Hindawi Publishing Corporation

Clinical and Developmental Immunology
Volume 2013, Article ID 521231, 12 pages
http://dx.doi.org/10.1155/2013/521231

Review Article

Hindawi

Peptide-Based Vaccinology: Experimental and

Computational Approaches to Target Hypervariable Viruses
through the Fine Characterization of Protective Epitopes
Recognized by Monoclonal Antibodies and the Identification of

T-Cell-Activating Peptides

Matteo Castelli,' Francesca Cappelletti,' Roberta Antonia Diotti,"
Giuseppe Sautto,! Elena Criscuolo,' Matteo Dal Peraro,” and Nicola Clementi!

! Microbiology and Virology Institute, Vita-Salute San Raffaele University, 20132 Milan, Italy
? Laboratory for Biomolecular Modeling, Institute of Bioingeneering, School of Life Sciences, Ecole Polytechnique Fédérale, 1015

Lausanne, Switzerland

Correspondence should be addressed to Nicola Clementi; clementi.nicola@hsr.it

Received 8 May 2013; Accepted 6 June 2013

Academic Editor: Roberto Burioni

Copyright © 2013 Matteo Castelli et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Defining immunogenic domains of viral proteins capable of eliciting a protective immune response is crucial in the development
of novel epitope-based prophylactic strategies. This is particularly important for the selective targeting of conserved regions
shared among hypervariable viruses. Studying postinfection and postimmunization sera, as well as cloning and characterization
of monoclonal antibodies (mAbs), still represents the best approach to identify protective epitopes. In particular, a protective
mAb directed against conserved regions can play a key role in immunogen design and in human therapy as well. Experimental
approaches aiming to characterize protective mAb epitopes or to identify T-cell-activating peptides are often burdened by technical
limitations and can require long time to be correctly addressed. Thus, in the last decade many epitope predictive algorithms have
been developed. These algorithms are continually evolving, and their use to address the empirical research is widely increasing.
Here, we review several strategies based on experimental techniques alone or addressed by in silico analysis that are frequently used
to predict immunogens to be included in novel epitope-based vaccine approaches. We will list the main strategies aiming to design

a new vaccine preparation conferring the protection of a neutralizing mAb combined with an effective cell-mediated response.

1. Introduction

The development of vaccines directed against clinical relevant
viral pathogens is perhaps the most important contribution
of immunology to public health. Traditional vaccine prepa-
rations are based on attenuated or inactivated whole viruses
or partially purified viral proteins. These strategies, although
effective against a large number of pathogens, present draw-
backs due to viral intrinsic characteristics such as poor
or null in vitro replication and antigenic hypervariability

[1].

In order to overcome these issues, quite a number of novel
approaches have been developed, one of the most promising
focusing on epitope-based vaccine preparation.

The possibility to use minimal structures such as peptides,
or a mixture of them, as the main constituent of a vacci-
nal preparation, presents many advantages. Firstly, peptides
can be easily produced in vitro reducing production costs
and simplifying large-scale vaccine production procedures.
Moreover, expression of peptides belonging to viral proteins
does not necessarily require in vitro pathogens growth,
overcoming viral culturing issues.
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FIGURE 1: The described approaches to characterize protein structural motifs to be included in new vaccines targeting hypervariable viruses.
The synergistic use of techniques combining experimental and in silico approaches is also shown.

This strategy also presents safety benefits, zeroing prob-
lematic related to back mutations for attenuated viruses
and reducing side effects due to possible improper immune
response against viral antigenic determinants.

Perhaps the most important aspect of using well-cha-
racterized synthetic peptides as immunogens is related to
the specific triggering of both humoral and cell-mediated
immune responses against a fundamental domain of a viral
protein. Moreover, the possibility to remove antigen (Ag)
domains activating suppressor mechanisms may elicit only
a protective response targeting conserved functional regions
shared among hypervariable viruses [2].

Despite these advantages, to date no epitope-based vac-
cines have been used in clinical practice. This is mainly
due to low immunogenicity and difficulties related to the
fine identification of protective epitopes and/or properly
folded antigen structural motifs to be included in a vaccinal
preparation. The latter is fundamental to properly activate an
effective immune response. Furthermore, a main goal for a
successful epitope-based vaccine approach is the identifica-
tion of epitopes capable of eliciting both humoral and cell-
mediated responses [3, 4].

Different strategies, spanning from antigen presentation
techniques to in silico design of structural motifs to be
included in vaccinal preparations, have been developed in

order to overcome these issues. In this paper we review the
most promising approaches in peptide-based vaccine setup
applicable to hypervariable viruses. In particular we will focus
on the methods at the interface between experimental and
computational procedures aiming at the prediction of B and
T-cell-activating peptides (Figure 1).

2. Selection of B-Cell-Activating Peptides:
Immune Humoral Response as a Probe to
Identify Crucial Domains

A crucial step in epitope-based vaccine design is the identi-
fication of antigens capable of eliciting a protective immune
response specific for a pathogen of interest. Depending on
the characteristics of the virus to be targeted, humoral and
cellular response changes in relevance. As an example, the
former plays a crucial role in conferring specific immunity
for influenza virus infection. Many researches have been
focused on the characterization of protective monoclonal
antibodies (mAbs) targeting widely conserved hemagglutinin
(HA) regions among different influenza subtypes [5-12].
Considering the clinical potential of mAbs endowed with
such peculiar cross-neutralizing activity, their epitope char-
acterization represents a valuable tool to identify functional
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and conserved epitopes potentially useful in an epitope-based
vaccinal strategy.

Different methods, either exclusively based on experi-
mental approaches or involving the use of in silico studies,
have been applied to identify regions featuring the aforemen-
tioned characteristics. Several of the most frequently used
methods are listed and discussed in the following.

2.1. Direct Structural Analysis of mAb/Antigen Complex.
Structural resolution of a specific mAb in complex with its
target through X-ray crystallography or nuclear magnetic
resonance (NMR) is to date the only procedure to obtain
interaction information at atomic level [9, 13]. However,
considering methods complexity and inability to be applied
to certain complexes together with low throughput features,
X-ray crystallography and NMR represent useful tools to fully
characterize the epitope of a single mAb but are not suitable
for mapping all antigenic determinants.

2.2. Mass Spectrometry- (MS-) Based Techniques. The MS
based techniques permit to define mAb epitopes at a medium
resolution. All the MS-approaches aim at the identification
of mADb footprint on the targeted antigen [14, 15]. Different
experimental methods involving MS are widely described in
the scientific literature. These approaches are mainly based
on the protection of mAb binding site on the whole anti-
gen from proteolytic digestion or protein modification (i.e.,
acetylation or deuterium incorporation), through its bond
with the mAD itself [16, 17]. mAb-interacting fragments are
subsequently identified through MS and mapped in silico on
the whole antigen to define epitope sequence and structure. In
particular, the computational analysis is generally performed
excluding the “nonepitope” antigen regions (Ag unbound
regions) followed by the mapping of Ag amino acid residues
derived from MS analysis (e.g., not subjected to proteolytic
digestions or deuterium incorporation) on the Ag crystal
structure.

2.3. Mimotopes. Mimotopes are small peptides able to mimic
antigenic conformational structures recognized by an anti-
body (Ab) paratope. The most frequently used approach to
isolate specific mimotopes recognized by a mAb is based on
the screening of a random peptide phage display through
biopanning techniques [18, 19]. Alternatively, if the antigenic
protein can be cloned and expressed from recombinant
cDNA, a library composed by antigen fragments can be
created and screened for positive binding to mAbs.

Selected peptides are then sequenced, aligned to antigen
sequence, and, if available, superimposed to its three-dimen-
sional (3D) structure, allowing the identification of the imm-
unogenic domain. This process often requires the use of spe-
cific in silico tools, as epitope localization on antigen surface
from mimotopes sequences might not be trivial; specific
algorithms such as Mimox (http://immunet.cn/mimox/),
Pepitope (http://pepitope.tau.ac.il/), and MimoPro (http://
informatics.nenu.edu.cn/MimoPro/) are available online
[20-22]. They all perform an alignment of provided mimo-
tope sequences to a given PDB structure, returning epitope

localization; identification can be done either on a single
mimotope sequence or clustering all positive sequences
and searching for a consensus patch on the structure. An
online database named MimoDB 2.0 (http://immunet.cn/
mimodb/) is also available online; it collects from the
scientific literature thousands of mimotopes identified from
random libraries providing information about identification
methods, libraries, and respective protein [23].

Identification of mimotopes is a powerful technique as
it easily allows to map many antigenic determinants at the
same time using a polyclonal serum or to identify a single
mADb epitope at a medium resolution [24, 25]. The canonical
18 mer peptides allow the study of conformational epitopes,
as they are long enough to fold into a specific secondary
structure. Moreover, it can be efficiently used when antigens
3D structure is not available, returning possible peptides to be
used in a peptide-based vaccinal approach disregarding their
structure.

2.4. In Silico Prediction of Linear Epitopes: Propensity Scale,
Improved Propensity Scale, and Machine-Learning Algorithms.
Continuous epitopes include ~10% of all known antibodies
epitopes; while they comprise a minority of all epitopes
found in nature, many computational methods focus on their
mapping [26, 27].

Sequence-based algorithms represent the first attempt
to predict B-cell epitopes located on a protein surface
without a priori immunological data. Most of these algo-
rithms, namely, propensity scale (or amino acid scale-based)
methods, rely upon residues chemical and physical prop-
erties based on empirical data (i.e., hydrophilicity, flex-
ibility, solvent accessibility, polarity, and presence of f-
turns). Five of the most used amino acid scale-based meth-
ods are implemented at the Immune Epitope Database
(IEDB) website (http://tools.immuneepitope.org/main/html/
bcell_tools.html) [28]. A standard score to evaluate the
performance of these methods is the Apq (Area under the
Receiver Operating Curve) value. This value spans from 0 to
1 where a value of 0.5 matches with a random prediction,
and 1 represents the ideal performance [29]. None of the
methods implemented in IEDB website and listed previously
exceeded the Ay threshold of 0.6 when benchmarked with
three standard datasets, pointing out their low reliability
in predicting linear epitopes. Only a small improvement in
comparison with a random prediction is in fact demonstrated
for single propensity scales [30].

Considering the amino acid scale-based methods as a
starting point, novel algorithms combining different pro-
pensity scales and machine-learning methods have been
developed. While the former strategy did not lead to
substantial improvements, machine-learning methods have
proven their efficacy when tested, exceeding the Ay thre-
shold value of 0.6. The first generation of these hybrid algori-
thms comprises, among the others, ABCpred (http://www
.imtech.res.in/raghava/abcpred/), a recurrent artificial neural
network- (ANN-) based algorithm, and BepiPred (http://
www.cbs.dtu.dk/services/BepiPred/), which combines a
machine-learning method such as the hidden Markov model
(HMM) with two propensity scale methods taking into



account Parker’s hydrophilicity and Levitts secondary
structure scales [31-34].

In the last few years several machine-learning algo-
rithms exploiting Support Vector Machine (SVM) have been
implemented as well, leading to a progressive prediction
improvement in terms of accuracy, sensitivity, and specificity
[35, 36].

Recently Lin et al. developed the algorithm BEEPro, an
SVM-based learning-machine which uses fourteen physio-
chemical scales to generate a hybrid propensity scale includ-
ing antigenicity, hydrophilicity, flexibility, composition, vol-
ume, charge transfer and donor capability, hydrogen bond
donor capability, and secondary structure features. It is then
further combined with an amino acid ratio propensity scale
representative of the propensity of each amino acid to be part
of an epitope and a position specific scoring matrix (PSSM)
which reflects the evolutionary information of a peptide
[37].

Considering these parameters, BEEPro, has been trained
with the Sollner dataset comprising many non-redundant
linear epitopes and proved itself to efficiently predict both
linear and conformational epitopes, outperforming other
prediction algorithms [38].

2.5. In Silico Prediction of Conformational Epitopes: Structure-
and Sequence-Based Algorithms. Conformational epitopes
mapping represents a challenging goal in different biological
and medical fields. In the last few years many algorithms
capable of predicting conformational epitopes have been
developed. They can be divided in structure-based and
sequence-based algorithms.

Structure-based algorithms work on three-dimensional
(3D) proteins structure obtained either through X-ray crys-
tallography or NMR and exploit different spatial parameters
as well as amino acids statistics. CEP [39], together with
DiscoTope (http://www.cbs.dtu.dk/services/DiscoTope/), is
the first web server developed to predict both linear and con-
formational epitopes; it relies on residues solvent accessibility
and defines a linear epitope when at least three consecutive
residues satisfy the solvent exposure parameter. Conforma-
tional epitopes are then predicted considering linear epitopes
whose Cu is closer than 6 A [39].

DiscoTope is a method oriented to conformational epi-
topes prediction; the algorithm bases its prediction on the
combination of hydrophilicity, amino acids propensity score
taken from a dataset of resolved antibody/antigen structures,
residues spatial neighborhood, and area of relative solvent
accessibility [40]. The 2.0 version of DiscoTope recently
implemented includes novel strategies to define the spatial
neighborhood and a half-sphere exposure to calculate surface
exposure; it has been shown to outperform the majority of
previous prediction algorithms [41].

After CEP and DiscoTope, many others machine-learn-
ing methods to predict conformational epitopes starting from
a 3D structure have been developed; PEPITO (http://pepito
.proteomics.ics.uci.edu/), SEPPA (http://lifecenter.sgst.cn/
seppa/), EPCES (http://sysbio.unl.edu/EPCES/), and its imp-
roved version EPSVR (http://sysbio.unl.edu/EPSVR/) ana-
lyze 3D structures and aim at the division of antigens surface
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in epitopic and nonepitopic patches on the basis of different
propensity scores and solvent accessibility; they all rely
on training datasets comprising resolved antibody/antigen
complexes [42-45].

Moreover, new algorithms try to improve analysis and
broaden targets using linear sequences when structures
are not available. ElliPro (http://tools.iedb.org/tools/ElliPro/
iedb_input) can model proteins of unknown structure align-
ing their sequence in BLAST and then modeling struc-
tures with MODELLER; epitopes search is then performed
approximating protein shape to an ellipsoid, calculating every
residue protrusion index (PI) and finally clustering neigh-
boring residues based on their PI values [46, 47]. As well
as ElliPro, Epitopia (http://epitopia.tau.ac.il/) allows the user
to input either antigen structure or sequence; the predic-
tion algorithm calculates an immunogenicity score for each
residue through a trained naive Bayes classifier and clusters
them, outputting a probabilistic score for each patch [48].

Despite the effort, none of the structure-based methods
reached a high efliciency in terms of accuracy, sensitivity,
and specificity. Unsuccessful attempts might be due to many
aspects; first of all, the number of antibody/antigen resolved
structures is too small to provide a robust statistical sam-
pling of all possible epitopic patches. Moreover, datasets are
affected by the low resolution of some structures. Another
issue is the lack of consideration of proteins as complexes
in vivo; during algorithms training, protein patches that
are physiologically buried in protein-protein complexes can
wrongly be considered as possible epitopes. Other problems
come from the definition of an epitope in terms of which
residues should be considered as part of it; this involves both
the proximity threshold of surface residues to be used and the
lack of consideration for buried residues below the epitopic
patch. Finally, experimentally not all the possible epitopes
of an antigen might have been identified. All these aspects
lead to a biased training of the machine-learning algorithms,
which in turn cause a prediction far from optimal [49].

Considering efficiency issues and limited available
antigens structure, novel sequence-based methods have
been developed. The first attempt is represented by the
CBTOPE (http://www.imtech.res.in/raghava/cbtope/) algo-
rithm, which reached better results than all structure-based
algorithms. A SVM was trained with protein chains belong-
ing to antibodies epitope; each residue was classified as bind-
ing or nonbinding and characterized to define residue-speci-
fic physiochemical and composition profiles. This strategy
allows to define specific epitopic and non-epitopic patterns
that are then applied to the local amino acid composition of
the antigen; prediction is thus performed without consider-
ing the whole protein sequence but searching for epitopic
patterns [50].

Recently two more sequence-based algorithms, the afore-
mentioned BEEPro, and the method published by Zhang
et al. outperformed CBTOPE results. Results succeeded by
these three algorithms are related to the usage, besides many
physiochemical properties, of matrices that try to identify
specific nonlinear patterns for epitopic and non-epitopic
patches.
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Considering results achieved by CBTOPE, Zhang et al.
tried to explore more potentially relevant sequence-derived
features effective for the conformational epitopes predic-
tion. Besides physiochemical characteristics and amino acids
propensity to be part of an epitope, residues side chains have
been clustered in thirteen classes to compute the propensity
for each of them; moreover, a PSSM has been used as
in BEEPro to calculate evolutionary conservation. A term
representing the secondary structure is included as well. The
random forest machine-learning algorithm is then used to
classify each query protein patch on the basis of every feature
creating an output ensamble and then rank the results. It is
interesting to notice that Zhang et al. determined the PSSM to
be the most effective feature in predicting epitopes explaining
BEEPro performance [37,49]. CBTOPE, BEEPro and the web
server developed by Zhang et al. can provide a satisfactory
output that can be used as a good starting point for further
experimental evaluation confirming putative epitopes.

3. Identification of T-Cell-Activating Peptides

While moving towards an epitope-based vaccine strategy,
both humoral and cell-mediated response have to be taken
into account (Figurel). An effective immunity has indeed
to be mediated by the induction of neutralizing antibodies
together with the activation of specific cytotoxic CD8 and
helper CD4 T lymphocytes. Therefore, as well as with B
epitopes, a great effort has been put in the characterization
of peptides binding to major histocompatibility complex
(MHC) of class I and class II that can be presented to TCRs
and in their prediction from antigen sequence/structure [51,
52]. Many experimental techniques involving either cellular
of biochemical assays have been developed, but complexity
and costs of these methods address the need of reliable in
silico approaches to reduce and guide them.

Protective T epitopes characterization involves different
issues that are related to the complexity of their process-
ing and presentation on MHC I and MHC II; merely
screening all possible MHC-binding peptides does not in
fact directly correlate to their role in inducing immunity.
Physiological pathogen-specific T-cell activation involves in
fact several steps, comprising antigen digestion by the protea-
some/immunoproteasome, interaction with the transporter
associated with antigen processing (TAP) protein for MHC I
binding, binding to MHC and TCR recognitions. Efficient T
epitopes prediction has to take into account all these aspects;
ideal immunogenic peptides thus must be efficiently pro-
cessed by the immunoproteasome and delivered by TAP into
the endoplasmic reticulum to bind to MHC I. Moreover, con-
sidering the human leukocyte antigen (HLA) allelic diversity,
effective vaccine peptides have to be recognized by haplotypes
widely shared among the population [53, 54].

To date many online tools are available to predict cleav-
age, TAP translocation, and HLA specificity for MHC I
and MHC II binding. Several databases reporting binding
peptides are available online as well. The synergistic use of
these tools can noticeably restrict the number of peptides to
be experimentally analyzed. Here we describe in silico and in

vitro approaches, reviewing the most used databases together
with structure- and sequence-based prediction methods and
experimental procedures used to validate algorithms output.

3.1. In Silico Approaches: Databases. As described previously,
protective T epitopes prediction has to take into account
different aspects.

A first analysis can be easily done using databases of well-
characterized peptides recognized by T cells (Table 1). As an
example, the IEDB database (http://www.iedb.org/) collect
a large number of peptides already identified, documented
in literature, or voluntarily submitted by users. It includes
peptides known as MHC binders derived from alloantigens
and antigens involved in pathogen infections, allergies, and
autoimmune diseases. The database can be easily accessed
through a search engine retrieving information about host
specificity, HLA restriction, and binding affinity. It also pro-
vides analysis and prediction tools that require only antigen
primary sequence [28].

Another example of database comprising huge number
of peptides characterized and available in the literature is
SYFPEITHI (http://www.syfpeithi.de/), which includes as
well algorithms calculating binding affinity of a query peptide
to a specific MHC type [55, 56].

Other more specific databases are available to date, most
notably the HIV-dedicated B- and T-cell epitope database
(http://www.hivlanl.gov/). As the above-cited databases,
besides a search engine that allows the user to look for HIV
epitopes specific for CTL or helper T lymphocytes, this data-
base includes a panel of different tools that offer different
search options and permit to work with HLA sequences
providing graphical distribution of the most frequently
targeted regions.

Selecting target HLAs is another crucial step in epitope-
based vaccinology, as an effective preparation has to include
protective epitopes capable of binding MHCs in the majority
of individuals; the IMGT HLA database (http://www.ebi.ac
.uk/ipd/imgt/hla/) provides updated information about HLA
alleles and polymorphisms with their relative distribution
among the population [57].

3.2. In Silico Approaches: Structure-Based Algorithms. Several
algorithms are currently used in T-cell epitopes prediction.
Considering the increasing importance of in silico modeling
in predicting protein-protein interaction, here we review
the MHC binding prediction tools. MHC-binding predictors
can be divided in two main categories relying on structural
or sequence analysis; being complex and computationally
expensive, few structure-based algorithms are available to
date.

Structure-based MHC binding prediction methods can
be clustered in three main categories, based on protein
threading, homology modeling, or protein-protein docking.
Protein-threading methods use a known peptide/MHC com-
plex structure to predict binding features of others peptides to
the same MHC; this process involves the substitution of the
original peptide with the one to be tested followed by a side



chains orientation optimization [58, 59]. Discrimination of
binders from nonbinders is then performed using different
scoring schemes.

Homology modeling has been used to predict MHC-
binding peptides and potentially represents an improvement
of threading methods since it allows to model both novel pep-
tides and homologous MHC starting from a crystallographic
structure [60, 61].

Docking techniques differ from protein threading and
homology modeling since they do not rely on a template
peptide; their aim is in fact to explore all possible query pep-
tide orientations in the binding with MHCs. Many different
docking-based approaches have been extensively used, either
based on rigid docking evaluation or on molecular dynamics,
and Monte Carlo simulations performed to find the best
fitting geometry and evaluate binding strength [62, 63]. These
techniques allowed to model proteins of unknown structures
and, most importantly, to address experimental studies in the
comprehension of protective antigen regions involved in the
docking but are not suitable to complete antigenic mapping.

3.3. In Silico Approaches: Sequence-Based Algorithms.
Sequence-based methods have been far more developed
considering their low computational cost and independency
from available crystallographic structures. As happened
for B cell epitopes prediction algorithms, in the last decade
these methods significantly improved and, starting from
simple statistical sequence analysis, have moved towards
machine-learning methods.

First attempts were based on the evidence that MHC
binding pocket presents cavities with specific residues that
require a certain degree of complementarity with specific
epitope residues, defined as anchor residues; these algorithms
thus search for this type of residues in specific positions,
giving the highest contribute in MHC/epitope bindings.
However, this strategy completely dismisses the contribute
of nonanchor residues, resulting in a prediction lacking
specificity and sensitivity [64].

From a simple search of specific residues, new algorithms
moved towards a binding matrix-based strategy that takes
into account residue frequencies at each epitope position;
scoring matrices are built on the sequences of experimen-
tally known binders and comprise information about
position-specific frequencies and binding affinity. Binding
matrices algorithms return more reliable results, and some of
them, such as SYFPEITHI (http://www.syfpeithi.de/Scripts/
MHCServer.dll/EpitopePrediction.htm) and BIMAS (http://
www-bimas.cit.nih.gov/), are still used and are part of many
prediction servers [56, 65]. An improvement of binding
matrices algorithms is represented by the stabilized matrix
method (SMM); Peters and Sette optimized a standard
matrix algorithm strategy including a new score for heavy
nonbinders peptides and a regularization technique to mini-
mize the distance between predicted scores and experimental
binding affinities contained in the training dataset [66]. The
combination of this SMM with a pair coeflicient that calculate
a score for peptide residue pairs is included in the IEDB
database and, together with ANN algorithms, showed the

Clinical and Developmental Immunology

best prediction results in a broad comparative evaluation of
MHC I binders predictors [67-69].

Novel algorithms evolved and adopted machine-learning
approaches such as ANNs, HMMs, and SVMs; these algo-
rithms have the advantage to perform predictions handling
nonlinear data. ANN algorithms are some of the best predic-
tors; they represent epitopes features as amino acid descrip-
tors and perform complex pattern recognition after being
trained with a dataset of epitopic and nonepitopic peptides.
Their main drawback is the capability to predict epitopes only
when query peptides and the training dataset are of the same
length. Considering MHC II epitopes length variability, an
alignment of peptides contained in the dataset to search for
a pattern in the sequence core of defined length is necessary
[70].

To date there are tens of online tools to predict MHC I
and MHC II epitopes; considering the lack of standardization
in dataset, the heterogeneity in output features and a highly
variable performance of the same algorithm depending on
the HLA type, defining the most reliable predictor, is not triv-
ial. Lin et al. defined a standard benchmark protocol for both
MHC I and MHC II predictors and tested the performance
of the most used algorithms [68, 70]. The first conclusion
describes a lower prediction accuracy (measured as Apoc)
for MHC 1I algorithms than for MHC I that is explained
by the increased biological complexity in terms of peptide
length. Among the others, they identify the ANN and SMM
algorithms embedded in the IEDB website together with
NetMHC (http://www.cbs.dtu.dk/services/NetMHC/) ANN
as the best predictors for MHC I epitopes [66, 71, 72].
For MHC 1I epitopes, the ANN algorithm Net-MHCIIpan
(http://www.cbs.dtu.dk/services/NetMHClIIpan/), the SMM
IEDB and PROPRED (http://www.imtech.res.in/raghava/
propred/) outperformed the other methods [73, 74].

Although MHC binding prediction algorithms have
reached high performances, they do not take into account
the biological processes involved in epitopes production; pre-
dicted epitopes might not in fact be produced from antigen
degradation [75, 76]. Many strategies exploiting sequence-
based and machine-learning algorithms have been developed
to predict antigen cleavage from the proteasome/ immuno-
proteasome and TAP interactions. These tools are available
either as stand-alone online servers or integrated with other
algorithms to provide a complete prediction from the whole
antigen to single epitopes. Furthermore, many of them are
embedded in online databases.

Among the others, the ANN algorithm NetChop-3.0
(http://www.cbs.dtu.dk/services/NetChop/) seems to be the
best predictor for proteasome cleavage; it is part of the online
server NetCTL (http://www.cbs.dtu.dk/services/NetCTL/)
for complete prediction [77, 78]. The whole suite is also
part of the IEDB analysis tools. Another processing predic-
tion algorithm is FragPredict, which predict both antigen
cleavage searching and TAP binding; it uses a statistical
analysis to search for amino acid motifs characterizing
proteolytic sites [79, 80]. FragPredict is part of the MAPPP
server (http://www.mpiib-berlin.mpg.de/MAPPP/), which
takes positive peptides and further analyzes them for MHC
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TaBLE 1: Examples of the most commonly used databases and sequence-based algorithms for T-cell epitopes prediction.
Databases Link Algorithms used (cited ones)
Immune Epitope ) . Stabilized Matrix
Database (IEDB) http:/fwww.iedb.org/ Method-NetMHC-NetMHClIpan-NetChop
SYFPEITHI http://www.syfpeithi.de/ SYFPEITHI
HIV Molecular .
Immunology Database http://www.hiv.lanl.gov/
IMGT/HLA Database http://www.ebi.ac.uk/ipd/imgt/hla/
Sequ§nce-based Link Brief description
algorithms
http://www.syfpeithi.de/Scripts/MHCServer.dll/EpitopePrediction ~ Use of anchor residues
SYFPEITHI . .
htm Score based on frequency in natural ligands
MHC I epitopes predictor
BIMAS http://www-bimas.cit.nih.gov/molbio/hla_bind/ Use of coeflicient tables of dissociation
halftime
. . Peters and Sette, 2005
IS\;[Iztt)}lllcl)Z(;?d Matrix http://tools.immuneepitope.org/main/html/tcell_tools.html Score system for nonbinders
Use of training datasets
Artificial neural network
NetMHC http://cbs.dtu.dk/services/NetMHC/ MHC I epitopes predictor
Trained with 57 human HLA
Artificial neural network
NetMHCIIpan http://cbs.dtu.dk/services/NetMHClIpan/ MHC II epitopes predictor
Analyze >500 HLA-DR alleles
Use of quantitative matrices derived from
PROPRED http://www.imtech.res.in/raghava/propred/ the literature
MHCII epitopes predictor
Artificial neural network
NetChop http://cbs.dtu.dk/services/NetChop/ Proteasome cleavage predictor
Part of NetCTL server
Proteasomal cleavage sites and proteolytic
FragPredict http://www.mpiib-berlin.mpg.de/MAPPP/expertquery.html fragments predictor

Part of MAPPP server

binding through the BIMAS and SYFPEITHI algorithms [81]
(Table 1).

3.4. In Vitro Approaches: Cell-Based Methods. Experimental
techniques for T-cell epitopes mapping can be roughly divid-
ed in two main groups defined as cell based and cell free.

Cell-based techniques mainly involve the screening of
synthetic peptides on T-cell population to evaluate binding
specificity. The aforementioned computational methods play
a fundamental role to focus the analysis on a selected cohort
of peptides, reducing the number of potential ligands to be
tested. Hereafter, we review the most common approaches
used to date [82].

A broadly used cell-based approach is the enzyme
linked immunospot assay (ELISPOT) [83]; it evaluates T-
cell cytokines secretion levels (generally IFN-y) after antigen
recognition. In details, lymphocytes are incubated on plates
coated with anticytokines Abs with different peptides to be
tested. Produced cytokines are captured and secretory activity
is then evaluated immunochemically. The advantages derived
from this technique mainly consist in its high resolution
(single-cell) and high throughput results that can be further

improved by the use of dedicated scanners allowing the
scaling-up of the technique.

Other cell-based assays are based on flow cytometry tech-
niques that allow the selection of activated T cells. A widely
used approach involves the culture of T cells in copresence
of putative epitopes and a secretion inhibitor [84]. Activated
cells are then sorted through after intracellular staining
of retained cytokines with labeled Abs; different cytokines
can be simultaneously evaluated using specific fluorescent-
labeled antibodies. The most important limitation of this
technique consists in the requirement of high quality sorting
facilities.

Lymphoproliferation assays rely as well on cytometric
relevation; they consist in the uptake of the CFSE dye
from T cells before activation [85]. After incubation with
different peptides, antigen stimulation is evaluated through
dye dilution caused by activated T-cell proliferation.

The use of cell-based techniques presents several advan-
tages, most notably the possibility to test the putative T cell-
activating peptides directly against target cells. The main
drawback consists in the need to be addressed by preliminary
computational studies to reduce time and resources expense.



3.5. In Vitro Approaches: Cell-Free Methods. Many cell-free
methods have been developed to identify a definite anti-
gen region potentially able to stimulate an effective T-cell
response. Here, we briefly review one of the most promising
approaches adopted in this research field [86]. It consists in
recreating the antigen-processing compartment through the
proteolytic digestion of an antigen of interest. The whole anti-
gen is incubated with adequate soluble MHC molecules and
proteases (mainly cathepsins and exopeptidases). Digested
peptides specifically recognized by MHC molecules are
bound and eluted after immunoprecipitating the complex,
and T epitopes can then be analyzed by MS to identify
immunogenic protein domains. The most important advan-
tage of this assay relies on the direct employment of the
whole antigen present on the pathogen to be targeted and on
the simulation of its protelytic digestion into immunogenic
peptides. The use of the entire antigen can permit, in fact, the
identification of antigen-derived peptides that can be omitted
during a synthetic peptide library design and/or during the in
silico evaluation of the peptides to be assayed [87]. Moreover,
the use of mass spectrometry methods allows the recognition
of peptide posttranslational modifications that can affect the
binding.

4. Discussion

Several approaches combining the use of computational anal-
ysis with laboratory techniques have been widely described
in the scientific literature [88-93]. Here we take influenza
virus as an example of hypervariable pathogen that requires
the development of novel vaccinal strategies to elicit a broad
immune response. Two studies are reported as examples of
B-cell epitope characterization and T-cell-activating peptides
identification through the combination of computational and
experimental approaches.

First example regards the epitope characterization of PN-
SIA28, a mADb endowed with potent neutralizing activity
against highly phylogenetically divergent isolates of Influenza
A virus and directed against a conserved region of the surface
glycoprotein hemagglutinin. PN-SIA28 has been character-
ized through different experimental and in silico approaches
[94-96]. In particular, Clementi et al. employed techniques
such as random peptide library screening, alanine scanning
on HA, and in vitro generation of escape viral variant under
mADb selective pressure. The experimental derived data have
been then analyzed through freely available bioinformatics
tools, allowing the identification of the putative epitope
recognized by PN-SIA 28. More in details, the analysis of
mimotopes sequences selected through the peptide panning
technique has been performed using Pepitope, a freely avail-
able online server. It allowed the identification of putative
PN-SIA28 epitope through the superimposition of panning-
selected peptide structural motifs on HA crystal structures.
Epitope preliminary prediction has been confirmed and
extended by experimental approaches such as alanine scan-
ning.

As previously described, T-cell epitopes prediction
requires the use of databases and bioinformatic tools to
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address experimental studies. Predictive algorithms are
employed to significantly reduce the number of putative pep-
tides to be tested against T cells. As an example, Wang et
al. used the NetCTL server, which rely on ANN-based algo-
rithms to predict proteasomal cleavage, interaction propen-
sity to TAP and MHC bindings to obtain a limited number
of putative HLA-binding peptides derived from influenza A
proteins [97]. The binding-dependent T-cell activation of in
silico identified peptides has been then evaluated through
cell-based techniques such as ELISPOT and intracellular
cytokines staining. This integrated study identified 13 pep-
tides highly conserved among the H5N1 Influenza subtype
able to elicit a T cells-mediated immune response. Later on,
the same research group used an almost identical approach
to extend their analysis to protein domains less conserved
but more protective [98]. Considering both researches, Wang
et al. characterized 30 peptides capable of elicit a cellular
immune response that require in vivo studies to verify
their protective activity. These combined approaches are
largely used to target different hypervariable viruses [99, 100]
and have been extensively used as well to study nonviral
pathogens [101-104].

5. Conclusions

Hypervariable viruses still represent a major world health
threat. The identification of conserved protein domains,
shared among the different viruses and able to elicit a
protective immune response, opens new perspectives in the
development of epitope-based vaccines. In particular, the
discovery of protective mAbs, able to target these broadly
shared protein motifs, permits to work on the identification
of peptides able to mimic these epitopes, and hopefully, to
elicit an immune response similarly protective. Moreover, the
possibility to identify peptides able to elicit an effective T-cell
response against these viruses can enormously implement the
efficacy of a new vaccine formulation able to elicit both T-
and B-cell protective responses (Figure 1). Here, we reviewed
different strategies based on experimental techniques and
aimed to reach this main “goal” through the use of “in
silico” strategies allowing to address and analyze the empirical
obtained data and reducing experimental time and costs by
improving identification efficacy.
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