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Motor-imagery-based brain-computer interfaces (BCIs) commonly use the common spatial pattern filter (CSP) as preprocessing
step before feature extraction and classification. The CSP method is a supervised algorithm and therefore needs subject-specific
training data for calibration, which is very time consuming to collect. In order to reduce the amount of calibration data that is
needed for a new subject, one can apply multitask (from now on called multisubject) machine learning techniques to the preproc-
essing phase. Here, the goal of multisubject learning is to learn a spatial filter for a new subject based on its own data and that of
other subjects. This paper outlines the details of the multitask CSP algorithm and shows results on two data sets. In certain subjects
a clear improvement can be seen, especially when the number of training trials is relatively low.

1. Introduction

The development of BCI systems is an active research domain
that has the goal to help people, suffering from severe disabil-
ities, to restore the communication with their environment
through an alternative interface. Such BCI systems can be
divided in several categories based on the signal features they
use. Some of these features like the P300 [1] and steady-state
visual evoked potentials (SSVEPs) [2] are elicited naturally by
external stimuli while others like the sensorimotor rhythms
(SMRs) can be independently modulated by the subject. In
case of SMR, this can be achieved by performing the task
of imagining different movements, such as left and right
hand movement, or foot and tongue movement. The cortical
areas involved in motor function (and also motor imagery)
show a strong 8–12 Hz (or even 18–26 Hz) activity when the
person is not performing any motor (imagery) task. How-
ever, when the person is engaged in a motor task, the
neural networks in the corresponding cortical areas are
activated. This blocks the idle synchronized firing of the

neurons and thus causes a measurable attenuation in those
frequency bands. This decrease in power is also called event-
related desynchronization (ERD) [3], the opposite effect is
termed event-related synchronization (ERS). The location
(electrode) of this feature depends on the type of motor task.
For example, if a person moves his left arm, the brain region
contralateral to the movement (around electrode C4) will
display this ERD feature, while the intracellular potentials of
the neurons in the ipsilateral cortical motor area continue to
oscillate more synchronously.

Because of the low spatial resolution of electroencepha-
lography (EEG), a commonly used method to improve this
resolution is the common spatial pattern (CSP) algorithm
introduced by Koles [4] to detect abnormal EEG activity.
Later, it was used for discrimination of imagined hand move-
ment tasks [5, 6]. Since then, a lot of groups improved the
basic CSP algorithm by extending it with temporal filter-
ing [7], making it more robust against nonstationarities
[8] or reducing calibration time by transferring knowledge
learned during previous sessions [9]. After more than a
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decade, this method still proves its superiority judging from
the results of the fourth BCI competition (on http://www
.bbci.de/competition/iv/ you can find the data sets and re-
sults of the 4th BCI competition). Still, this BCI setup is less
accurate than the P300-based BCI and initially needs a longer
training time. Some people are even unable to achieve proper
control.

One way to further improve a subject-specific CSP filter
is to use the data recorded from other subjects, additionally
to the subject’s own data. To this end, we will use some ideas
of multisubject learning, an active topic in machine learning
[10, 11]. In [12], the authors employed this concept to learn
a classifier that was able to learn from multiple subjects,
leading to an algorithm that performed well on new subjects
even without training. The classifier could then be adapted
when new data became available, reaching even higher clas-
sification accuracies with very few training samples. How-
ever, they applied a Laplacian filter instead of a spatial filter
based on the CSP algorithm and used features obtained from
the EEG signal after filtering it in distinct pass-bands. In
contrast to their approach, we will start from the basic CSP
algorithm and apply the multisubject learning concept to the
preprocessing phase. In general, multisubject learning algo-
rithms assume that all tasks are similar to each other. In our
first approach, we will also assume that all subjects have simi-
lar head models and thus that the spatial filters can be decom-
posed into a subject-specific part and one global part. In
a second approach, we will not make that assumption, but
instead we will assume that they are grouped together in a
fixed number of clusters. Furthermore, we include param-
eters to make a trade-off between these global and subject-
specific filters.

Section 2 gives the details of the first approach of our
multisubject CSP algorithm, while Section 4 presents the
cluster-based multisubject CSP algorithm. Section 3 presents
an optimization framework for clustering CSP filters, which
will also be used in the subsequent Section 4. The results are
then compared with the basic CSP algorithm in Section 5
on one simulated data set and two experimental data sets,
one of which is publicly available on the website of the third
BCI competition [13] and one which includes data of 14
subjects recorded at the Max Planck Institute for Biolog-
ical Cybernetics. Section 6 highlights the strengths and the
weaknesses of the method.

2. Multisubject CSP Formulation as a Sum of
Convex-to-Convex Ratios

The goal of the basic CSP method is to learn a set of spatial
filters for one subject that maximizes the signal variance for
trials of one class while at the same time minimizes the signal
variance for trials of the other classes. For the two-class case,
this can be formulated as follows:

max
w

wTΣ(1)w
wTΣ(2)w

, (1)

where Σ(1) and Σ(2) correspond to the covariance matrices
of the trials corresponding to the first and second class,
respectively.

We now want to use data of other subjects to improve the
filters for specific subjects. To accomplish this, we first need
a spatial filter ws for each subject, which we decompose into
the sum of a global and subject-specific part,

ws = w0 + vs, (2)

where w0 ∈ Rd represents the global spatial filter which is
shared and learned over all subjects and vs ∈ Rd represents
the subject-specific part of the filter. The number of channels
is represented by d. A single optimization framework is
proposed in which we learn both types of filters. This can
be formulated as

max
w0,vs

S∑

s=1

wT
s Σ

(1)
s ws

wT
s Σ

(2)
s ws + λ1‖w0‖2 + λ2‖vs‖2

, (3)

where the number of subjects is denoted by S.
The parameters λ1 and λ2 enable us to make a trade-off

between the global or specific part of the filter. For a high
value of λ1 and a low value of λ2, the vector w0 is forced
to zero and a specific filter is constructed. When λ2 is high
and λ1 low, the vector vs is forced to zero and more global
filters are computed. Furthermore, one can also perform
regularization by choosing both λ1 and λ2 high.

The above equation can be rewritten to a simpler form,
that is, a sum of convex-to-convex ratios

max
w

R(w,λ) = max
w

S∑

s=1

rs = max
w

S∑

s=1

wTΣ
(1)
s w

wTΣ
(2)
s w

, (4)

with

wT =
(

wT
0 vT

1 · · · vT
S

)
,

Σ
(1)
s = EsΣ(1)

s ET
s ,

Σ
(2)
s = EsΣ(2)

s ET
s + λ1D0 + λ2Ds,

Es =

⎛
⎜⎜⎜⎜⎜⎜⎝

Id×d

0(s−1)d×d

Id×d

0(S−s)d×d

⎞
⎟⎟⎟⎟⎟⎟⎠

,

D0 =
⎛
⎝
Id×d

0Sd×d

⎞
⎠
(
Id×d 0d×Sd

)
,

Ds =

⎛
⎜⎜⎝

0sd×d

Id×d

0(S−s)d×d

⎞
⎟⎟⎠
(

0d×sd Id×d 0d×(S−s)d
)
,

(5)

where Id×d represents the d-dimensional unity matrix.
To find the maximum of (4) we use a Newton method.

To this end, we need both the gradient and Hessian of (4).
The gradient is given by,

∇wR(w,λ) = 2
S∑

s=1

Σ
(1)
s w − rs(w)Σ

(2)
s w

wTΣ
(2)
s w

, (6)
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while the Hessian is given by,

∇w(∇wR) = 2
S∑

s=1

⎡
⎢⎣

(
Σ

(1)
s − rsΣ

(2)
s −∇(s)

w wTΣ
(2)
s

)

δs

−
(
Σ

(1)
s w − rsΣ

(2)
s w

)
wTΣ

(2)
s

δ2
s

⎤
⎥⎦,

(7)

where δs is short for the denominator of the term rs and ∇(s)
w

for the gradient of rs with respect to w.
From here on, this method is denoted by the abbreviation

“mtCSP.”

3. An Optimization Framework for
Clustering Spatial Filters

Before giving the details of the cluster-based multisubject
CSP algorithm, we present an optimization algorithm for
clustering CSP filters. This algorithm is inspired by [14] and
will form the basis of the algorithm described in the next
section. It will also be employed to find a good initialization
for the variables in the cluster-based multisubject CSP algo-
rithm.

So, let us start with a simplified version of the optimiza-
tion framework proposed in [14]

min
αsk ,µk

K∑

k=1

S∑

s=1

αskd
(
µk, xs

)
, (8)

αsk ∈ {0, 1},
K∑

k=1

αsk = 1, (9)

where K is the number of clusters, S the number of obser-
vations, xs the observations, µk the cluster centers and d a
distance function. The binary coefficient αsk indicates the
cluster to which a certain object belongs. This minimization
is typically solved by cycling through two steps. In a first
step, the coefficients αsk are determined by setting the kth
coefficient to one if the object xs lies closest to the cluster
center µk

αsk =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if d
(
µk , xs

)
< d
(
µl, xs

)
,

∀l ∈ {1, . . . ,K} \ k,

0, otherwise.

(10)

In the second step, we find the cluster centers that minimize
the total distance to their cluster members as determined
by the coefficients αsk computed in the previous step. Given
the coefficients αsk, we can see that the inner sums are
independent of each other and thus can also be optimized

independently of each other. A typical distance function is
the Euclidean distance.

For spatial filters, however, we have to find a more
appropriate metric. As explained in [9], the space of CSP
filters is not Euclidean. Changing the length or the sign of
a CSP filter does not matter as it is still a solution of the
Rayleigh quotient (1). In other words, the filters can all
be considered to lie on the unit hypersphere and thus we
employ an angle-based metric instead. This metric should
be zero when the angle between two spatial filters is zero or
π radials and maximal when π/2 radials. Consequently, the
squared sine of the angle θ between the two filters seems an
appropriate metric

d(v1, v2) = sin2(θ) = 1− cos2(θ)

= 1−
(

vT
1 v2

)2

(
vT

1 v1

)(
vT

2 v2

) .
(11)

We can now plug this expression in (8) and drop the constant
one as it does not change the solution of the optimization
problem. The sign can also be dropped if we transform (8)
into a maximization problem, resulting in,

max
αsk ,wk

K∑

k=1

S∑

s=1

αsk

(
wT
k vs
)2

(
wT
k wk

)(
vT
s vs
) ,

αsk ∈ {0, 1},
K∑

k=1

αsk = 1,

(12)

where wk represents the kth cluster center. In the second step
of the algorithm, we have to find the optimal cluster centers
wk and this can be done independently for each cluster (and
thus each inner sum). Under the assumption that vT

s vs = 1,
this inner sum for cluster k can then be rewritten as

wT
k

(∑
s∈Sk vsvT

s

)
wk

wT
k wk

, (13)

where Sk is the set of all filters that belong to the kth cluster.
This expression has to be maximized with respect to wk. The
maximum is simply the principal component of the cova-
riance matrix of filters within the cluster k and thus equals
the eigenvector with the largest eigenvalue of the correspond-
ing eigenvalue decomposition.

4. Cluster-Based Multisubject CSP

In Section 2, we assumed that all subjects were similar. This
assumption should off course be relaxed. Here, we present
an algorithm that groups similar subjects together in clusters.
Cross-subject learning is then performed on each of the sepa-
rate clusters. The method is inspired by the optimization
algorithm as described in Section 3.

First, we introduce multiple shared filters wk, one for
each cluster k,

wsk = wk + vsk. (14)



4 Computational Intelligence and Neuroscience

We can now transform problem (8) to a maximization prob-
lem and replace the distance function with a quotient similar
to the one in (3), resulting in the following formulation:

max
αsk ,wk ,vsk

K∑

k=1

S∑

s=1

αsk
wT
skΣ

(1)
s wsk

wT
skΣ

(2)
s wsk + λ1‖wk‖2 + λ2‖vsk‖2

,

αsk ∈ {0, 1},
K∑

k=1

αsk = 1.

(15)

In the first step, the coefficients αsk can again be determined
in a similar manner

αsk =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if
wT
skΣ

(1)
s wsk

wT
skΣ

(2)
s wsk + λ1‖wk‖2 + λ2‖vsk‖2

>
wT
slΣ

(1)
s wsl

wT
slΣ

(2)
s wsl + λ1‖wl‖2 + λ2‖vsl‖2

,

∀l ∈ {1, . . . ,K} \ k,

0, otherwise.

(16)

In the second step, we apply the multisubject CSP algorithm
as discussed in Section 2, maximizing the inner sum of (15)
with respect to wk and vsk for subjects belonging to the
respective cluster k. This completes the two steps of the
algorithm. There is, however, still a small problem with the
first step as the subject-specific vectors vsl are unknown for
subjects belonging to cluster k. This is because in the second
step we compute vsk only for subjects belonging to the kth
cluster. To this end, we still have to optimize the quotient
in (15) for each subject separately with respect to vsl and
fixed wl for each l /= k (k representing the cluster to which
the subject belongs).

Finally, we also want to find a good initialization for the
variables. To accomplish this, we use the clustering algorithm
described in Section 3 and apply it on the subject-specific
filters as computed with the basic CSP algorithm. This gives
us an initial estimation of the cluster coefficients αsk . We
can also use the cluster centers and the difference between
them and the subject-specific filters to initialize wk and vsk,
respectively.

5. Experiments

5.1. Simulated Data. For the simulated data we generate two
clusters of 20 similar tasks. The training set of each task
contains data for two conditions, each condition counting
15 samples. The source variables are generated from a
two-dimensional Gaussian distribution with zero mean and
covariance matrix dependent on the condition, but the same
for both clusters and all tasks,

Σ(1) =
⎛
⎝

5 0

0 1

⎞
⎠, Σ(2) =

⎛
⎝

1 0

0 5

⎞
⎠. (17)

The columns of the mixing matrices are also generated from
a two-dimensional Gaussian, parameterized by an isotropic
covariance matrix of low variance (1× 10−4). The means are

fixed and different for the two clusters, but the same for all
tasks in the same cluster

A1 =
⎛
⎝

0.3500 0.6062

−1.0392 0.6000

⎞
⎠,

A2 =
⎛
⎝

0.6657 0.2163

−0.3708 1.1413

⎞
⎠.

(18)

We also add some noise with zero mean and very low
variance (1 × 10−3) to the mixed observations. A sample
training set is displayed in Figure 1(a). A similar test set
is created with 285 data points for each of the conditions.
We then apply the basic CSP (bCSP) method on each of
these tasks separately and compare it with the clustered
multisubject version (clmtCSP). The basic CSP solution is
shown for the first 25 (out of 40) tasks in Figure 1(b). The
final solution of the clustered multisubject learning method
is shown in Figure 1(c). In this toy example, we do not
perform a preclustering on the specific filters to find a good
initialization. Instead, the first 20 tasks are considered (or
initialized) to belong to the first cluster and the last 20 tasks
are considered to belong to the second cluster. This way, we
can check how well the algorithm is able to find the correct
clusters. Figure 1(c) tells us that the algorithm is quite able
to assign the tasks to the correct clusters. It is, however,
not perfect by any means as you can see for the task in
the third row and second column. Furthermore, one can
see that the principal axis of the ellipses are better aligned
after application of the clmtCSP algorithm compared to the
bCSP solution. To quantify the difference between the two
methods, we compute the variance ratios of the estimated
sources (unmixed observations) which results in

max
(
Σ̂

(1)
11 , Σ̂(2)

11

)

min
(
Σ̂(1)

11 , Σ̂(2)
11

) ,
max

(
Σ̂

(1)
22 , Σ̂(2)

22

)

min
(
Σ̂(1)

22 , Σ̂(2)
22

) , (19)

for each source, respectively. These ratios are calculated for
both clusters. Because the sources can be switched and the
order is not necessarily the same for both methods, we sort
the ratios from high to low. The two highest ratios of both
methods are then compared with each other, as are the
two lowest. These results are summarized per cluster in the
boxplot of Figure 2. We can see that the medians of the ratios
are always larger for the clmtCSP method. A paired Wilcoxon
signed rank test rejects the hypothesis of equal medians for
both sources and both clusters. The corresponding P values
are also given in Figure 2.

5.2. Experimental Data Sets. For the experimental data sets
we use data of the third BCI competition (BCIC3 data set (on
http://www.bbci.de/competition/iii/ you can find the data
sets and results of the 3e BCI competition), more precisely
data set IVa and a data set of 14 subjects recorded at the Max
Planck Institute (MPI data set) for Biological Cybernetics.

The set of the BCI competition contains data recorded
from 118 electrodes where the subjects performed two tasks:
right hand motor imagery and foot imagery. Five subjects are
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Figure 1: Continued.
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Figure 1: (a) shows the training set that is used to compute both the bCSP and clmtCSP filters. The data points themselves are not plotted,
instead we only draw the standard deviation contours of the data’s estimated covariance matrix, together with its corresponding principal
vectors (representing the ellipse’s principal axis). Blue and black contours correspond to the first class or condition, while green and red
contours represent the other class. The goal of the computed filters is to align the principal vectors to the axes. The results for both bCSP
and clmtCSP are shown in (b) and (c) figures, respectively. Here, the contours denote the standard deviations according to the estimated
covariance matrix of the “unmixed” sources. Concerning the clmtCSP method, if the contours are drawn in blue and green, it means that
they have been estimated as being in the first cluster according to the algorithm. If it is red and black, the task is estimated as belonging to
the second cluster. The true cluster number is given in the title of each subplot.

included in the set and each subject recorded 280 trials. We
take a fixed test set of the last 180 trials while the first 100 are
retained to construct the training sets. To limit the number
of parameters that needs to be computed by the optimization
algorithm, the number of channels is reduced to 22. The ones
selected are Fp1, Fpz, Fp2, F7, F3, Fz, F4, F8, T7, C3, Cz, C4,
T8, P7, P3, Pz, P4, P8, POz, O1, Oz and O2.

In the MPI set, each subject performed 30 left hand
motor imagery trials and 30 right hand motor imagery trials.
This was repeated once for the test set resulting in a total of
120 trials per subject. The same subset of electrodes is used as
before except for two channels which were not recorded for
some of the subjects.

As there are only five subjects in the BCIC3 data set, we
assume that all subjects are similar. Consequently, we will
simply apply the first proposed algorithm, that is, mtCSP.
The MPI data set, however, contains too many subjects to
assume that they are all similar. Hence, we will apply the
cluster-based “clmtCSP” method with a predefined number
of clusters, namely, three. Four cluster seems too many for
only 14 subjects, as this could potentially leave some clusters
with very few subjects. On the other hand, we did not choose
two for reasons of complexity as it increases the number of

subjects per cluster and thus the dimensionality of problem
(4). At this stage, the optimization algorithms to solve the
nonconvex problem (4) are not sufficient for such high
dimensions.

All signals are band-pass filtered between 8 and 30 Hz.
The trade-off parameters λ1 and λ2 are determined through
5-fold cross validation. For each subject, only two spatial
filters are computed: one for each class. Cross-valida-
tion is done for the following set of parameters: λ1,λ2 ∈
{10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104}. The perform-
ance on each fold is measured by the average accuracy (over
all subjects) of the linear discriminant (LDA) classifier on
that fold. Given the known good performance of LDA in
motor-imagery experiments, we not only use it for scoring
each fold, but also as the final classifier.

Figure 3 gives some cross-validation plots on the BCIC3
set for the mtCSP algorithm, showing the average accuracy
(over subjects and folds) for each parameter setting. It is
clear that for a lower number of training trials (10 per class),
the parameters values are biased towards the promotion
of shared filter components, while penalizing the subject-
specific components. For more training trials (about 100
per class), it is clear that the parameters values tend to be
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Figure 2: (a) compares the variance ratios of the bCSP solution with the clmtCSP solution on the first cluster, while (b) makes the
comparison for tasks of the second cluster. The number above or below each pair of bars is the P value according to the paired Wilcoxon
signed rank test. The numeric suffix on the tick labels of the x-axis denotes the source number.
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Figure 3: Cross-validation accuracies per parameter combination of λ1 and λ2 on the BCIC3 data set. We performed 5-fold cross-validation
per subject. Averaging the result over all folds and all subjects gives the final result as plotted in the figure.

subject specific. For the MPI data set, we fix λ1 = 0 to
lower the computational demands. According to Figure 3,
this seems to be a good choice as the parameter values at the
boundary of the grid produce the most interesting results.
Furthermore, the line defined by fixing λ1 = 0.0001 displays
most variability, while the line defined by fixing λ2 = 0.0001
does not seem to indicate much change when λ1 is varied.

The results for each subject separately are given in
Tables 1 and 2 for both the BCIC3 and MPI data set, respec-

tively. The header of each table presents the values of the
parameters λ1 and/or λ2 as determined through cross-valida-
tion. Also note that the mean is computed only on those
subjects for which one of the methods at least achieves above
chance level (with 180 trials in the test set, we can fix the
chance level at an accuracy of 56% for the BCIC3 set. For the
MPI data set, we set the chance level at 60%) accuracies.

The first thing we notice for the BCIC3 set is that for 5
trials (from here on, we state the number of training trials per
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Table 1: Classification accuracies per subject for the BCI competition data set.

5 trials 10 trials 20 trials 30 trials

λ1 = 10−3, λ2 = 10−1 λ1 = 10−4, λ2 = 101 λ1 = 10−3, λ2 = 10−1 λ1 = 10−4, λ2 = 101

Subject bCSP mtCSP bCSP mtCSP bCSP mtCSP bCSP mtCSP

aa 0.49 0.73 0.54 0.64 0.66 0.71 0.61 0.69

al 0.80 0.73 0.95 0.93 0.95 0.94 0.94 0.94

av 0.56 0.58 0.59 0.63 0.44 0.62 0.56 0.64

aw 0.69 0.57 0.69 0.56 0.66 0.58 0.55 0.54

ay 0.92 0.86 0.84 0.93 0.85 0.85 0.88 0.87

Mean 0.69 0.69 0.72 0.74 0.71 0.74 0.75 0.79

Table 2: Classification accuracies per subject for the MPI set.

5 trials 10 trials 20 trials

λ2 = 10−1 λ2 = 10−2 λ2 = 10−4

Subject bCSP clmtCSP bCSP clmtCSP bCSP clmtCSP

1 0.80 0.68 0.78 0.73 0.85 0.85

2 0.85 0.83 0.83 0.77 0.87 0.85

3 0.45 0.43 0.53 0.57 0.58 0.60

4 0.58 0.53 0.72 0.75 0.77 0.77

5 0.53 0.47 0.52 0.48 0.62 0.60

6 0.58 0.67 0.60 0.60 0.70 0.70

7 0.83 0.92 0.90 0.92 0.95 0.95

8 0.38 0.52 0.48 0.48 0.53 0.53

9 0.57 0.70 0.58 0.62 0.63 0.63

10 0.68 0.53 0.60 0.62 0.63 0.60

11 0.50 0.53 0.42 0.52 0.40 0.43

12 0.52 0.68 0.65 0.70 0.63 0.63

13 0.62 0.60 0.63 0.58 0.57 0.60

14 0.53 0.53 0.50 0.47 0.55 0.57

Mean 0.68 0.70 0.70 0.70 0.71 0.71

class, e.g., when we mention 5 training trials, we mean 5 trials
per class, thus 10 in total.) The impact of the multisubject
version is relatively low, although this is the area where we
suspected the impact would be the largest. Nevertheless, for
some subjects, like subject aa the impact is substantial as it
goes from chance level to an accuracy well above 70%. On
the other hand, there is subject aw where the accuracy drops
to chance level when employing the multisubject version.
This subject, however, never seems to benefit from the
multisubject learning. These two subjects can give us some
insight in to the reason of the failure, which we attribute to
the way we determine the parameters λ1 and λ2. This is done
globally across all subjects and consequently the values are
taken the same for all. Obviously, these parameters should be
determined for each new subject separately. The ideal case
would thus be to include five trials of the “new” subject’s
training set, all training trials of the other subjects and
repeat this process for each subject. On the other hand, this
would require us to determine the parameters per subject
independently on a set of only five trials per class, which is
prone to be unstable.

The difference between both methods becomes apparent
in the case of ten training trials where the mtCSP method

achieves better or equal accuracies compared to the bCSP
method on all subjects, except again subject aw. As there are
only five subjects, we are not able to show the difference is
significant with a paired Wilcoxon signed rank test.

Table 2 shows the results for the cluster-based mtCSP
method on all 14 subjects. Looking at chosen parameter val-
ues for λ2, we can see that subject-specific filter components
are most penalized when only five training trials are available,
while they are least penalized when 20 training trials are
available. This is reflected in the results as there is almost no
difference between bCSP and clmtCSP in case of 20 training
trials. However, there is quite some difference between the
two methods for five trials. Unfortunately, a paired Wilcoxon
signed rank test (only considering those subjects for which
one of the methods performs above chance level) does not
indicate a significant difference. Note that (in case of five
training trials) only eight subjects are included in the test.

6. Discussion and Future Work

We presented a multisubject extension to the basic CSP
algorithm in order to reduce the number of training trials
and to improve performance by learning spatial filters across
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subjects. It involves a nonconvex optimization problem and
thus a global solution is not guaranteed when employing
standard optimization techniques. However, the optimiza-
tion of such a sum of convex to convex ratios is a hot topic in
optimization theory. We can expect, that in the future, imple-
mentations will come available that guarantee global conver-
gence and are scalable to handle high-dimensional problems.
The authors in [15] present such solution for seemingly
small-sized problems.

The main downside of the proposed methods is that we
have to perform cross-validation to select good parameter
values. Firstly, this takes time to compute, rendering the
methods impractical as one can record more data within
that time frame to compute good filters. Secondly, enough
data needs to be available to determine the parameter values
through cross-validation. This is of course in contrast with
the aim of the proposed algorithms to reduce the number of
training trials. In order to find indicators for the potential
of the methods on a low number of training trials, we per-
formed cross-validation by averaging scores over several folds
and subjects. This leads to more stable and reliable estimates
of the parameter values. We then choose the parameter
values the same for all subjects. However, the need for cross-
validation could be avoided by employing the Bayesian
framework. In order to learn a model across several subjects
in this framework, the use of shared priors will be the topic
of future research.

An open question is how it compares to other CSP
variants that learn from other subjects [16]. The latter
method computes the filters by combining the covariance
matrices of several subjects instead.

Due to the way we perform cross-validation, it is impos-
sible to show the method’s true potential. Nevertheless, some
of the results indicate that (cluster-based) multisubject learn-
ing for CSP leads to a noticable improvement for some sub-
jects. That some subjects suffer from these methods could be
avoided if the trade-off parameters could be chosen reliably
for each new subject separately with little training data.

Finally, we want to add that this manner of including the
clustering in the optimization problem may be employed for
cluster-based multisubject classifiers too. Note that Fisher’s
discriminant analysis [17] can be written as a generalized
Rayleigh quotient and thus be solved with a generalized ei-
genvalue decomposition, similar to CSP. Instead of using
the quotient of (3), we could plug in a modified version of
Fisher’s ratio.
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