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This paper describes a convenient synthesis of 1,4-dideoxy-1,4-imino-D-ribitol (DRB) from D-ribose. L-Lyxonolactone, a key
intermediate in this synthesis, was prepared by base-promoted hydrolysis of a 5-chlorinated D-ribonolactone derivative with
inversion of configuration at the C-4 position. Cyclization of the generated dimesylated L-lyxitol with benzylamine proceeded
with another configurational inversion at C-4 to afford the D-ribo-configured pyrrolidine system, which upon deprotection gave
DRB.

1. Introduction

1,4-Dideoxy-1,4-imino-D-ribitol (DRB, 1) is a polyhydroxy-
lated pyrrolidine alkaloid isolated from the roots of mulberry
trees (Morus alba) [1] and from the bark and pods of
leguminous plants (Angylocalyx pynaertii) [2, 3]. Owing
to its structural [4-aza]ribofuranose feature, DRB and its
derivatives have attracted considerable attention as enzyme
inhibitors that mimic glycoside and nucleoside substrates. In
fact, DRB was found to be a potent inhibitor of lysosomal
𝛽-mannosidase [3] and eukaryotic DNA polymerases [4]
and was also employed as a synthetic precursor of some
enzyme inhibitors containing the [4-aza]ribosyl group [5–8].
Therefore, there is a need to develop a simple method for the
preparation of DRB derivatives.

Two major approaches have been used to construct the
DRB framework. One is the stereoselective dihydroxylation
of optically active 2-substituted 3-pyrroline derivatives, in
which the oxidation is usually carried out using a highly toxic
osmium catalyst [9–13]; the other is a sugar-based approach.
The D- and L-forms of 1,4-dideoxy-1,4-iminoribitol were
prepared from D-gulonolactone (29% overall yield over
9 steps) and D-mannose (28% overall yield over 9 steps),
respectively [14–16]. From the viewpoint of atom economy,
pentose as a starting material is more favorable. Recently, a
related study was reported by Mercer and coworkers [17], in

which both enantiomers of 1,4-dideoxy-1,4-iminolyxitol were
efficiently synthesized from D- and L-ribonolactone. Since
the process involves configurational inversion at the C-4
position, a straightforward precursor to DRB is considered to
be L-lyxose, which is an expensive unnatural pentose. Herein,
we describe a convenient synthesis of DRB starting from D-
ribose via L-lyxonolactone , in which the D-ribo-configured
pyrrolidine ring is constructed with overall retention of the
stereochemistry at C-4 by a double inversion.

2. Results and Discussion

The synthetic route to DRB is illustrated in Scheme 1. 2,3-
O-Isopropylidene-D-ribono-1,4-lactone (2) is easily obtained
from inexpensive D-ribose using a well-established proce-
dure [18, 19] or is commercially available. At the beginning
of the synthesis, we examined the conversion of D-ribonolac-
tone 2 to L-lyxonolactone 4with inversion of stereochemistry
at C-4. A production-scale synthesis of 4 from 2 via a 5-
O-methanesulfonyl derivative was reported (59% yield at a
200 kg scale) [18]; however, we experienced variable yields
at a laboratory scale. In this study, therefore, we adopted an
alternative route via the corresponding chloride 3.

Chlorination of the hydroxyl group at C-5 of 2 was per-
formed using a Vilsmeier reagent prepared in situ fromDMF
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Scheme 1: Synthesis of DRB (1). Reagents and conditions: (i) (COCl)
2
, DMF, CH

2
Cl
2
, 97%; (ii) KOH, H

2
O, then, 3MHCl, quant; (iii) TBSCl,

imidazole, CH
2
Cl
2
, 91%; (iv) NaBH

4
, MeOH, 95%; (v) MsCl, pyridine, 85%; (vi) PhCH

2
NH
2
(BnNH

2
), toluene, 86%; (vii) 1M HCl, quant;

and (viii) H
2
, 10% Pd/C, H

2
O, quant.

and oxalyl chloride to afford 5-chloro-5-deoxy derivative 3
in 97% yield [20]. Treatment of chloride 3 with an aque-
ous KOH solution followed by acidification gave 2,3-
O-isopropylidene-L-lyxono-1,4-lactone (4) in quantitative
yield. It is believed that configurational inversion at the C-4
position occurred as reported for the mesylate reaction [21].
Namely, a base-promoted ring opening of the chlorinated
ribonolactone 3 followed by intramolecular 𝑆N2 reaction
gave epoxide 10 (Scheme 2). Subsequent 5-exo-tet [22] ring
closure between the carboxylate and epoxide proceeded with
inversion of configuration atC-4 to furnish the lactone,which
was then hydrolyzed to the open-chain derivative 11 under
strongly basic conditions. Upon acidification, carboxylate 11
immediately cyclized to lyxonolactone 4.

After protection of the primary hydroxyl group of 4
as a tert-butyldimethylsilyl (TBS) ether in 91% yield, the
fully protected lactone 5 was subjected to reductive ring
opening by NaBH

4
in MeOH to afford partially protected

L-lyxitol derivative 6 in 95% yield. Diol 6 was then treated
with methanesulfonyl chloride in pyridine to give the corre-
sponding dimesylate 7 in 85% yield. Cyclization of 7 with
benzylamine involving inversion at C-4 was performed in
refluxing toluene for 3 days to give fully protected DRB 8 in
86% yield. Acidic hydrolysis of both the acetonide and TBS
protective groups in 1MHCl gaveN-benzyl DRB derivative 9
in quantitative yield. Finally, DRBwas quantitatively obtained
as its hydrochloride salt by catalytic hydrogenolysis of the
N-benzyl group. Comparison of the physical and spectral
data of DRB with the literature data completely confirmed its
identity.

In conclusion, we have achieved a convenient synthesis
of DRB in 61% overall yield from D-ribonolactone 2 over
eight steps. The D-ribo-configured pyrrolidine system was
constructed with overall retention of the stereochemistry at
C-4 by a double 𝑆N2 inversion.

3. Experimental

3.1. General. Melting points were determined using a Yam-
ato MP-21 melting point apparatus in open capillaries and
are uncorrected. 1H and 13C-nuclear magnetic resonance
(NMR) spectra were measured on a VarianMercury plus 400
spectrometer at 400 and 100MHz, respectively. All chemical
shifts are reported as 𝛿 values (ppm) relative to residual
chloroform (𝛿H 7.26), HDO (𝛿H 4.79), the central peak of
deuteriochloroform (𝛿C 77.0), or dioxane (𝛿C 67.2); J values
are expressed in Hz. Optical rotations were measured on
a HORIBA SEPA-200 polarimeter. Elemental analyses were
performed using a PerkinElmer 2400 Series II analyzer.

All reagents and solvents were of commercial grade and
used according to supplier instructions unless otherwise
mentioned.

3.2. 5-Chloro-5-deoxy-2,3-O-isopropylidene-D-ribono-1,4-lac-
tone (3) [20, 23]. DMFwas added (117 𝜇L, 110mg, 1.51mmol)
to a solution of oxalyl chloride (129 𝜇L, 194mg, 1.52mmol) in
CH
2
Cl
2
(4mL) at 0∘C, and themixture was stirred for 12min.

To the resultant cloudy suspension, a solution of compound 2
(188mg, 0.999mmol) in CH

2
Cl
2
(2mL) was added dropwise

at the same temperature, and the mixture was refluxed
for 90min. The cooled reaction mixture was diluted with
CHCl

3
, washed with brine, and dried over MgSO

4
. After

removal of the solvent, the residue was chromatographed
on SiO

2
. Elution with a mixture of hexane and AcOEt (7/3)

gave compound 3 (200mg, 0.968mmol, 97%) as a white
solid. An analytical sample was obtained by recrystallization
from a mixture of EtOH and acetone. Colorless powder, mp
97.5–98.5∘C. [𝛼]D

23−60.8 (c 1.00, CHCl
3
). 1H-NMR (CDCl

3
)

𝛿 1.40 (s, 3H), 1.49 (s, 3H), 3.79 (dd, J = 12 and 2Hz, 1H), 3.85
(dd, J = 12 and 3Hz, 1H), 4.74 (d, J = 6Hz, 1H), 4.87 (dd, J = 3
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Scheme 2: Plausible reaction pathway for the configurational inversion at C-4 by base-promoted hydrolysis of lactone 3.

and 2Hz, 1H), 4.89 (d, J = 6Hz, 1H). 13C-NMR (CDCl
3
) 𝛿

25.4, 26.5, 44.7, 75.2, 78.2, 80.8, 113.7, 173.3.

3.3. 2,3-O-Isopropylidene-L-lyxono-1,4-lactone (4) [18].
Compound 3 (207mg, 1.00mmol) was added to a 2.5M
aqueous solution of KOH (1.00mL, 2.50mmol), and the
resulting mixture was stirred at room temperature overnight.
The solution was acidified with 3M HCl to pH 3 and
concentrated. The residue was triturated with acetone
(6mL) and heated to reflux. After removal of the insoluble
materials by filtration, the filtrate was dried over MgSO

4
and

concentrated under reduced pressure to give compound 4
(193mg) in quantitative yield as a white solid, mp 94-95∘C
(lit [18], mp 98-99∘C). [𝛼]D

25 −88.0 (c 0.50, acetone) (lit [18],
[𝛼]D
25 −89.0 (c 1.00, acetone)). 1H-NMR (CDCl

3
) 𝛿 1.40 (s,

3H), 1.49 (s, 3H), 2.10 (br s, 1H), 3.97 (dd, J = 12 and 5Hz,
1H), 4.04 (dd, J = 12 and 7Hz, 1H), 4.60 (ddd, J = 7, 5, and
4Hz, 1H), 4.87 (d, J = 6Hz, 1H), 4.89 (dd, J = 6 and 4Hz,
1H). 13C-NMR (CDCl

3
) 𝛿 25.7, 26.6, 60.8, 76.1, 76.2, 79.1,

114.5, 173.5.

3.4. 5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-L-lyx-
ono-1,4-lactone (5) [24]. A solution of compound 4 (193mg),
tert-BuMe

2
SiCl (166mg, 1.10mmol), and imidazole (102mg,

1.50mmol) in CH
2
Cl
2
(3mL) was stirred at room temper-

ature for 1 h. The reaction mixture was then diluted with
CHCl

3
, washed with brine, and dried over MgSO

4
. After

removal of the solvent, the residue was chromatographed on
SiO
2
. Elution with a mixture of hexane and AcOEt (7/3) gave

compound 5 (276mg, 0.913mmol, 91%) as a white solid.
An analytical sample was obtained by recrystallization from
hexane. Colorless powder, mp 87-88∘C (data for enantiomer
[25]: mp 90–91∘C). [𝛼]D

27 −52.2 (c 1.00, CHCl
3
) (data for

enantiomer [25]: [𝛼]D
22 +54.9 (c 1.03, CHCl

3
)). 1H-NMR

(CDCl
3
) 𝛿 0.09 (s, 6H), 0.90 (s, 9H), 1.38 (s, 3H), 1.45 (s,

3H), 3.93 (dd, J = 11 and 7Hz, 1H), 3.97 (dd, J = 11 and 6Hz,
1H), 4.52 (ddd, J = 7 and 6 and 2Hz, 1H), 4.79–4.82 (m, 2H).
13C-NMR (CDCl

3
) 𝛿 −5.6, −5.4, 18.3, 25.7, 25.8, 26.7, 60.8,

75.7, 76.0, 79.4, 114.0, 173.8.

3.5. 5-O-tert-butyldimethylsilyl-2,3-O-isopropylidene-L-lyx-
itol (6) [24]. NaBH

4
(351mg, 9.28mmol) was added to

a solution of compound 5 (561mg, 1.85mmol) in MeOH
(19mL) at 0∘C, and the resulting mixture was stirred at room
temperature for 1 h. After removal of the solvent, the residue
was diluted with CHCl

3
, washed with saturated aqueous

NaHCO
3
, dried over MgSO

4
, and concentrated under

reduced pressure to give compound 6 (543mg, 1.77mmol,
96%) as a white solid. An analytical sample was obtained by
recrystallization from hexane. Colorless powder, mp 64-65∘C
(data for enantiomer [25]: mp 67–68∘C). [𝛼]D

26 +9.3 (c 1.02,
CHCl

3
) (data for enantiomer [25]: [𝛼]D

23 −9.2 (c 0.08,
CHCl

3
)). 1H-NMR (CDCl

3
) 𝛿 0.08 (s, 6H), 0.90 (s, 9H), 1.38

(s, 3H), 1.51 (s, 3H), 2.83 (dd, J = 7 and 5Hz, 1H), 2.90 (d, J =
5Hz, 1H), 3.63 (dd, J = 10 and 7Hz, 1H), 3.72 (dd, J = 10 and
6Hz, 1H), 3.77–3.85 (m, 3H), 4.23–4.25 (m, 2H). 13C-NMR
(CDCl3) 𝛿 − 5.5, –5.4, 18.2, 25.0, 25.8, 27.1, 61.3, 64.5, 69.1,
75.7, 77.3, 108.2.

3.6. 5-O-tert-butyldimethylsilyl-1,4-di-O-methanesulfonyl-
2,3-O-isopropylidene-L-lyxitol (7) [24]. Methanesulfonyl
chloride (0.411mL, 608mg, 5.31mmol) was added to a
solution of compound 6 (543mg, 1.77mmol) in pyridine
(10mL) at 0∘C, and the resulting mixture was stirred at room
temperature overnight. After removal of the solvent, the
residue was diluted with AcOEt, successively washed with
1MHCl and saturated aqueous NaHCO

3
, dried overMgSO

4
,

and concentrated under reduced pressure to give compound
7 (695mg, 1.50mmol, 85%) as a colorless oil. [𝛼]D

26 −5.5 (c
1.02, CHCl

3
) (data for enantiomer [25]: [𝛼]D

24 +5.0 (c 0.14,
CHCl

3
)). 1H-NMR (CDCl

3
) 𝛿 0.097 (s, 3H), 0.103 (s, 3H),

0.90 (s, 9H), 1.38 (s, 3H), 1.51 (s, 3H), 3.08 (s, 3H), 3.11 (s, 3H),
3.83 (dd, J = 11 and 6Hz, 1H), 3.96 (dd, J = 11 and 5Hz, 1H),
4.37–4.45 (m, 4H), 4.74 (m, 1H). 13C-NMR (CDCl

3
) 𝛿−5.6

(2C overlapped), 18.2, 25.4, 25.8, 27.2, 37.6, 38.9, 63.1, 67.9,
74.4, 75.3, 78.9, 109.6.

3.7. N-Benzyl-5-O-tert-butyldimethylsilyl-2,3-O-isopropylid-
ene-1,4-dideoxy-1,4-imino-D-ribitol hydrochloride (8) [5, 8].
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A mixture of compound 7 (695mg, 1.50mol) and benzyl-
amine (891 𝜇L, 874mg, 8.16mmol) in toluene (8mL) was
heated to reflux for 3 days. The reaction mixture was then
diluted with CHCl

3
, successively washed with water and

saturated aqueous NaHCO
3
, and dried over MgSO

4
. After

removal of the solvent, the residue was chromatographed on
SiO
2
. Elution with a mixture of hexane and AcOEt (9/1) gave

compound 8 (487mg, 1.29mmol, 86%) as a colorless oil.
[𝛼]D
27 −28.0 (c 1.01, CHCl

3
). 1H-NMR (CDCl

3
) 𝛿 0.07 (s,

3H), 0.09 (s, 3H), 0.92 (s, 9H), 1.35 (s, 3H), 1.58 (s, 3H), 2.74
(dd, J = 10 and 3Hz, 1H), 3.03 (ddd, J = 4, 4, and 2Hz, 1H),
3.12 (dd, J = 10 and 6Hz, 1H), 3.66 (dd, J = 11 and 4Hz, 1H),
3.74 (d, J = 13Hz, 1H), 3.79 (dd, J = 11 and 4Hz, 1H), 4.04
(d, J = 13Hz, 1H), 4.58 (dd, J = 7 and 2Hz, 1H), 4.67 (ddd, J
= 7, 6, and 3Hz, 1H), 7.15–7.38 (m, 5H). 13C-NMR (CDCl

3
)

𝛿 −5.6, –5.5, 18.2, 25.1, 25.9, 27.1, 56.9, 59.2, 63.1, 68.8, 79.4,
83.2, 111.8, 126.8, 128.2, 128.5, 139.2.

3.8. N-Benzyl-1,4-dideoxy-1,4-imino-D-ribitol hydrochloride
(9) . A mixture of compound 8 (354mg, 0.938mmol) and
1MHCl (10mL) was refluxed for 1 h.The cooled solution was
washed with CHCl

3
and concentrated to give a quantitative

yield of compound 9 (250mg) as a brown solid. An analytical
sample was obtained by recrystallization from a mixture
of EtOH and acetone. Colorless powder, mp 190-191∘C.
[𝛼]D
23 +16.9 (c 1.00, H

2
O). 1H-NMR (D

2
O) 𝛿 3.43 (dd, J =

13 and 3Hz, 1H), 3.56 (dd, J = 13 and 4Hz, 1H), 3.62 (dd, J
= 13 and 4Hz, 1H), 3.68 (ddd, J = 8, 4, and 3Hz, 1H), 3.75
(dd, J = 13 and 4Hz, 1H), 4.21 (dd, J = 8 and 4Hz, 1H), 4.37
(ddd, J = 4, 4, and 4Hz, 1H), 4.48 (d, J = 13Hz, 1H), 4.62 (d, J
= 13Hz, 1H), 7.50–7.57 (m, 5H). 13C-NMR (D

2
O) 𝛿 57.6, 57.7,

62.0, 69.3, 70.7, 71.5, 130.0, 131.0, 131.5 (2C overlapped). Anal.
Calcd for C

12
H
18
NO
3
Cl: C, 55.49; H, 6.99; N, 5.39. Found: C,

55.59; H, 7.22; N, 5.33.

3.9. 1,4-Dideoxy-1,4-imino-D-ribitol hydrochloride (DRB, 1)
[14]. A mixture of compound 9 (250mg) and 10% Pd/C
(63mg) in H

2
O (20mL) was stirred at room temperature

overnight under an atmospheric pressure of hydrogen. After
removal of the catalyst with the use of Hyflo Super-Cel, the
mixture was washed with CHCl

3
and concentrated to give

a quantitative yield of the compound 1 (162mg) as a brown
solid. An analytical sample was obtained by recrystallization
from a mixture of EtOH and acetone. Colorless powder, mp
124–126∘C (lit [14], mp 128–132∘C). [𝛼]D

25 +57.7 (c 0.14, H
2
O)

(lit [14], [𝛼]D
25 +57.6 (c 0.59, H

2
O)). 1H-NMR (D

2
O) 𝛿 3.37

(dd, J = 13 and 2Hz, 1H), 3.49 (dd, J = 13 and 4Hz, 2H), 3.63
(ddd, J = 9, 6, and 3Hz, 1H), 3.83 (dd, J = 13 and 6Hz, 1H),
3.97 (dd, J = 13 and 3Hz, 1H), 4.21 (dd, J = 9 and 4Hz, 1H),
4.38 (ddd, J = 4, 4, and 2Hz, 1H). 13C-NMR (D

2
O) 𝛿 50.2,

58.6, 62.4, 70.0, 71.8.

Acknowledgments

The authors are grateful to Tokai University for support of
their research activities. They would like to thank Enago
(www.enago.jp) for the English language review.

References

[1] N. Asano, K. Oseki, E. Tomioka, H. Kizu, and K. Matsui,
“N-containing sugars from Morus alba and their glycosidase
inhibitory activities,” Carbohydrate Research, vol. 259, no. 2, pp.
243–255, 1994.

[2] N. Asano, K. Yasuda, H. Kizu et al., “Novel 𝛼-L-fucosidase
inhibitors from the bark of Angylocalyx pynaertii (Legumi-
nosae),” European Journal of Biochemistry, vol. 268, no. 1, pp.
35–41, 2001.

[3] K. Yasuda, H. Kizu, T. Yamashita et al., “New sugar-mimic
alkaloids from the pods of Angylocalyx pynaertii,” Journal of
Natural Products, vol. 65, no. 2, pp. 198–202, 2002.

[4] Y. Mizushina, X. Xu, N. Asano et al., “The inhibitory action
of pyrrolidine alkaloid, 1,4-dideoxy-1,4-imino-D-ribitol, on
eukaryotic DNA polymerases,” Biochemical and Biophysical
Research Communications, vol. 304, no. 1, pp. 78–85, 2003.

[5] V. L. A. Malladi, A. J. Sobczak, T. M. Meyer, D. Pei, and S. F.
Wnuk, “Inhibition of LuxS by S-ribosylhomocysteine analogues
containing a [4-aza]ribose ring,” Bioorganic &Medicinal Chem-
istry, vol. 19, no. 18, pp. 5507–5519, 2011.

[6] A. Goeminne, M. Berg, M. McNaughton et al., “N-arylmethyl
substituted iminoribitol derivatives as inhibitors of a purine
specific nucleoside hydrolase,” Bioorganic & Medicinal Chem-
istry, vol. 16, no. 14, pp. 6752–6763, 2008.

[7] A. Goeminne, M. McNaughton, G. Bal et al., “Synthesis and
biochemical evaluation of guanidino-alkyl-ribitol derivatives as
nucleoside hydrolase inhibitors,” European Journal of Medicinal
Chemistry, vol. 43, no. 2, pp. 315–326, 2008.

[8] B. A. Horenstein, R. F. Zabinski, and V. L. Schramm, “A
new class of C-nucleoside analogues. 1-(S)-aryl-1,4-dideoxy-
1,4-imino-D-ribitols, transition state analogue inhibitors of
nucleoside hydrolase,” Tetrahedron Letters, vol. 34, no. 45, pp.
7213–7216, 1993.

[9] C. Murruzzu and A. Riera, “Enantioselective synthesis of
hydroxylated pyrrolidines via Sharpless epoxidation and olefin
metathesis,” Tetrahedron Asymmetry, vol. 18, no. 1, pp. 149–154,
2007.

[10] F. A. Davis, T. Ramachandar, J. Chai, and E. Skucas, “Asymmet-
ric synthesis of𝛼-amino aldehydes from sulfinimine (N-sulfinyl
imine)-derived 𝛼-amino 1,3-dithianes. Formal synthesis of (−)-
2,3-trans-3,4-cis-dihydroxyproline,”Tetrahedron Letters, vol. 47,
no. 16, pp. 2743–2746, 2006.

[11] T. S. Cooper, A. S. Larigo, P. Laurent, C. J. Moody, and A.
K. Takle, “O-(1-phenylbutyl)benzyloxyacetaldoxime, a versa-
tile reagent for the asymmetric synthesis of protected 1,2-
aminoalcohols and 2-hydroxymethyl nitrogen heterocycles,”
Synlett, no. 10, pp. 1730–1732, 2002.

[12] R. Kumareswaran and A. Hassner, “Asymmetric synthesis of
1,4-dideoxy-1,4-imino-D-ribitol via stereoselective addition of
allylphenylsulfone to an aryl N-sulfinylimine,” Tetrahedron
Asymmetry, vol. 12, no. 24, pp. 3409–3415, 2002.

[13] D. M. Goli, B. V. Cheesman, M. E. Hassan, R. Lodaya, and J. T.
Slama, “Synthesis of (2R,3R,4S)-2-hydroxymethylpyrrolidine-
3,4-diol from (2S)-3,4-dehydroproline derivatives,” Carbohy-
drate Research, vol. 259, no. 2, pp. 219–241, 1994.

[14] G.W. J. Fleet and J. C. Son, “Polyhydroxylated pyrrolidines from
sugar lactomes: synthesis of 1,4-dideoxy-1,4-imino-d-glucitol
from D-galactonolactone and syntheses of 1,4-dideoxy-
1,4-imino-D-allitol, 1,4-dideoxy-1,4-imino-D-ribitol, and
(2S,3R,4S)-3,4-dihydroxyproline from d-gulonolactone,”
Tetrahedron, vol. 44, no. 9, pp. 2637–2647, 1988.



Journal of Chemistry 5

[15] G. W. J. Fleet, J. C. Son, D. S. C. Green, I. C. di Bello, and
B. Winchester, “Synthesis from D-mannose of 1,4-dideoxy-
1,4-imino-L-ribitol and of the 𝛼-mannosidase inhibitor 1,4-
dideoxy-1,4-imino-D-talitol,” Tetrahedron, vol. 44, no. 9, pp.
2649–2655, 1988.

[16] H. Setoi, H. Kayakiri, H. Takeno, andM. Hashimoto, “Synthesis
of some polyhydroxylated pyrrolidine derivatives,” Chemical
and Pharmaceutical Bulletin, vol. 35, no. 10, pp. 3995–3999, 1987.

[17] T. B. Mercer, S. F. Jenkinson, B. Bartholomew et al., “Looking
glass inhibitors: both enantiomeric N-benzyl derivatives of
1,4-dideoxy-1,4-imino-D-lyxitol [a potent competitive inhibitor
of 𝛼-D-galactosidase] and of 1,4-dideoxy-1,4-imino-L-lyxitol
[a weak competitive inhibitor of 𝛼-D-galactosidase] inhibit
naringinase, an 𝛼-L-rhamnosidase competitively,” Tetrahedron
Asymmetry, vol. 20, no. 20, pp. 2368–2373, 2009.

[18] H. Batra, R.M.Moriarty, R. Penmasta et al., “A concise, efficient
and production-scale synthesis of a protected L-lyxonolactone
derivative: an important aldonolactone core,” Organic Process
Research & Development, vol. 10, no. 3, pp. 484–486, 2006.

[19] J. D. Williams, V. P. Kamath, P. E. Morris, and L. B. Townsend,
“D-ribonolactone and 2,3-isopropylidene-(D-ribonolactone),”
Organic Syntheses, vol. 82, pp. 75–79, 2005.

[20] H. Suh and C. S.Wilcox, “Chemistry of F
1
F
0
-ATPase inhibitors.

Stereoselective total syntheses of (+)-citreoviral and (−)-
citreoviridin,” Journal of the American Chemical Society, vol. 110,
no. 2, pp. 470–481, 1988.

[21] H. Kold, I. Lundt, and C. Pedersen, “Synthesis of L-ribono- and
L-lyxino-lactone,”Acta Chemica Scandinavica, vol. 48, no. 8, pp.
675–678, 1994.

[22] J. E. Baldwin, “Rules for ring closure,” Journal of the Chemical
Society, Chemical Communications, no. 18, pp. 734–736, 1976.

[23] E. C. Bigham, C. E. Gragg,W. R. Hall et al., “Inhibition of arabi-
nose 5-phosphate isomerase. An approach to the inhibition of
bacterial lipopolysaccharide biosynthesis,” Journal of Medicinal
Chemistry, vol. 27, no. 6, pp. 717–726, 1984.

[24] K. Jayakanthan, B.D. Johnston, andB.M. Pinto, “Stereoselective
synthesis of 4󸀠-selenonucleosides using the Pummerer glycosy-
lation reaction,” Carbohydrate Research, vol. 343, no. 10-11, pp.
1790–1800, 2008.

[25] K. Clinch, G. B. Evans, G. W. J. Fleet et al., “Syntheses and
bio-activities of the L-enantiomers of two potent transition
state analogue inhibitors of purine nucleoside phosphorylases,”
Organic & Biomolecular Chemistry, vol. 4, no. 6, pp. 1131–1139,
2006.



Submit your manuscripts at
http://www.hindawi.com

 Chromatography  
Research International

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Carbohydrate 
Chemistry

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

International Journal of 

Analytical Chemistry
Volume 2013

ISRN 
Chromatography

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

The Scientific 
World Journal

Bioinorganic Chemistry 
and Applications
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Catalysts
Journal of

ISRN 
Analytical 
Chemistry 

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Electrochemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Advances in

Physical Chemistry

ISRN 
Physical Chemistry 

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Spectroscopy
International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

ISRN 
Inorganic Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of

Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Inorganic Chemistry
International Journal of

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2013

 International Journal ofPhotoenergy

Hindawi Publishing Corporation
http://www.hindawi.com

 Analytical Methods  
in Chemistry

Journal of

Volume 2013

ISRN 
Organic Chemistry

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013

Journal of

Spectroscopy


