooth root
is protected by cementum from the force [96]. Discrepancy
in their response is considered the biological basis of ortho-
dontic tooth movement. Nevertheless, destruction of root,
termed the external root resorption (ERR), can still occur
on mineralized cementum or dentine due to the presence
of osteoclast-like multi, or occasionally mononucleated cells,
called odontoclasts [97]. External root resorption occurring
during orthodontic treatment has been confirmed as an
iatrogenic disorder due to sterile inflammation [98, 99]. His-
tological root resorption is detected in over 90% orthodonti-
cally treated teeth, and the incidence of root resorption
below 2 mm ranges from 48% to 66% [100, 101]. This non-
infective, slight resorption is known as external surface
resorption (ESR) which can only be confirmed with radio-
graphs. It stops once orthodontic pressure is removed. Teeth
subjected ESR suggest blunted root apices and/or the shorter
roots. Moreover, due to the repairment of cementum, this
resorption is also considered self-limiting and localized
[97, 102]. However, 5% orthodontic patients’ ERR can
increase to more than 5mm [103], which is the reaction
to excessive orthodontic mechanical stimulus. Besides, the
detailed mechanism remains unclear.

Osteoclasts and odontoclasts responsible for root resorp-
tion are significantly similar to each other. There are some
parallels in their response to immune regulation. He et al.
[16] suggested the induction of ERR by proinflammatory
macrophage phenotype. Increased M1/M2 ratio upregulates
the expressions of TNF-α, IFN-γ, and nitric oxide, while
anti-inflammatory cytokines, IL-10, and arginase I are inhib-
ited in OTM. Enhanced inflammation leads to assemblage of
odontoclasts/osteoblast and external root resorption in rats,
which reveals that some immune cells that modulate macro-
phage polarization (e.g., helper T cells [104]) can have an
effect on root resorption. NLRP3 inflammasome also posi-
tively regulates M1 macrophage to exaggerate root resorp-
tion through caspase-1/IL-1β signaling [19]. Furthermore,
the biological reaction in OTM can involve systemic cellular
recruitment since spleen reservoir monocytes are signifi-
cantly reduced [105]. The regional inflammation and root
resorption are attenuated by a systemic level of TNF-α
inhibitor etanercept or IL-4 [16]. The above evidence sug-
gests the correlation between regional complication of
orthodontic and systemic immune system.

However, in contrast to conventional knowledge that
inflammation always exacerbates ERR, the risk of root
resorption is confirmed to be negatively correlated with
classical proinflammatory cytokine IL-1β which stimulates
osteoclast recruitment and alveolar resorption. P2X puriner-
gic receptor 7 is a ligand-gated ion channel which binds to

ATP and induce maturation and externalization of down-
stream IL-1β [106–108]. P2X7 knockout mice were found
with more root resorption than wild-type under orthodontic
force [109]. Al-Qawasmi et al. knocked out IL-1β in C57BL/
6J mice and observed root resorption increased [110].
Besides, polymorphism at IL-1β genes (+3954) is correlated
with production alteration of IL-1β, and people with lower
IL-1β production genotype have higher risks to experience
ERR [111]. The above studies support that IL-1β is nega-
tively correlated with ERR and explains further why ERR
shows clear genetic predisposition. Unfortunately, these
reports failed to illuminate why deficient inflammation
results in more severe ERR. Prevail theory suggests that defi-
ciency of IL-1β inhibits alveolar remodeling, thus resulting
in prolonged stress concentrated on the root of the tooth
and the destruction of cementum [112, 113]. In other words,
the critical initiator of ERR is mechanical stimulation,
instead of inflammation. This theory is supported by some
reports [114, 115] which observed decreased root resorption
rate in animal model of bone loss. It is considered that lower
bone density reduces stress in the PDL interface, thus
decreasing ERR risk. However, there is controversy about
linkage between bone density and root ERR. Though cone-
beam CT imaging analysis suggests that lingual bone density
is positively correlated with ERR, some clinical trials with a
higher sample number achieved negative results [116, 117].
Sirisoontorn [118] even reported that osteoporosis aggra-
vated ERR in mice. Thus, it is necessary to conduct addi-
tional studies to further investigate involved mechanisms
and explain the above contradictory conclusions.

Apart from IL-1β genes, other genetic variants that have
been confirmed to be correlated with ERR predisposition
include IRAK1, IL-17, IL-6, human vitamin D receptor
(hVDR), and OPN genes. Many of them are also correlated
with immune response [119–124]. In addition, ERR is also
correlated with epigenetic machinery of some immune
response-related genes [125]. Existing research has demon-
strated that FOXP3 promoters in teeth experiencing ERR
have higher levels of DNA methylation, which inhibits tran-
scription factors from binding to their DNA binding sites,
thus downregulate the expression of FOXP3. The suppres-
sion of FOXP3 genes has an impact on development of
?A3B2 show $132#?>regulatory T cells (Tregs) [126, 127].
It is responsible for maintaining immune homeostasis by
antagonizing effector T cells [128]. As more and more
studies investigated the association between gene polymor-
phisms and the risk of EARR during orthodontic treatment,
early diagnosis of risk patients is expected in the future.

Besides, some patients with special hormone status can
face higher ESRR risk. Cementoblastic activities and the
amount of new cementum formation are lower in ovariecto-
mized rats, thus affecting the activation of extracellular
signal-regulated kinase-1/2 pathway. Given the similarity
between cementoblasts and osteoblasts, it is unsurprising
that some scholars manage to reduce EARR by locally inject-
ing a variety of bone forming associated hormones in
animals (e.g., estrogen, thyroxine, prostaglandin E2, and
parathyroid hormone) [129–132]. However, the underlying
mechanisms and the effects of local application of hormones
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on immune status remain unclear, and it is necessary to
conduct further investigations.

4. Periodontal Response to Orthodontic
Force Application

Existing research has suggested that periodontal soft tissue
changes morphologically and functionally in orthodontic
treatment [133]. Abnormalities of soft tissue which can be
observed in OTM include gingivitis, gingival enlargement,
gingival recession, and gingival invagination [134]. Adoles-
cents tend to have higher chances of gingivitis and gingival
enlargement compared with adults due to their unstable
gonadal hormone level. Gingivitis, the most common soft
tissue problem, has been considered to arise from the place-
ment of full-mouth appliance which makes daily oral
hygiene care routine more challenging. In fact, the correla-
tion of orthodontic treatment and soft tissue is significantly
more sophisticated. The increased retention of particles
and dental plaque leads to significant changes of oral flora
and salivary pH [135], thus contributing to periodontal dis-
eases and carious lesions development [136, 137]. Naranjo
et al.’s research reported increase in periodontal pathogen
colonization, scores for bleeding on probing, plaque index,
and gingival index after orthodontic bracket placement
[138]. Moreover, elevations of the red complex species, T.
forsythia, P. gingivalis, and T. denticola in the subgingival
biofilm [139], saliva, and the surfaces of brackets [140] have
been detected at the early stage or in the middle-term of
orthodontic treatment. Though the mean total counts of
red complex fall back to baseline level or even lower 12
months after appliance placement [139]. Moreover, subgin-
gival microflora disorder will result in host immune reaction
changes. The gingival crevicular fluid (GCF) is the sample
employed most frequently since it is easy to collect. GCF
from patients with fixed appliance has been reported with
a lower anti-inflammatory cytokine (IL-4) level and higher
levels of proinflammatory cytokines (TNF-α, IL-1β, IL-8,
and IL-6). IL-6 takes on a great significance in the prediction
of GCF flow [137], and TNF-α, IL-1β, and IL-8 have positive
correlation with bleeding on probing and probing depth
[137, 141]. However, IL-4 is correlated with nonbleeding
sites and no gingival overgrowth [141]. Besides, orthodontic
appliance design is capable of modulating dynamic alter-
ation in the oral microbial equilibrium. Removable appli-
ance lowers plaque index and periodontal complications
compared with conventional fixed appliance [142, 143]. Ber-
gamo et al. [140] have demonstrated that the structure and
material of bracket applied in orthodontic could also affect
the level and adherence of bacterial species on it, although
exact mechanisms remain ambiguous. Nevertheless, given
the correlation of oral microorganisms with periodontal
health status, cardiac problems, and immunosuppression
[144–147], additional investigations are required to establish
effective protocols that prevent periodontal disease, even
systemic diseases, by improving orthodontic appliances.

Gingival enlargement is another complication that has
been commonly identified in juvenile orthodontics patients
with unstable gonadal hormone concentrations [148]. In

general, it occurs 1-2 months after treatment [149]. In con-
trast to inflammatory enlargement showing deep red, soft,
and easily bleeding lesions, orthodontic treatment-induced
gingival overgrowth is thick, pink, and rarely bleeding
[150]. Şurlin et al. [151] found overgrowth upon hyperplasia
of the basal lamina and hypertrophy of the intermediate
layer, accompanied by less foamy acidophilic cytoplasm cells
with the absence of chronic inflammatory infiltrate in the
chorion. Mechanical irritation by orthodontic bands, chem-
ical irritation by cements, food impaction, and less efficient
oral hygiene maintenance has been confirmed as all etiologic
factors for gingival enlargement [152]. However, some
patients with good oral hygiene also undergo gingival over-
growth. In the above patients’ gingival sulcus, an increase
in matrix metalloproteinases- (MMP-) 8 level is persisted
[153], a collagenase involved in systemic inflammation,
orthodontic pain, periodontitis, and persistent virus infec-
tion [153–157]. Nevertheless, there have been rare studies
revealing the reasons that why orthodontic gingival enlarge-
ment patients are more sensitive to external stimulus com-
pared with normal patients. Furthermore, as reported by
some existing studies, nickel released from fixed appliance
significantly affects gingival hyperplasia (Figure 3). Exposure
of skin to nickel can cause allergic contact dermatitis (ACD)
in susceptible subjects. In this delayed-type hypersensitivity
(DTH) reaction, nickel penetrates the skin tissue and stimu-
lates keratinocytes to secrete IL-1β and TNF-α which upreg-
ulate the major histocompatibility complex II (MHC II)
molecule on antigen presenting cells (APCs) in skin, includ-
ing Langerhans cells (LCs) and DCs. Besides, the above cyto-
kines also regulate E-cadherin and chemokine secretion
from APCs. Subsequently, nickel binds to MHC II molecule
and is transferred with APCs to draining lymph node where
naïve T cells accept happens [158–161]. Nickel would mostly
result in immune activation of the Th1/Th17 and Th22
components [162]. In the nickel ion-induced gingival
enlargement, keratinocytes are the most important targeted
cells. Constant low-dose nickel induces autocrine activation
of the keratinocytes to trigger proliferation [163], while
increasing intercellular adhesion molecule 1 (ICAM1)
expression on surface to facilitate lymphocyte adhesion
[164, 165]. Activated keratinocytes release IL-1α to stimulate
fibroblasts to secrete keratinocyte growth factors (KGF)
binding to KGF receptors on keratinocytes to induce prolif-
eration, and the receptor is also upregulated by nickel
exposure [166]. Marchese et al. reported that when primary
keratinocytes were cocultured with fibroblasts, their prolifer-
ative effects would be significantly enhanced [163]. As
reported by Gursoy et al.’s research, no significant difference
was found in nickel accumulation between samples with
or without gingival overgrowth [150]. Thus, etiology of
orthodontic-induced gingival enlargement can arise from
MHC gene polymorphisms instead of nickel accumulation
and nickel content of the fixed appliance. However, some
researchers proposed a hypothesis that nickel can accumu-
late in epithelium rather than connective tissue to create a
local high-dose environment. Yet, the above accumulation
of nickel in epithelium has been only identified in three-
dimensional in vitro model [167] and lacks support of
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mechanistic studies. Another interesting theory is that nickel
exposed via oral route can induce tolerance in nickel allergy
as immune reaction of human gingival fibroblasts (HGF) is
inconsistent with dermal fibroblasts in vitro [120]. In com-
parison with dermal fibroblasts, HGF suffering nickel expo-
sure expresses lower levels of HIF-1α, vascular endothelial
growth factor (VEGF), and chemotactic cytokines ligand 20
(CCL20). Besides, HGF activated by nickel via TLR4
expresses IL-10, instead of initiating an acute proinflamma-
tory response as in dermal fibroblasts [168]. Another path-
way of forming immune tolerance is dependent on B cell
apoptosis [169]. Nickel ions cause DNA strand breaks to
induce splenic B cell apoptosis, thus activating DNA-
damage sensor and the transcription factor p53 [170]. The
p53 activation upregulates Fas expression while it downregu-
lates expression of Bcl-xL to promote the apoptosis of B cells
in spleen [169]. Furthermore, B cells interact in a CD1d-
dependent manner with iNKT cells which express IL-10
and induce B cell apoptosis. In spleen, the above apoptotic
B cells are critical to nickel tolerance. Their apoptotic bodies
are captured by APCs that cross-present their peptides on
MHC-II and MHC-I molecules. As a result, it induces nickel

specific CD4+ CD25+ regulatory T cells which is vital
immune cells in terms of systemic tolerance [169, 171–174].

Furthermore, Invisalign aligner is a widely removable
plastic orthodontic appliance. Since its constitution does
not contain metal, Invisalign system is considered more
biocompatible than traditional appliance. However, recent
research has suggested that Invisalign aligners change cells
behavior and regulate proinflammatory protein expression.
This conclusion is consistent with the finding of Premaraj
et al. [175]. Invisalign plastic eluent significantly decreases
oral epithelial cell viability and barrier function. Interest-
ingly, it also suggested that saliva can protect keratinocyte
from eluate. However, the predominate cytotoxic ingredient
of Invisalign remains ambiguous. Isocyanate, a component
of Invisalign plastic, results in mucous membrane irritation,
asthmatic, hypersensitivity reactions, and other health
issues. When isocyanate contacts with oral tissues, it rapidly
forms immunogenic hapten by binding to protein, thus lead-
ing to sensitization. It also leads to oral epithelial barrier dis-
ruption which magnifies the allergic reactions [176, 177].
Isocyanate induces an inflammatory reaction and nonspe-
cific airway hyperresponsiveness, involving type 1 and type
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Figure 3: The different effect of nickel ions on oral mucosa/gingiva and skin. (a) Keratinocyte. (b) Fibroblast. (c) B cell. (d) Treg. (e) T cell. (f
) APC. (g) KGF receptor. (h) ICAM-1. (i) TLR4. (j) MHC II. In oral mucosa/gingiva, intercellular adhesion molecule 1 (ICAM1) on
keratinocyte is elevated by nickel, which facilitates lymphocyte adhesion and chronic inflammation. Nickel ions also increase
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inflammatory cytokines IL-10 via TLR4, which dampens immune response. Another pathway of forming immune tolerance is dependent
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Those APCs present nickel by MHC II molecule to naïve T cells in lymph node to induce allergic contact dermatitis. Another two
pathways of dermatitis include that nickel stimulates fibroblast to express HIF-1α, VEGF, and CCL20, and that nickel activates
elTh1/Th17 and Th22 cells.
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2 immune responses [178]. It is observed that isocyanate-
exposed animals have greater amounts of airway goblet cells,
neutrophils, BAL eosinophils, CD4+ T-cells, and ILCs, with
a predominant type 2 response [179, 180]. Thus, workplace
exposure of isocyanate is associated with occupational
asthma [181]. Besides, 3D resin must be used during the
manufacturing process of aligner. The problem is that this
3D resin made of polymethyl methacrylate (PMMA) leaches
out residual unpolymerized monomers with toxic effect
[182]. Bisphenol A (BPA) is one of the monomers, which
is widely known for its cytotoxicity and disruptive effect on
endocrine [183]. It can also be detected in orthodontic adhe-
sive [184]. However, it is controversial whether the amount
of BPA in the saliva of orthodontic patients is sufficient to
affect oral epithelial cells [184–186] since Invisalign plastic
does not have the necessary ingredients to release bisphenol.
Eliades et al. prepared eluent by immersing aligner for 2
months, and no estrogenic effects were detected [187]. In
addition, some supplements may affect cells validity. Rogers
et al. [188] reported light stabilizer Tinuvin 292 from dental
resin for 3D printing released ovo-toxic leachates in vitro. In
brief, it is suggested that although some orthodontic bioma-
terials may have adverse biological effects in vitro, there has
not been any clinical trial offering solid evidence for cyto-
toxic of Invisalign aligner in patients’ oral environment.

5. Orthodontic Pain

Orthodontic pain is initiated by sterile inflammation follow-
ing orthodontic force, involving vascular changes, cytokines
release, and immune cells recruitment [189]. The pain
arising from OTM lasts two to three days after appliance
placement and tends to decrease by the fifth or sixth day
[190]. The duration is dependent on inflammation develop-
ment and endogenous analgesic mechanisms. What is more,
innate immune system can play a part in modulating ortho-
dontic pain as neuroimmune interactions in pain have been
confirmed by a plenty of studies [30, 191–193]. Mast cells,
neutrophils, macrophages, and T cells are capable of secret-
ing mediators binding to receptors on peripheral nerve
terminals to reduce threshold for nociceptor neurons to fire
action potentials, i.e., sensitization [191]. In contrast, noci-
ceptors release neuropeptides and neurotransmitters to
modulate immune function by influencing immune cells.
To be specific, histamine from mast cells stimulates periph-
eral terminals of nerves in a paracrine manner. Nociceptor
neurons express several histamine receptors (including
H1R, H2R, H3R, and H4R) correlated with pain sensitiza-
tion [194]. Upon releasing, tryptase stored in secretory
granules of mast cells can interact with protease activated
receptor 2 (PAR-2) on nerve endings [195, 196]. The above
process induces activation of the transient receptor potential
cation channel subfamily V member 1 (TRPV1) channels
to upregulate calcitonin gene related peptide (CGRP) and
substance P (SP) from nerve terminals [197], thus initiat-
ing nociceptive transmission. Other cytokines involved in
mater cell-nociceptor interaction consist of IL-5, 5-
hydroxytryptamine (5-HT) and nerve growth factor (NGF)
[198]. Activated nerve endings release neuropeptides to stim-

ulate a vicious cycle of mast cells further amplifying vascular
leakage [194]. Neutrophils and macrophages secrete leukotri-
ene B4 (LTB4), TNF-β, IL-6, IL-1β, and prostaglandin to
activate their receptors and downstream ion channels [191],
so as to sensitize nociceptor neurons. Neuroimmune interac-
tion is not limited to peripheral nerve ending. In the spinal
cord dorsal horn, T cells and microglia, resident innate
immune cell in the spinal cord and the brain, also interact
with spinal cord to act on central neuronal sensitization, thus
resulting in pain chronicity [199–201].

In OTM, compressed vessels contribute to local ischae-
mia, thus resulting in anaerobic respiration and local acido-
sis. The accumulated H+ binds to acid-sensing ion channel 3
(ASIC3) on periodontal nerve terminal to induce orthodon-
tic pain [202, 203]. Since orthodontic pain sensation is trans-
ferred along axon to trigeminal ganglia, action potentials
stimulate periodontal neuron endings for the release of
CGRP and SP [189, 204–206]. The above neurogenic medi-
ators upregulate prostaglandins that can modify orthodontic
pain [207]. Since orthodontic pain is significantly common
in treatment, pain management becomes a major concern
for patients and clinicians. Application of NSAID inhibits
the production of prostaglandin by reducing the activity of
COX enzymes. As a result, orthodontic pain can be allevi-
ated [208]. Opioids are capable of suppressing orthodontic
pain by binding to midbrain periaqueductal gray (PAG), so
it has been considered a vital site in ascending pain trans-
mission and a major component of the descending pain
inhibitory system [209–211]. However, the long-term appli-
cation of opioids induces significant neuroinflammation
since it can activate astrocytes and microglia by Toll-like
receptor 4 (TLR4) in the central nervous system [212].
Morphine increases level of glial-derived proinflammatory
cytokines, inhibiting expressions of GABA receptors and
glutamate transporter proteins. As a result, outward potas-
sium currents decrease, thus leading to an overall increase
in excitability of nearby neurons [209, 212–214]. The neuro-
inflammation results in the reverse of morphine analgesia
and the development of morphine tolerance [215], which
can explain the reason why administration of lipopolysac-
charide (LPS), a potent TLR4 agonist, decreases the analgesic
efficacy of morphine [216]. Interestingly, electronic stimula-
tion of dorsal PAG leads to decreased activity of peripheral
blood natural killer (NK) cells [217]. Moreover, microinjec-
tion of morphine into the caudal aspect of the PAG brings
about NK cell cytotoxicity to induce immune inhibition
[218]. The mentioned findings reveal the immunoregulatory
property of opioids and the role PAG plays.

However, orthodontic pain has been generally self-
limited since acute inflammatory reaction is attenuated and
tends to be chronic over time [219], and intrinsic analgesic
mechanisms have also been found to play a role [220–222].
At the early stage of OTM, nerve fibers in PDL release neu-
ropeptides which elicit a painful response [223, 224]. Nerve
fibers containing neuropeptides in PDL of the rat first molar
have been found to increase three days after force applica-
tion and returned to normal after 14 days [225]. Further-
more, PAG has been reported as a critical neural circuit for
endogenous opioid-mediated analgesia. The upregulation
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of endogenous opioids and opioid receptors was identified
on trigeminal nucleus during the orthodontic pain response
[189, 226]. Orthodontic pain activates PAG to send analge-
sic signals only at late stages of each episode of orthodontic
treatment [227, 228]. Considering the effect arising from
pain on the patient compliance and risks for opioids abuse,
the mechanisms of pain self-limitation should be clarified
systematically, and novel analgesia methods should be
explored to replace conventional pain relievers. Guo et al.
[229] reported that systemic infusion of bone marrow
stromal cells (BMSCs) can interact with monocytes/macro-
phages by producing chemokines CCL4 and CCR2 to relieve
pain (antihyperalgesia) for months. It is therefore indicated
that reducing orthodontic pain via the modulating immune
system is recognized as a highly promising research
direction.

6. Orthodontic Treatment for Diabetes Patients

Type 1 diabetes mellitus (T1DM) is an insulin-dependent
syndrome due to autoimmune disease in juvenile [230].
Children with diabetes have higher risks for the develop-
ment of periodontal disease. T1DM is capable of disrupting
enamel and dentine formation, while accelerating tooth
eruption [168–170] [231–233], which can influence ortho-
dontic treatment. However, except for controlling blood-
glucose before treatment, there is no systemic strategy for
patients with T1DM. Besides, compared with type 2 diabetes
mellitus (T2DM) that commonly occurs in elderly, patho-
genesis of T1DM is characterized by autoimmune destruc-
tion of insulin-producing beta cells in the pancreas [234]
and accompanied by insulitis and increasing of serum
proinflammatory cytokines level [235]. In theory, this
immunoregulatory alteration influences orthodontic out-
come, whereas there has been no solid evidence to support
it, and its exact mechanisms remain unclear. There is
research suggested that increased high-density lipoprotein
(HDL) in T1DM may be detrimental to endothelial function
[236]. It can increase permeability of periodontal capillary
and magnify inflammation reaction in orthodontic patients.
The above theory is also indirectly supported by that higher
expression of MMP 8 and 9 and accelerated tooth movement
in diabetes rat model [237]. However, there has been no
associated clinical data. Further investigations are expected
to illuminate and eliminate adverse effects arising from
diabetes-associated immune disorders on OTM.

7. Orthodontic Relapse

Existing research has suggested that orthodontic relapse is a
common problem affecting the outcome of orthodontic
treatment. It is hard to predict which patients are at risk of
relapse and the extent of relapse in the long-term [238].
The cellular process of orthodontic relapse is similar to
OTM. As teeth move in the alveolar bone, the periodontal
ligament and gingivae remodel to the new position. Before
they completely adjust, teeth can move along the direction
of their original position due to the stretching of supra-
alveolar gingival fibers, accompanied by osteoclast distribu-

tion shifting [238, 239]. Accordingly, it is unsurprising that
NSAIDs is capable of reducing orthodontic distance relapse
via regulating immune system in rats. Possible mechanisms
comprise downregulating proinflammatory cytokines in
PDL tissue, blocking CD4+ T-lymphocyte cells and TH1
cells significant for OTM in spleen, and inhibiting PGE2 to
suppress osteoclast activation [5]. In addition, M2 macro-
phages play a critical role in the cessation of bone resorption
and the initiation of tissue repair. Thus, abnormal M1/M2
ratio can lead to continuous bone resorption, and tooth
movement even though orthodontic force is removed
[16, 240]. In-depth investigations on the immune-alveolar
bone interaction in relapse are required to foresee risk
for relapse and find a novel method of relapse prevention
to replace or assist conventional orthodontic retainer.

8. Conclusion

Immune system plays a certain role in OTM in numerous
aspects. In this paper, factors correlated with immunomod-
ulation are illustrated, and their possibility of acting as
potential targets to improve orthodontic outcome or prevent
complications is discussed.
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