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Abdominal aortic aneurysm (AAA) is defined as a progressive segmental dilation of the abdominal aorta and is associated with high
mortality. The characterized features of AAA indicate several underlying mechanisms of AAA formation and progression,
including reactive oxygen species production, inflammation, and atherosclerosis. Mitochondrial functions are critical for
determining cell fate, and mitochondrial dynamics, especially selective mitochondrial autophagy, which is termed as mitophagy,
has emerged as an important player in the pathogenesis of several cardiovascular diseases. The PARKIN/PARIS/PGC1α
pathway is associated with AAA formation and has been proposed to play a role in mitochondrial dynamics mediated by the
PINK/PARKIN pathway in the pathogenesis underlying AAA. This review is aimed at deepening our understanding of AAA
formation and progression, which is vital for the development of potential medical therapies for AAA.

1. Background of AAA

Aortic aneurysm is universally characterized as the weaken-
ing of the aortic wall and leads to progressive dilatation [1].
Abdominal aortic aneurysm (AAA) most commonly affects
the infrarenal part of the aorta; therefore, a widely used defi-
nition of AAA is a maximum infrarenal abdominal aortic
diameter of ≥30mm on ultrasonography or computed
tomography (CT) imaging, although other definitions have
been used in different studies, such as an infrarenal to supra-
renal diameter ratio of 1.2 to 1.5 [1]. The weakened aortic
wall of the AAA is pathologically typified with proteolytic
destruction of extracellular matrix, inflammation, intense
oxidative stress, and apoptosis of vascular smooth muscle
cells (VSMCs) [2, 3]. Without intervention, the aneurysm
progressively expands and leads to lethal aortic rupture [1,
4, 5]. Other less common complications include emboliza-
tion, fistula formation, and iliac vein compression [1].

Aortic rupture commonly leads to bleeding into the ret-
roperitoneum or abdomen with high mortality [5]. The max-
imum diameter of AAAs is the most significant predictive
factor for the risk of aortic rupture [6, 7]; other factors predis-
posing to rupture include active smoking, rate of growth,

aberrant biomechanical properties of the aneurysmal sac,
and male sex [8]. Intraluminal hemodynamic conditions also
influence AAA risk of rupture, and both peak wall stress and
residual wall strength have been proposed as predictive
parameters [9, 10]. The current recommendations for AAAs
mostly refer to surgical treatment, including either open or
minimally invasive surgery. These invasive interventions
are indicated for large, asymptomatic AAAs and symptom-
atic or ruptured AAAs of any diameter [11, 12]. The critical
diameter indicating surgery is 55mm, as invasive surgery
does not improve survival in patients with AAAs smaller
than 55mm in diameter [13, 14]. Small AAAs are only
followed by periodic ultrasound surveillance until the diam-
eter reaches 55mm, when surgical repair is indicated. How-
ever, most patients present with small and asymptomatic
AAA. Considering the high mortality of aortic rupture, it is
of importance to identify aneurysms in early stages. The
rapid advances of imaging techniques, including ultrasound
and CT, have greatly improved the rate of detection [11].
Furthermore, defining patients with a high risk of developing
AAAs is also helpful for early identification. According to the
current understanding from observational studies, several
risk factors have been identified, of which smoking is the
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most important modifiable risk factor. Cessation of smoking
not only reduces the risk of developing AAA but also limits
aneurysm expansion [15, 16]. Other risk factors include old
age, male sex, family history of AAA, complications with
other cardiovascular diseases, hypertension, and dyslipid-
emia [1, 5, 17, 18].

Even though significant advances have been made in the
management of AAAs, the disease still poses a significant
medical burden on early-stage management [19]. The benefit
of invasive management is limited to patients with small,
asymptomatic AAAs. However, an effective and specific
medical therapy is not currently available [19, 20]. The lack
of drug therapy that prevents aneurysm development or halts
aneurysm expansion draws specific attention to improve our
understanding of the underlying mechanism of AAA.

2. Current Theories of AAA Pathogenesis

2.1. Inflammation and Imbalance of ROS Production and
Antioxidants. Inflammation plays an important role in both
the development and the progression of AAA [5] and is not
confined to only inflammatory AAA [21]. Chronic aortic
inflammation may lead to the destruction of aortic tissue
and VSMC dysfunction, and eventually apoptosis [5]. In
agreement with the pathogenic theory of inflammation, in
animal models, Kyoto Encyclopedia of Genes and Genomes
(KEGG) network analysis demonstrated a significant upreg-
ulation of a wide range of immune processes, including
cytokine–cytokine receptor interactions, leukocyte transen-
dothelial migration, B cell and T cell signaling pathways,
and natural killer cell-mediated cytotoxicity [22, 23]. Infiltra-
tion of innate and adaptive immune cells and their products
is observed in the aortic wall [24, 25]. In addition, observa-
tional data from animal models or human specimens also
support the notion that inflammation plays a causative role
in the development and progression of AAAs. For example,
apoptosis-associated speck-like protein containing a caspase
recruitment domain (ASC) is highly expressed in adventitial
macrophages. ASC deficiency reduced inflammatory cell
infiltration and cytokine expression after vascular injury
and attenuated the subsequent initial aneurysm formation
[26]. Furthermore, the NLRP3 inflammasome may act as
an essential mediator of vascular inflammation and subse-
quent AAA formation [26, 27].

The inflammation in AAA pathogenesis is associated
with the production of reactive oxygen species (ROS) and
oxidative stress [28, 29]. Mitochondrial oxidative stress from
macrophages induces inflammation [28], which in turn
enhances oxidative stress with resultant injury to tissues. Sig-
nificant ROS production is one of the key features of the vas-
cular wall in AAAs and is involved in the degeneration of the
vascular wall. Higher levels of ROS such as O2

− and NOX,
cyclo-oxygenase-2 (COX-2), and lipid peroxidation products
are reported in biopsies of human aneurysmal aortas, and
these products are responsible for exacerbating VSMC apo-
ptosis and promoting proteolytic degradation of extracellular
matrix (ECM) [30–32]. Dysregulation of the antioxidant pro-
tective mechanism has also been reported [33]. The imbal-
ance of oxidants and antioxidants regulates ECM

remodeling and promotes VSMC dysfunction, indicating a
causative role in AAA development [33].

2.2. Atherosclerosis. Atherosclerosis is thought to play a role
in the pathogenesis of AAA. Several risk factors are shared
between AAA and atherosclerosis, such as smoking, family
history, or complications with other atherosclerosis-related
diseases. Ischemic heart disease and peripheral artery disease
are also established risk factors for AAA prevalence and inci-
dence. In atherosclerotic plaques, the loss of VSMCs in
response to pathologic stimuli, such as oxygen-derived free
radicals, leads to weakening of the arterial wall [5]. In addi-
tion, hemodynamic forces caused by plaques in AAAs induce
phenotypic changes of VSMCs [5]. The nonproliferating dif-
ferentiated VSMCs present with a contractile phenotype and
allow normal vascular function [34], while VSMCs are stim-
ulated to differentiate into the synthetic phenotype under cir-
cumstances of vascular injury, mechanical stress, and ROS
stimulation. These synthetic VSMCs display a partial loss to
matrix production and release matrix remodeling enzymes.
Increased activity of matrix metalloproteinases-2 (MMP-2)
from VSMCs and dysfunction of elastin and collagen lead
to a weakening of matrix capacity and integrity [35, 36]. This
abnormal function of VSMCs is a critical determinant in the
pathogenesis of atherosclerosis [37] and promotes the forma-
tion of AAA.

2.3. Inherited Factors. In addition to the traditional consider-
ation of environmental factors in the pathogenesis of aneu-
rysms, a genetic role in AAA pathogenesis is supported by
the increased risk of patients with a positive family history
of AAA. A twin study suggested that additive genetic compo-
nents may play a more significant role in AAA penetrance
than environmental factors [38]. Several SNPs were reported
to be associated to AAA directly. SNPs have been reported
being individually associated with risk of AAA [5, 39].
For example, the SNP of rs6511720 in LDL receptor and
SNP of rs602633 in Sortilin 1 were reported to be associ-
ated with lower AAA risk [39]. These risk alleles are asso-
ciated with matrix remodeling, immune function, and lipid
metabolism [39].

3. A Potential Role of Mitochondrial
Function in the Pathogenesis of AAA

Based on our current understanding of the underlying mech-
anism of AAAs, several pharmacological therapies have been
proposed for preventing or halting the development or
growth of AAA. These include widely used preventive medi-
cines, such as statins, antiplatelet drugs, or corticoids, target-
ing the potential pathogenic pathways in a general manner.
Other attempts include more specific targets for critical sig-
naling pathways (including AKT signaling pathway and
Notch signaling pathway), kinases (such as c-Jun N terminal
kinase (c-JNK) and extracellular signal-related kinase), or
cytokines (such as interleukin-1β) [19, 20]. However, a large
number of drugs that were expected to be effective in preclin-
ical animal experiments failed in clinical trials eventually.
One of the most heated drugs is doxycycline, which strongly
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inhibited AAA formation in AngII-induced AAA models
through reducing matrix metalloproteinase (MMP) activity
[40], but it failed in large randomized, placebo-controlled,
double-blind trial, as patients did not gain benefit during
AAA progression [41]. The current application of genome
analysis may provide several new insights into the area.
According to the gene expression profiling analysis of differ-
entially expressed genes (DEGs) between AAA samples and
normal controls, a total of 436 DEGs were identified using
Gene Ontology (GO) and KEGG analyses [42], and four dif-
ferent clusters were identified from the protein–protein
interaction network [42]. In addition to the known and tradi-
tional pathways involved in the response to viral infection
and the defense response indicative of the role of inflamma-
tion during AAA, one of the four clusters was associated with
mitochondria-associated functions and the oxidative phos-
phorylation subpathway [42]; a potential role of mitochon-
drial function in the pathogenesis of AAAwas thus proposed.

3.1. Mitochondrial Dynamics. The maintenance of mitochon-
drial function is crucial for normal cell physiology not only in
the aspect of ATP production but also in the role of regulat-
ing cell death and survival through integrating cellular sig-
nals. The mitochondrion is also the primary source of ROS,
triggering oxidative stress and the downstream changes of
cell fate [43].

Several homeostasis mechanisms promote proper mito-
chondrial functions in normal cells. Mitochondrial dynam-
ics, which includes mitochondrial fission, fusion, biogenesis,
and mitophagy, determines the morphology, quality, and
abundance of mitochondria [43].

Mitochondrial fusion involves changes during mitochon-
drial morphologic changes and is responsible for the
exchange of mitochondrial matrix and DNA between indi-
vidual mitochondria [44]. Mitochondrial fusion is a multi-
step process including the sequential fusion events of the
outer mitochondrial membrane (OMM) and inner mito-
chondrial membrane (IMM). OMM fusion is mediated by
mitofusin 1 and 2 (MFN1/2), while the fusion of IMM is reg-
ulated by the GTPase Optic Atrophy 1 (OPA1) [43, 45]. Fis-
sion is essential for maintenance and repair as it facilitates the
removal of damaged components. The recruitment of the
GTPase Dynamin-related protein 1 (DRP1) is crucial for
mitochondrial fission and is mediated by mitochondrial fis-
sion 1 protein (FIS1), mitochondrial fission factor (MFF),
and mitochondrial dynamic proteins of 49 and 51 kDa
(MiD49/51) [43, 45]. DRP1 is dephosphorylated and
recruited on the outer mitochondrial surface, and this pro-
cess initiated mitochondrial fission. Subsequently, DRP1 oli-
gomerizes and induces GTP hydrolysis-mediated membrane
constriction [46]. Mitochondrial biogenesis is responsible for
incorporating new and healthy units into the mitochondrial
network and for increasing mitochondrial mass [47]. Perox-
isome proliferator-activated receptor coactivator 1 α
(PGC1α) [48] and its downstream nuclear respiratory factors
1 and 2 (NRF1 and 2), mitochondrial transcription factor A
(TFAM), and voltage-dependent anion channel (VDAC)
are critical in modulating mitochondrial biogenesis [49].
Among these factors, PGC1α is a nuclear encoding factor

that initiates mtDNA transcription. Mitophagy is essential
for eliminating the aged or damaged mitochondria in
response to changes in the cellular environment [50]. The
canonical regulatory pathway of mitophagy to date involves
the PINK1/PARKIN pathway. The serine/threonine kinase,
phosphatase, and tensin homologue- (PTEN-) induced
kinase 1 (PINK1) accumulate on the OMM in response to a
trigger that initiates selective mitophagy, such as ROS [51],
Mitochondrial Permeability Transition Pore (mPTP) open-
ing [52], and loss of mitochondrial membrane potential
[53]. The accumulation of PINK1 recruits PARKIN, an E3
ubiquitin ligase which ubiquitinates several downstream sub-
strates and leads to the ensuing autophagy processes [54].
Another noncanonical pathway involves receptors that
mediate mitophagy, such as BCL-2- (B cell lymphoma pro-
tein-2-) related proteins BNIP3 (BCL2 Interacting Protein
3), FUN14 domain-containing protein 1 (FUNDC1), and
the OMM protein Bcl2-like protein 13 (Bcl2-L-13). These
receptors interact with LC3 (Light Chain 3) without the need
for another adaptor protein [51].

The balance between fusion and fission is sustained to
maintain the proper function of mitochondria, while biogen-
esis and mitophagy are essential for mitochondria renewal
and elimination of dysfunctional mitochondria (Figure 1).

4. Mitochondrial Function in AAA

Mitochondrial dynamics is critical for mitochondrial health
and quality control. Dysfunction of mitochondria partici-
pates in the pathogenesis of several cardiovascular diseases
[43], such as diabetic cardiomyopathy [55], myocardial
infarction, and ischaemia/reperfusion [56]. Mitochondrial
dysfunction, including disturbed mitochondrial dynamics
including mitochondrial fusion, fission, mitobiogenesis, and
mitophagy, is thought to contribute to the pathogenesis
underlying the formation and development of AAA.

4.1. Mitochondrial Fusion and Fission and AAA. Mitochon-
drial fusion and fission are tightly regulated and together
determine the shape and functions of mitochondria. Subcu-
taneous infusion of angiotensin II is one of the main methods
used to induce AAA in mice, which recapitulates several
important features of human AAA, including inflammation
and promotion by significant risk factors of human AAA,
such as male sex and smoking. Exposure to angiotensin II
in cultured rat aortic VSMCs induces mitochondrial fission
[57], which can be prevented by the putative DRP1 inhibitor
Mdivi-1 (mitochondrial division inhibitor 1) [57]. A recent
study has found that DRP1 expression was enhanced in
human AAA samples compared to age-matched healthy con-
trols [58, 59]. Furthermore, DRP1 inhibition by Mdivi-1 pro-
tects apolipoprotein E-deficient mice infused with
angiotensin II from AAA development, which was assessed
by the measurement of external and internal diameters of
the abdominal aorta as well as by histological observation
[58]. Also, the heterozygous expression of DRP1 presents a
protective role in AAA development. DRP1-mediated fission
leads to a decrease in the number of mitochondria in AAA
tissues, which is attenuated by Mdivi-1. Mdivi-1 also
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attenuates the inflammatory phenotype in abdominal aortic
VSMCs [58]. The protection of AAA by DRP1 inhibition is
associated with a reduced stress response and senescence.
Senescent phenotype was seen in both mouse AAA models
and human AAA samples, and its attenuation by Mdivi-1
was confirmed in mouse AAA models treated with AngII
and β-aminopropionitrile [58]. Therefore, DRP1-mediated
mitochondrial fission potentially promotes proinflammatory
phenotypic changes of VSMCs and contributes to the patho-
genesis of AAA development.

4.2. Mitochondrial Biogenesis and AAA. Mitochondrial bio-
genesis is the process that increases mitochondrial mass
and is involved in the control of cell metabolism and signal
transduction. Recent studies highlight that PGC1α, the main
regulator of mitochondrial biogenesis and protector from
oxidative stress [59], also regulates VSMC migration and
matrix formation. Oxidative stress and VSMC dysfunction
contribute to the pathogenesis of AAA, and peroxisome
proliferator-activated receptor-γ (PPARγ) is involved in
AAA formation; PPARγ is a member of the nuclear receptor
superfamily of ligand-dependent transcription factors, which
increases gene expression when binding to DNA; loss of
PPARγ expression has been demonstrated to promote
AAA, and activation of PPARγ attenuates AAA formation
[49, 60, 61]. Therefore, the role of mitochondrial biogenesis
in AAA formation is emerging. PGC1α promotes mitochon-

drial biogenesis and acts as a coactivator of nuclear respira-
tory factor-1 (NRF-1) or/and nuclear respiratory factor-2
(NRF-2), therefore increasing the expression of mitochon-
drial genes involved in oxidative phosphorylation such as
human cytochrome c [62]. In human AAA specimens, the
gene expression of PPARGC1A was reduced by 51%, and
the gene expression levels of VDAC and TFAMwere reduced
significantly concomitant with the PPARGC1A expression
compared to the healthy control [49]. The ratios of the
expression of Cytochrome B and Cytochrome C oxidase vs.
that of β-actin were also reduced in another study. The ratios
act as a marker for mitochondrial biogenesis, and this indi-
cates that mitochondrial biogenesis is disturbed in AAA
[63]. In support of the role of PGC1α-mediated mitochon-
drial biogenesis in aneurysm formation, Pluijm et al. gener-
ated a Fibulin-4R/R mouse model as a progressive ascending
aneurysm formation model [64]. Fibulin-4 is a secreted gly-
coprotein that is critical for structural integrity and elasticity
of the aortic wall, and haploinsufficiency of Fibulin-4 com-
promises the integrity of aortic wall leading to aneurysm for-
mation [65]. The mRNA levels of PGC1α were significantly
downregulated in Fibulin-4R/R aortas, and the activity of
PGC1α was also lower in Fibulin-4R/R VSMCs which is con-
firmed in luciferase-based assay. Furthermore, the activation
of PGC1α after Forskolin treatment significantly increased
the proliferation rate of Fibulin4R/R VSMCs and rescued the
decrease in OCR [64]. Taken together, disturbance of
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Figure 1: Mitochondrial dynamics. Mitochondrial dynamics includes the process of mitochondrial biogenesis, fusion, fission, and mitophagy
and determine the proper abundance and function of mitochondria. (1) PGC-1α regulates mitobiogenesis and initiates mtDNA transcription
through its downstream factors, such as NRF1/2. (2) Mitofusion 1/2(MFN1/2) on the outer mitochondrial membrane and optic atrophy 1
(OPA1) on the inner mitochondrial membrane regulates mitochondrial fusion. (3) DRP1 serves to constrict mitochondrion physically and
uses FIS1 as mitochondrial targets to form the fission complex, and MFF and MiD49/51 also participate in mitochondrial fission. (4)
Canonical regulation of mitophagy includes the PINK1/PARKIN pathway; PINK1 recruits PARKIN on mitochondrion where PARKIN
ubiquitinates downstream proteins and initiates the form of mitophagy.
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mitochondrial biogenesis participates in the pathogenesis of
AAA, and dysfunction of mitochondrial respiration is linked
to PGC1α regulation in AAA [49, 64].

4.3. Mitophagy and AAA. There are limited data with respect
to the direct role of mitophagy in AAA pathogenesis, though
the role of mitophagy in cardiovascular pathology is emerg-
ing [46]. The ability of mitophagy to remove damaged and
dysfunctional mitochondria may protect cardiomyocytes
from prolonged cardiac stress. Indeed, it has been demon-
strated that mitophagy is necessary for cardiomyocyte adap-
tation to changes in cardiac load [46]. In addition, impaired
PINK1/PARKIN-mediated mitophagy directly leads to myo-
cardial dysfunction [43]. PINK1-/- mice develop early left
ventricular dysfunction and pathological cardiac hypertro-
phy [66], which is associated with increased oxidative stress,
and PINK1 protein levels are remarkably reduced in patients
with advanced heart failure [66]. Based on current under-
standing of mitophagy, it may participate in the pathogenesis
of AAA in several ways.

Mitophagy is a crucial process that helps eliminate dys-
functional mitochondria before they cause damage or trigger
cell death, thereby maintaining mitochondrial homeostasis,
and may reduce oxidative damage or ROS production [54].
The disturbed function of mitophagy obviously leads to the
accumulation of dysfunctional mitochondria and insufficient
ATP production and results in cell death eventually, provok-
ing excessive ROS production. Mitochondrial ROS (mtROS)
production activates redox-sensitive transcription factors
and facilitates the production of proinflammatory factors
such as interleukin-6 (IL-6), which is abundant in AAA tissues
and increases in circulating level [20, 67, 68]. Mitochondrial
ROS also recruit ASC and caspase 1 precursor, promoting the
maturation of IL-1β and IL-18 [69]. The NLRP3 inflamma-
some has been reported as an initiating mediator for AAA for-
mation [27, 28]. Inhibition of mitophagy facilitates the
activation of the NLRP3 inflammasome [70]. OxidizedmtDNA
released into cytosol binds and activates the NLPR3 inflamma-
some directly in macrophage [67, 71]; activation of macrophage
inflammasome is involved in hyperhomocysteinemia-
aggravated AAA formation, as observed in vitro and in
AngII-infused apolipoprotein E-deficient mice [2].

Dysfunctional mitophagy also plays a significant role in
atherosclerotic plaque destabilization and overall plaque
development [72] and seems to depend on certain cell types
involved in the pathogenesis of atherosclerosis. VSMCs iso-
lated from carotid plaques showed increased mitophagy
levels, accompanied by elevated expression of PINK1, com-
pared to healthy VSMCs [73]. Defective mitophagy in
VSMCs leads to cell senescence, presenting a senescence-
related secretory phenotype characterized with elevated abil-
ity of migration and loss of contractile proteins such as α-
smooth muscle actin and calponin [72, 74, 75].

Impaired mitophagy in macrophages induces polariza-
tion into a proinflammatory phenotype (termed as M1) of
macrophages [76] and accelerates atherosclerotic plaque
development. Plaques from these models develop an unstable
phenotype characterized with an increase in the necrotic core
area and apoptosis [72].

The dysfunction of VSMCs is a significant hallmark in
AAA, as dysfunction or apoptosis of VSMCs leads to the
release of enzymes that are responsible for the degradation
of ECM [2, 3]. During pathological stimuli, such as choles-
terol, VSMCs acquire proliferative and migratory capacity,
accompanied by a loss of SMC markers such as actin, and
expression of macrophage antigens like CD68 and Arginase
1 [35]. Platelet-derived growth factor (PDGF) promotes the
dedifferentiation of VSMCs and induces the synthetic pheno-
type. PDGF also induces mitophagy in a time-dependent
manner as the formation of LC-II increases [35, 72, 77].
There is a definite link between mitochondrial dysfunction
and dedifferentiation of VSMCs. Deficiency in mitochondrial
protein polymerase interacting protein 2 (Poldip2) induces
metabolic reprogramming with repressed mitochondrial res-
piration and increased glycolytic activity [35] and leads to
significant upregulation of proteins from the contractile
apparatus, which means that VSMCs present with a highly
differentiated phenotype [35]. Apelin is a family of novel adi-
pokine that activates receptors present on VSMCs and cardi-
omyocytes and elicits cardiovascular effects on experimental
animals [78, 79]. Apelin-13 is one of the endogenous iso-
forms in human cardiac tissue that mediates vasodilatation,
vasoconstriction, and cardiac contractility [79]. Apelin-13
promotes human aortic VSMC proliferation [34], and this
promotion is related to increased mitophagy. In response to
the Apelin-13 induction, the expression levels of PINK1,
PARKIN, and VDAC1 are effectively enhanced; blocking
Apelin-13 reversed this stimulatory effect, and the downreg-
ulation of PINK1/PARKIN ameliorates the enhanced prolif-
erative capacity in response to Apelin-13 in vivo
demonstrated in PINK1-/- mice [34].

We speculate that the PINK1/PARKIN pathway plays a
role in the mitochondrial dynamics in AAA. It is well estab-
lished that mitophagy induces a metabolic shift and pheno-
typic transition in VSMCs and regulates mitochondrial
ROS production, inflammation, and atherosclerosis develop-
ment. It is reasonable to propose that disturbed mitophagy
contributes to the pathogenesis of aneurysm. Also, we
emphasize the central role of the PINK1/PARKIN pathway,
as the E3 ubiquitin ligase PARKIN ubiquitinates several
downstream substrates not confined to a role in mitophagy.
MFNs are also ubiquitinated by PARKIN for proteasomal
degradation [43]. Mitochondrial fusion and fission are tightly
mediated by dynamin-like GTPases (DRP1 and MFN1/2,
respectively). These GTPases all possess a cytosolic domain
that is targeted for ubiquitin [80]. It is clear that the ubiqui-
tin/proteasome system is crucial for mitochondrial quality
control and the regulation of mitochondrial morphology
[81]. The expression and recruitment of DRP1 lead to mito-
chondrial fission in a PINK1-dependent manner and to
mitophagy [82, 83]. This ubiquitylation process leads to the
prevention of fusion and the promotion of fission and mito-
phagy [46]. In addition, it has been demonstrated that
PGC1α is regulated by PARKIN-interacting substrate
(PARIS) [84]. PARIS is a protein that contains a Krüppel-
associated box (KRAB) at its N-terminus and a C2HC/C2H2
type zinc finger at its C-terminus and acts as a major tran-
scriptional repressor of PGC1α [84]. PARIS interacts with
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PARKIN directly and is ubiquitinated by PARKIN for degra-
dation under normal conditions. Accumulation of PARIS
due to PINK1/PARKIN dysfunction or overexpression of
PARIS leads to significant decreases in the mitochondrial
size, number, and protein expression [85, 86].

5. Conclusion

Mitochondrial dynamics is a process that is crucial for mito-
chondrial homeostasis [51]. The role of dysfunctional mito-
chondria or disturbed mitochondrial dynamics in
cardiovascular diseases in several pathologic conditions, such
as cardiomyopathy and cardiac ischemia/reperfusion, is
emerging [54]. AAA is one of the most puzzling vascular dis-
eases to date, as there is no medication available despite
advances in surgical intervention having saved a large num-
ber of lives [20]. There is an urgent need to deepen our
understanding of the pathogenesis of AAA formation and
development, to develop new medications for the treatment
and/or prevention of AAA. Given its significance in mito-
chondrial quality control, we propose that disturbed mito-
chondrial dynamics contributes to the pathogenesis of AAA
and underlines the central role of the PINK1/PARKIN path-
way during the pathogenesis of aneurysms based on cur-
rently available evidence. Direct evidence implicating
mitophagy in AAA formation, as well as potential pharmaco-
logical interventions derived from mitochondrial dynamics,
is being anticipated.
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