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Objective. This study focuses on the identification of risk factors, classification of stroke level, and evaluation of the importance
and interactions of various patient characteristics using cohort data from the Second Hospital of Lanzhou University.
Methodology. Risk factors are identified by evaluation of the relationships between factors and response, as well as by ranking
the importance of characteristics. Then, after discarding negligible factors, some well-known multicategorical classification
algorithms are used to predict the level of stroke. In addition, using the Shapley additive explanation method (SHAP), factors
with positive and negative effects are identified, and some important interactions for classifying the level of stroke are
proposed. A waterfall plot for a specific patient is presented and used to determine the risk degree of that patient. Results and
Conclusion. The results show that (1) the most important risk factors for stroke are hypertension, history of transient ischemia,
and history of stroke; age and gender have a negligible impact. (2) The XGBoost model shows the best performance in
predicting stroke risk; it also gives a ranking of risk factors based on their impact. (3) A combination of SHAP and XGBoost
can be used to identify positive and negative factors and their interactions in stroke prediction, thereby providing helpful

guidance for diagnosis.

1. Introduction

Stroke is an acute cerebral vascular disease that is mainly
caused by sudden cerebral vascular rupture or blockage of
blood vessels (termed ischemic and hemorrhagic stroke,
respectively), leading to brain tissue damage. Stroke has high
morbidity, mortality, and disability rates. Ischemic stroke
accounts for 60-70% of the total incidence stroke; however,
hemorrhagic stroke has a higher mortality rate.

Extensive research has focused on determining the pre-
monitory signs of stroke. The Framingham study [1] reported
a series of risk factors for stroke, including age, systolic blood
pressure, antihypertensive therapy, diabetes, smoking, previ-
ous cardiovascular disease, atrial fibrillation, and left ventricu-
lar hypertrophy based on electrocardiogram. Recently, many
other studies have found additional risk factors, including
creatinine levels and time taken to walk 15 feet [2, 3]. Medical

data sets tend to contain large numbers of features; thus, itis a
time-consuming task to manually identify and verify risk fac-
tors using the available data. However, machine learning
methods can effectively identify features that are strongly
related to the incidence of stroke based on a large number of
feature sets [4]. Therefore, machine learning can be used to
improve the accuracy of stroke risk prediction and discover
new risk factors.

Models for prediction models of stroke have also been
extensively studied. [2] developed a 5-year stroke prediction
model based on a cardiovascular health research data set.
Machine learning algorithms have also been widely explored
in this field, for instance, to predict outcomes of patients with
ischemic stroke after intra-arterial therapy using clinical vari-
ables [5] and those of patients with brain arteriovenous
malformations after endovascular treatment [6]. Among other
methods, logistic regression and random forest have shown
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good performance in predicting the daily activities of
discharged patients [7]. Deep learning algorithms that use
computed tomography and magnetic resonance imaging
features together with clinical variables have been developed
to predict hemorrhagic transformation after intravascular
therapy [8], visual field defect improvements [9], and speech
and motor outcomes [10, 11].

The interpretation of the results of machine/deep learning
models has crucial importance in medical applications. In the
past few years, machine learning has been used to improve can-
cer diagnosis, detection, prediction, and prognosis; however,
studies usually regard machine learning as a “black box” [12],
which limits the confidence of patients and clinicians in the pre-
dictions of the models. [13] proposed the use of Shapley addi-
tive explanation (SHAP) to elucidate machine learning
predictions based on game theory. They have introduced
several versions of SHAP (e.g., DeepSHAP, KernelSHAP, Line-
arSHAP, and TreeSHAP) for specific machine learning model
categories. In this study, we interpret machine learning based
on TreeSHAP [14-16] to judge the impact of a single feature
on different stroke levels and the outcomes of individual cases
and to explain the predictions of the machine learning method.
Numerous machine-learning-based models have been applied
to categorical data and have shown great promise. However,
because of the ordering of the response variables in records of
stroke level, it is necessary to adapt a traditional classification
model to ordinal variables. The most common models are so-
called cumulative logit or probit models; these can be specified
as logit or probit models for the probabilities of exceeding each
of the ordered categories (except the last) [17]. Alternatively,
some researchers have integrated the results of modeling
research by treating ordered variables as continuous variables
or “special” variables in an attempt to provide guidance to
researchers [18, 19]. Numerous methods have been proposed
to improve stroke prediction; however, most of the relevant
studies have focused on the probability of death, dementia, or
institutionalization over a fixed number of years. For instance,
[20] weighted the modified Rankin scale (mRs) in ordinal
analyses for stroke and other neurological disorders, as state
transitions differ in clinical prognosis; and [21] assessed the dis-
tribution of mRs scores across different strata in AIS according
to usual eligibility criteria.

This study focuses on the application of machine learning
methods to survey data, where stroke levels are presented as
ordinal variables from 0 to 4. The main contribution of this
study is to extend the traditional binary/multiclassification to
the cumulative binary classifier of Y > k vs. Y < k (for all possi-
ble k) to construct a multiclassifier for ordinal responses. We
focus on the identification of the main risk factors for stroke
and the prediction of stroke level based on these risk factors.
We also consider the effects of risk factors in individual
patients, including interaction effects. Risk factors are identified
from the cohort data based primarily on Pearson correlation
and a mutual information measure; then, stroke level is pre-
dicted using a well-known multicategorical classification
model. A SHAP-based interpretation is also used to provide a
detailed explanation of each factor in an individual diagnosis.

The remainder of the paper is organized as follows.
Section 2 describes the exploration of the stroke data
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and risk factor identification based on Pearson correlation
and the mutual information criterion. Section 3 presents
the prediction of stroke level based on multicategorical
classifiers. The model’s interpretation with respect to
feature importance, positive and negative effects, and
interactions, as well as personal prediction and treatment,
is presented in Section 4. Section 5 gives our conclusion
and some discussion.

2. Exploration of the Stroke Data

The stroke data set was from the Stroke Center, Lanzhou Uni-
versity Second Hospital, from 2016 to 2018, and was part of a
national stroke screening project. The questionnaires were
designed and administered by the Chinese National Stroke
Center of Lanzhou University Second Hospital each year to
detect cardiovascular disease risk factors for people over 35
years old in Gansu Province of China. The data set consisted
of 12391 samples with 20 variables. After removing seven pri-
vate personal characteristics that were obviously not related to
stroke level, 12 predictors remained: age, gender, history of
stroke, history of transient ischemia, family history of stroke,
atrial fibrillation or valvular heart disease, hypertension, dys-
lipidemia, diabetes, smoking history, apparent overweight or
obesity, and lack of exercise. The sample consisted of 276 cases
of transient ischemic attack (TTA), 9010 low-risk individuals,
1370 of medium-risk individuals, 1617 high-risk individuals,
and 118 stroke cases.

Details of the data are provided in Table 1. Note that for
categorical features with two options, the 0-1 encoding
method was adopted, and the level of stroke (Y) was repre-
sented as an ordinal variable: 0 (TTIA), 1 (low risk), 2
(medium risk), 3 (high risk), or 4 (stroke).

Table 1 also shows the results of five-sample testing of
the differences among groups using analysis of variance. P
values less than 0.01 were observed for all characteristics,
indicating that the scores for all factors were statistically sig-
nificant in classification of stroke level.

The linear relationship and nonlinear dependent rela-
tionships among the various factors (X;) and stroke level
(Y) were studied using Spearman correlation and normal-
mutual information (NMI). The results of these analyzes
for data 2016 to 2018 are shown in Table 2. Age (X,) and
gender (X,) had small NMI and Spearman correlation
values, indicating that these factors can be discarded because
of their weak relationships with stroke level. The most
important factors associated with stroke level were hyperten-
sion, diabetes, family history of stroke, history of transient
ischemia, and lack of exercise.

Hereafter, in this paper, the factors of age and gender are
discarded from consideration in the prediction and interpre-
tation procedure.

3. Prediction of Stroke Level Based on
Multicategorical Classifiers

Risk factors for stroke were primarily identified based on
machine learning; then, stroke level was predicted using
classifiers.
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TaBLE 1: Description of the data.
Factor 2016 2017 2018
No. Ratio p N Ratio p N Ratio p
All 4296 3915 4180
Stroke levels (Y)
TIA: 0 88 2% 88 2.2% 100 2.4%
Low risk: 1 3174 73.9% 2916 74.5% 2920 69.9%
Medium risk: 2 446 10.4% 433 11.1% 491 11.7%
High risk: 3 553 12.9% 442 11.3% 622 14.9%
Stroke: 4 35 0.8% 36 0.9% 47 1.1%
Continuous variable
Age (X)) 4296 <0.01** 3915 <0.01** 4180 <0.01**
Mean std Mean std Mean std
TIA: 0 69.96  (12.34) 6645  (11.23) 6622 (11.31)
Low risk: 1 6039  (11.41) 5694  (11.36) 5810  (11.40)
Medium risk:2 65.15 (11.75) 61.52 (11.73) 62.09 (11.66)
High risk: 3 66.58 (10.30) 64.19 (9.93) 63.86 (10.26)
Stroke: 4 68.00 (9.03) 66.17 (8.50) 64.98 (9.27)
Discrete variables
Gender (X,) 0.001** 0.011* 0.115
Female: 0 2240 52.1% 2013 51.4% 2138 51.1%
Male: 1 2056 47.9% 1902 48.6% 2042 48.9%
History of stroke (X;) <0.01** <0.01** <0.01**
Yes: 1 35 0.8% 36 0.9% 47 1.1%
No: 0 4261 99.2% 3879 99.1% 4133 98.9%
History of TIA (X,) <0.017* <0.01** <0.01**
Yes: 1 92 2.1% 91 2.3% 104 2.5%
No: 0 4204 97.9% 3824 97.7% 4076 97.5%
Family history of stroke (Xs) <0.01** <0.01*" <0.01**
Yes: 1 195 4.5% 177 4.5% 223 5.3%
No: 0 4101 95.5% 3738 95.5% 3957 94.7%
AF or VHD (X,) <0.01%* <0.01** <0.01**
Yes: 1 112 2.6% 101 2.6% 119 2.8%
No: 0 4184 97.4% 3814 97.4% 4061 97.2%
Hypertension (X) <0.01** <0.01** <0.01**
Yes: 1 684 15.9% 656 16.8% 938 22.4%
No: 0 3612 84.1% 3259 83.2% 3242 77.6%
Dyslipidemia (Xg) <0.01** <0.01** <0.01**
Yes: 1 943 22% 1167 29.8% 1740 41.6%
No: 0 3353 78% 2748 70.2% 2440 58.4%
Diabetes (X,) <0.01** <0.01** <0.01**
Yes: 1 480 11.2% 409 10.4% 495 11.8%
No: 0 3816 88.8% 3506 89.6% 3685 88.2%
Smoking history (X,) <0.01** <0.01*" <0.01**
Yes: 1 414 9.6% 291 7.4% 353 8.4%
No: 0 3882 90.4% 3624 92.6% 3827 91.6%
AO or obesity (X;,) <0.01** <0.01** <0.01**
Yes: 1 679 15.8% 222 5.7% 245 5.9%
No: 0 3617 84.2% 3693 94.3% 3935 94.1%
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TasLE 1: Continued.
Factor 2016 2017 2018
No. Ratio p N Ratio P N Ratio P
Lack of exercise (X,,) <0.01** <0.01*" <0.01**
Yes: 1 524 12.2% 444 11.3% 556 13.3%
No: 0 3772 87.8% 3471 88.7% 3624 86.7%

TIA: transient ischemic attack; AF: atrial fibrillation; VHD: valvular heart disease; AO: apparently overweight. Significance analyses were performed by
analysis of variance. All tests were two-sided. *Statistically significant P values (P<0.05); **statistically very significant P values (P < 0.01).

TaBLE 2: Correlations and NMI values for the data.

Factor 2016 2017 2018
PX,Y)  NMI,Y)  p(X,¥)  NMIX,Y)  p(X,Y)  NMI(X,Y)

Age (X)) 0.1710 0.0284 0.1894 0.0312 0.1650 0.0270
Gender (X,) -0.0165 0.0034 -0.0020 0.0028 0.0101 0.0020
History of stroke (X;) 0.2021 0.1064 0.2163 0.1175 0.2258 0.1249
History of TT (X,) -0.2973 0.2129 -0.3191 0.2274 -0.3080 0.2173
Family history of stroke (X5) 0.3933 0.1722 0.3832 0.1583 0.3718 0.1390
AF or VHD (Xj) 0.2253 0.0814 0.2208 0.0863 0.2151 0.0711
Hypertension (X;) 0.7232 0.4331 0.7623 0.4772 0.7926 0.5196
Dyslipidemia (Xg) 0.2538 0.0858 0.1974 0.0764 0.1409 0.0668
Diabetes (X,) 0.5057 0.2921 0.4848 0.2834 0.4817 0.2605
Smoking history (X,,) 0.2469 0.0717 0.1870 0.0553 0.2310 0.0644
AO or obesity (X;,) 0.1630 0.0513 0.1321 0.0337 0.1569 0.0351
Lack of exercise (X,,) 0.3247 0.0291 0.2957 0.1558 0.3531 0.1551

p(X;, Y) represents the Spearman correlation between X; and Y (1=2,3,---,12).p(X;, Y) represents the Pearson correlation between X .

3.1. Multicategorical Classifiers for the Prediction of Stroke
Level. Four multicategorical classifiers were used to predict
the level of stroke.

3.1.1. Multiple Logistic Regression. Multiple logistic regression
is an extension of the binomial logistic regression model for
multiple classification and is used to predict the probabilities
of different possible outcomes for a category distribution of
dependent variables. Specifically, a probability model is used
to calculate the probability of obtaining a certain result in
the predicted dependent variable after the linear combination
of independent variables and corresponding parameters.

3.1.2. Multiple Classification Support Vector Machine. The
multiple classification support vector machine (MCSVM) is
mainly used for the construction of multiclassifiers by com-
bining many binary classifiers. The one-versus-one method
and one-versus-rest method are commonly used. In this study,
the small-against-large (Y <k vs. Y > k) method is used to
predict levels of stroke.

3.1.3. XGBoost. XGBoost, or “extreme gradient boosting,” is
a type of boosting ensemble algorithm, which represents an
improvement of the gradient boosting decision tree (GBDT)
algorithm. The XGBoost algorithm adds regularization to
the objective function. When the base learner is CART, the

regularization is related to the number of leaf nodes of the
tree and the values of the leaf node.

3.1.4. Light Gradient Boosting Machine. The light gradient
boosting machine (LightGBM) is a type of boosting inte-
grated algorithm; it is also an efficient implementation of
the GBDT algorithm. It first uses a histogram algorithm to
transform a traversal sample into a traversal histogram to
reduce time complexity. Then, a gradient-based one-side
sampling algorithm is used to filter out samples with small
gradient in the training process to reduce the computation
time. Moreover, a leaf-wise algorithm-based growth strategy
is used to construct trees to reduce unnecessary overhead.

Concerning the ordinal response, all the classification
algorithms were modified such that they could handle
ordinal variables. Specifically, the ordinal responses were
partitioned into two categories (Y <k vs. Y >k for each
possible k); then, all classifiers were applied to these binary
categories.

3.2. Performance of the Multicategorical Classifiers. The data
were divided into five mutually exclusive sets by pooling,
and classification performance was evaluated by fivefold
cross-validation with stratified XGBoost sampling with
respect to area under the curve (AUC), accuracy, F,, recall,
and precision.



BioMed Research International

TaBLE 3: Performance evaluation using fivefold cross-validation for different models: mean (standard deviation).

Accuracy

F,-macro

Recall-macro

Precision-macro

Model AUC

MLR 0.9931 (0.0006)
MCSVM 0.9801 (0.0019)
XGBoost 0.9999 (0.0000)
LightGBM 0.9998 (0.0000)

0.9456 (0.0061
0.9723 (0.0021
0.9927 (0.0015
0.9916 (0.0028

T T — —

0.9587 (0.0039)
0.9751 (0.0019)
0.9929 (0.0020)
0.9924 (0.0022)

0.9895 (0.0021)
0.9766 (0.0024)
0.9942 (0.0039)
0.9918 (0.0044)

0.9362 (0.0054)
0.9736 (0.0021)
0.9918 (0.0018)
0.9930 (0.0017)

Feature importance

Hypertension

History of TI

Diabetes

AF or VHD

History of stroke

Lack of exercise

Family history of stroke
Dyslipidemia

Smoking history

AO or obesity

0.00

Hypertension
History of TT
History of stroke
Dyslipidemia
Lack of exercise
Diabetes

AO or obesity
Smoking history

Family history of stroke

AF or VHD
0 1 2 3 4 5 6 7
Mean (|[SHAP value|) (Average impact on model output magnitude)
mm Class 3 mm Class 0
mm Class 1 mm Class 4
mm Class 2

(b)
FiGURE 1: Feature importance of factors based on (a) XGBoost and (b) SHAP.
The results of the evaluation of model performance are

shown in Table 3. All four models achieved acceptable
results for classification, with AUC>0.98, for example,

whereas LightGBM and XGBoost showed better accuracy
(above 0.9) compared with the others. The evaluation indi-
cators of XGBoost were almost the best. Besides, owing to
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FIGURE 2: SHAP values for feature importance.

its capacity for interpretation, XGBoost is the preferred
model for many applications.

4. Model Interpretation Based on SHAP for
XGBoost Algorithm

The interpretation of the results of machine-learning-based
models has a crucial role in medical research and clinical
applications. In this work, SHAP [13] measurements based
on the best machine learning model (XGBoost) are used
for explanatory data analysis. This further illustrates the
effectiveness of the algorithm proposed in this paper and
provides guidance for the practical use of the model in diag-
nosis and survival analysis.

SHAP is a package of interpreted models that can be
constructed and used to interpret any machine learning
model. It originates from cooperative game theory, where
each of its features can be seen as a contributor. When a
value is predicted for any sample and the corresponding pre-
dicted value is obtained, the SHAP value is called the pre-
dicted value of any feature in this sample.

4.1. Feature Importance Evaluation. Figure 1 gives the fea-
ture importance rankings of this model evaluated by
XGBoost and SHAP. As shown in Figure 1(a), hypertension
was the most important factor in the evaluation of stroke,
followed by history of transient ischemia, diabetes, atrial
fibrillation or valvular heart disease, and history of stroke.
The SHAP-based description shown in Figure 1(b) gives a
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FIGURE 3: Interaction diagrams of all features at five stroke levels.
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TaBLE 4: Comparisons of AUC values for the forward stepwise method with interactive effects for different models.
Algorithm M,: original M, : My+X M, M, +X,, M, : M, +X,, M, : M;+X,,
MLR 0.9931 0.9993 (+0.0062) 0.9997 (+0.0004) 0.9997 (+0.0000) 1 (+0.0003)
MCSVM 0.9801 0.9983 (+0.0182) 0.9991 (+0.0008) 0.9987 (~0.0004) 1 (+0.0013)
XGBoost 0.9999 0.9999 0.9999 0.9999 0.9999
LightGBM 0.9999 0.9999 0.9999 0.9999 0.9999

more accurate view of each factor’s effect; hypertension, his-
tory of transient ischemia, history of stroke, and diabetes are
still the most important features, consistent with the results
obtained with XGBoost.

From the results shown in Figure 1(b), we can conclude
the following.

Hypertension is the most important factor at all stages of
stroke, although it has less effect in the case of TIA (class 0).

History of TIA is almost the characteristic of the TIA,
and history of stroke is the conclusive factor for recognizing
stroke (class 4).

The other factors have significant impact in all stages of
stroke.

4.2. Evaluation of Individual Features in Stroke Level
Prediction. To better understand the specific impact of indi-
vidual features on different degrees of stroke, overall SHAP
feature plots are constructed and are shown in Figure 2
(here, only the cases Y <1 and Y > 2 are presented). All fac-
tors are listed on the vertical axis ranked by importance. For
a specified factor, each point indicates a patient to whom
that factor applies (in red) or does not apply (in blue). Right
side of a patient in red means it has the positive impact for
lying in the corresponding level.

A SHAP description for patients in the high-risk cate-
gory is shown in Figure 2. It shows that patients with a his-
tory of transient ischemia or history of stroke are not likely
be classified in the higher-risk stroke subgroup (Y >1) (in
fact, history of stroke is the most important identified factor
for the occurrence of stroke, and a patient who has experi-
enced TIA before is more likely to be categorized into class
0 (TIA)), whereas the other factors have a strong positive
impact, meaning that a patient with the corresponding phe-
notypes is more likely to be classified as at higher risk of
stroke. Similarly, a patient with TIA cannot be classified in
the higher-risk category (Y > 2).

The same conclusion can be obtained for dyslipidemia,
diabetes, lack of exercise, and atrial fibrillation or valvular
heart disease. In addition, a SHAP value near 0 means that
the corresponding factor makes a small contribution to the
development of stroke. Similarly, the negative SHAP values
for history of stroke (in red), obesity, family history of
stroke, and history mean the stroke level cannot be low risk
or TIA.

4.3. Interaction Effects for Stroke Level Prediction. The inter-
action values shown in Figure 3(a) in the low-risk case
indicate that although the individual factors have negative
influences, the following interactions have strong positive
influence:

(1) Hypertension and diabetes (the interaction value is
recorded as X,;), hypertension and AF/VHD (X,,),
hypertension and history of TI (X,5), and hyperten-
sion and history of stroke (X,4)

(2) Diabetes and AF/VHD (X,,), diabetes and history of
TI (X,4), and diabetes and history of stroke (X,q)

(3) Family history of stroke and hypertension (X,;),
family history of stroke and diabetes (X,;), family
history of stroke and AF/VHD (X,,), family history
of stroke and history of TI (X,;), and family history
of stroke and stroke (X,,)

Similar interactions can be found for other categorical
factors in stroke risk level. Figure 3(b) again gives the impor-
tance of the factors; compared with the effect of a single fac-
tor, most of the interactions are negligible, except that of
hypertension and diabetes.

In addition, we put the interaction values into the
machine learning model; the AUCs are shown in Table 4,
using the forward stepwise method to add to the original
model. After adding the X,; variable, the accuracy of the
model showed a marked improvement. When this variable
was added to X,,, the model accuracy reached almost 1, so
the procedure can be ended from the addition of X,,. The
interaction values X5, X,,, X5y, and X, play a greater part
in promoting the occurrence of different degrees of stroke
compared with other interaction values. This knowledge is
crucial for medical research and clinical applications, and it
provides a better theoretical basis for treatment of patients.

4.4. Individual Precision Prediction and Treatment. Here, we
give an application of SHAP interpretable values in individ-
ual precision prediction and treatment guidance. Figure 4
shows a waterfall diagram for a single patient with a factor
vector (0,0,1,0,1,1,1,0,0,1). At the bottom, E[f(x)] =
0.724 indicates the base value of shake of the overall sample.
The bottom row represents five unimportant features, which
have a positive impact of 0.1; X,, produces a 0.29 positive
effect. Smoking history has a negative impact of 0.79,
whereas X, ; has a positive impact of 1.05, and family history
of stroke has a positive impact of 2.76. Finally, the SHAP
value for the first patient is 10.251 (shown in the upper right
corner). Compared with the value of E(x), the value for this
patient’s illness is very large. Therefore, this individual meets
the definition of a high-risk patient.

For this patient, family stroke history is the most impor-
tant factor contributing to risk of stroke, followed by lack of
exercise and dyslipidemia. If this individual develops hyper-
tension and diabetes, the interaction of these factors with the
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FIGURE 4: Importance ranking of characteristics of the first patient.

others will aggravate the severity of the disease. The interac-
tion between family stroke history and hypertension also plays
an important part in the development of high stroke risk.

5. Conclusion and Discussion

In this study, risk factors were extracted and risk levels are
predicted using stroke data from the Stroke Center of Lan-
zhou University Second Hospital from 2016 to 2018. First,
risk factors were identified by sorting the importance of fea-
tures. The results showed that the most important factors
were hypertension, history of transient ischemia, history of
stroke, and diabetes; family history of stroke, lack of exercise,
dyslipidemia, smoking history, and apparent overweight or
obesity were also factors with notable effects, whereas age
and gender had negligible impact. Our results suggested that
the XGBoost model was better at predicting stroke risk than
other models according to almost all evaluation indices.
Using Lundbery and Lee’s optimal model and machine-
learning-based SHAP, we could determine the impact of fac-
tors at each stroke level. Finally, we constructed a waterfall
plot for a single patient to precisely show their level of stroke
and the impact of different characteristics, to illustrate how
the method could be used to guide accurate and personalized
treatment for patients.

The study demonstrates precise prediction and identifica-
tion of stroke level and the corresponding distinguishing fea-
tures of a stroke patient. The proposed procedure involves a
combination of feature selection, XGBoost classification, and
SHAP interpretable analysis, which enables balancing of
model accuracy and interpretability for medical applications
in particular. The superiority of this approach has been dem-
onstrated for personalized treatment of stroke patients. The
XGBoost classifier can precisely determine the factors that dis-

tinguished each level of stroke in a patient group. Moreover,
interpretation based on SHAP can give more precise informa-
tion about the individual patient, which can help to guide indi-
vidual diagnosis and stroke prevention strategies.
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