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Traffic congestion at bus bays has decreased the service efficiency of public transit seriously in China, so it is crucial to systematically
study its theory and methods. However, the existing studies lack theoretical model on computing efficiency. Therefore, the
calculation models of bus delay at bays are studied. Firstly, the process that buses are delayed at bays is analyzed, and it was found
that the delay can be divided into entering delay and exiting delay. Secondly, the queueing models of bus bays are formed, and
the equilibrium distribution functions are proposed by applying the embedded Markov chain to the traditional model of queuing
theory in the steady state; then the calculation models of entering delay are derived at bays. Thirdly, the exiting delay is studied by
using the queueing theory and the gap acceptance theory. Finally, the proposed models are validated using field-measured data,
and then the influencing factors are discussed. With these models the delay is easily assessed knowing the characteristics of the
dwell time distribution and traffic volume at the curb lane in different locations and different periods. It can provide basis for the
efficiency evaluation of bus bays.

1. Introduction

In recent years, with the rapid development of public trans-
port, bus bays face an increasing pressure especially during
peak hours. While serving passengers at a bus stop, buses
can interact in ways that limit their discharge flows. This can
increase bus delay at bays and degrade the bus system’s overall
service quality [1–3]. So it is necessary to evaluate the oper-
ating efficiency of bus bays and analyze the reasons for the
increase of bus delay and then put forward the countermea-
sures to reduce the delay.

Though professional handbooks [4, 5] have long offered
formulas and tables for estimating bus-stop discharge flow,
these are known to be unreliable [3, 6]. The existing studies
are mainly empirical formula based on the statistical analysis
of actual survey data [7–10] and lack of theoretical model on
computing efficiency. Therefore this paper studied the calcu-
lation models of bus delay at bays based on the analysis of the
bus operating characteristics.

2. Analysis of Bus Delay at Bays

The form of bus bay is shown in Figure 1.
The berths are numbered 1 and 2 from the front to the

back, and three buses arriving at the bus bay are numbered 1,
2, and 3 according to the arrival sequence. When buses 1 and
2 occupied berths 1 and 2 to serve their passengers, bus 3must
queue for entering upstream of the stop, as shown in Figure 1.
The waiting time during this process is called entering delay.

In addition, when the serving is over at bus bays, the
driver must look for a safe opportunity or “gap” in the traffic
flow of curb lane to join them, as shown in Figure 2. The
waiting time during this process is called exiting delay.

Therefore, the bus delays at bays mainly including enter-
ing delay and exiting delay are computed by the following
equation:

𝑊 = 𝑊𝑞 + 𝑊𝑏, (1)

where 𝑊𝑞 is the entering delay, s; 𝑊𝑏 is the exiting delay, s.
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Figure 1: The behavior of queueing for serving at bus bays.
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Figure 2: The behavior of waiting for a gap at bus bays.

We next derived the calculation models of bus entering
delay and then studied the computing models of bus exiting
delay.The calculationmodels of bus delay at single-berth and
two-berth bays are proposed, respectively, finally.

3. Calculation Models of Bus Entering Delay

3.1. Queueing Model of Bus Bays. At the bus bays serving
some lines, buses enter the berth sequentially, then load and
unload passengers, and finally exit the stop. So the buses and
the stop constitute a queuing system [11]. According to the
present study, buses arrived at the stop as a Poisson process,
as may occur when a moderately busy stop serves multiple
bus routes [12, 13]. So a stop with a general service time dis-
tribution and 𝑐 berths can be denoted as the𝑀/𝐺/𝑐 queueing
system. In this system, we define a regenerative point as the
instant in time when the buses in all berths have discharged
from the stop [14]. (Though the stop is empty at each regen-
erative point, it may be filled immediately thereafter if a bus
queue is present at the entrance.) The time interval between
two successive regenerative points is defined as a cycle. Let 𝐿𝑛
be the number of buses queued at the stop’s entrance at the
beginning of the 𝑛th cycle (i.e., the 𝑛th regenerative point);
𝜆 is the rate of Poisson bus arrivals; and recall that 𝑐 is the
stop’s number of serial berths. So we claim that the stochastic
process {𝐿𝑛} is a Markov chain in given 𝜆, 𝑐, and the distri-
bution of bus service times at the stop. A Markov chain is a
sequence of randomvariables𝑋1, 𝑋2, 𝑋3, . . .with theMarkov
property, namely, that, given the present state, the future
and past states are independent. In this system, the average
bus delay in queue can be calculated once the Markov chain
limiting probabilities are identified.

Based on observations of bus operations in China, three
assumptions are adopted in the course of formula derivation
as follows.

(1) It is assumed that bus overtaking maneuvers are
prohibited, both within an entry queue and within
the stop itself. Overtaking restrictions of this kind

are common in cities, because an overtaking bus can
disrupt car traffic in adjacent travel lanes.

(2) The bus operating at bays is isolated from the effects
of traffic signals.

(3) The bus stop system operates in a stable state; the load
rate 𝜌 = 𝜆/𝜇 < 1.

3.2. Single-Berth Stop. In this section, we firstly analyze and
compute the transition probabilities of bus stop system; the
balance equations are then formulated and solved for the
Markov chain limiting probabilities; and, lastly, the models
which are used to calculate the average bus entering delay are
proposed.

3.2.1. Transition Probabilities. Firstly, we define the Markov
chain transition probabilities:

𝑃𝑖𝑗 = Pr {𝐿𝑛+1 = 𝑗 | 𝐿𝑛 = 𝑖} . (2)

Let𝑌𝑛 be the number of buses that arrived in the 𝑛th cycle,
so there is an equation at single-berth bus stop:

𝐿𝑛+1 = {
𝑌𝑛, 𝐿𝑛 = 0,

𝐿𝑛 + 𝑌𝑛 − 1, 𝐿𝑛 > 0.
(3)

Let 𝑎𝑗 = 𝑃{𝑌𝑛 = 𝑗}, 𝐴𝑗 = 𝑃{𝑌𝑛 ≤ 𝑗}; then

𝑃0𝑗 = Pr {𝐿𝑛+1 = 𝑗 | 𝐿𝑛 = 0}

= 𝑃 {𝑌𝑛 = 𝑗} = 𝑎𝑗, 𝑗 ≥ 0,

𝑃𝑖𝑗 = Pr {𝐿𝑛+1 = 𝑗 | 𝐿𝑛 = 𝑖}

= 𝑃 {𝑌𝑛 = 𝑗 + 1 − 𝐿𝑛 | 𝐿𝑛 = 𝑖}

= {
0, 𝑖 > 𝑗,

𝑎𝑗+1−𝑖, 𝑖 ≤ 𝑗 + 1.

(4)

Let 𝑃 = [𝑃𝑖𝑗, 𝑖 ≥ 0, 𝑗 ≥ 0] be the matrix of transition
probabilities; then 𝑃 can be written as follows:

𝑃 =

[
[
[
[
[

[

𝑃00 𝑃01 𝑃02 ⋅ ⋅ ⋅

𝑃10 𝑃11 𝑃12 ⋅ ⋅ ⋅

𝑃20 𝑃21 𝑃22 ⋅ ⋅ ⋅

𝑃30 𝑃31 𝑃32 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

]
]
]
]
]

]

=

[
[
[
[
[

[

𝑎0 𝑎1 𝑎2 ⋅ ⋅ ⋅

𝑎0 𝑎1 𝑎2 ⋅ ⋅ ⋅

0 𝑎0 𝑎1 ⋅ ⋅ ⋅

0 0 𝑎0 ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅

]
]
]
]
]

]

. (5)

3.2.2. Balance Equation of Limiting Probabilities. According
to (5), the state transition diagram of single-berth bays can
be drawn, as shown in Figure 3.

Let 𝑆𝑛 be the serving time of the 𝑛th bus; then {𝑆𝑛, 𝑛 ≥

0} is a sequence of independent and identically distributed
random variables, so we obtain the following equations:

𝑎𝑗 = 𝑃 {𝑌𝑛 = 𝑗} = ∫

∞

0

𝑃 {𝑌𝑛 = 𝑗 | 𝑆𝑛 = 𝑡} d𝐹𝑆 (𝑡) . (6)
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Figure 3: State transition diagram of single-berth bays.

In (6), 𝑃{𝑌𝑛 = 𝑗 | 𝑆𝑛 = 𝑡} represents the probability that
the number of bus arrivals during 𝑡 is 𝑗. Buses arrived at the
stop as a Poisson process, so the equation is

𝑃 {𝑌𝑛 = 𝑗 | 𝑆𝑛 = 𝑡} =
(𝜆𝑡)
𝑗
𝑒
−𝜆𝑡

𝑗!
. (7)

Equation (7) was substituted in (6); we have

𝑎𝑗 = ∫

∞

0

(𝜆𝑡)
𝑗
𝑒
−𝜆𝑡

𝑗!
d𝐹𝑆 (𝑡) . (8)

So the expectation of 𝑌𝑛 is computed as follows:

𝐸 [𝑌𝑛] =

∞

∑

𝑗=0

𝑗𝑃 {𝑌𝑛 = 𝑗}

=

∞

∑

𝑗=0

𝑗 ⋅ ∫

∞

0

(𝜆𝑡)
𝑗
𝑒
−𝜆𝑡

𝑗!
d𝐹𝑆 (𝑡)

= 𝜆 ⋅ 𝐸 [𝑆𝑛] = 𝜌,

𝐸 [𝑌
2

𝑛
] =

∞

∑

𝑗=0

𝑗
2
𝑃 {𝑌𝑛 = 𝑗} = 𝜌 + 𝜌

2
+ 𝜆
2
𝐷[𝑆𝑛] .

(9)

The variance of 𝑌𝑛 is computed as follows:

𝐷[𝑆𝑛] = 𝐸 [𝑌
2

𝑛
] − 𝐸
2
[𝑌𝑛] = 𝜌 + 𝜆

2
𝐷[𝑆𝑛] . (10)

Let 𝜋𝑖 (𝑖 ≥ 0) be the limiting probability that the Markov
chain is in state 𝑖; that is, 𝜋𝑖 = lim𝑛→∞ Pr{𝐿̃𝑛 = 𝑖}. So 𝜋 =

[𝜋1, 𝜋2, . . .] represents the limiting distribution of theMarkov
chain. Thus, 𝜋 is the solution to the balance equation:

𝜋𝑗 =

∞

∑

𝑖=0

𝜋𝑖𝑃𝑖𝑗. (11)

The equations are established according to the charac-
teristics of the generating function, and then the balance
equation of single-berth stop is resolved, as follows:

𝜋 (𝑢) =
(1 − 𝑢) (1 − 𝜌)𝐴 (𝑢)

𝐴 (𝑢) − 𝑢
. (12)

3.2.3. Average Bus Entering Delay. At the single-berth bus
stop, 𝐿𝑛 is the number of bus arrivals at the stop during the

waiting time 𝑊𝑛−1 and service time 𝑆𝑛−1 of the (𝑛 − 1)th bus.
Let 𝐹𝑊(𝑡) and 𝐹𝑆(𝑡) be the cumulative distribution functions
(CDF) of 𝑊𝑛 and 𝑆𝑛 whichare mutually independent. So the
average number of buses in the system can be calculated by
the following formula:

𝑁 = 𝐸 [𝐿𝑛] =

∞

∑

𝑗=0

𝑗𝑃 {𝐿𝑛 = 𝑗}

=

∞

∑

𝑗=0

∬

∞

0

[𝜆 (𝑡 + 𝑥)]
𝑗

𝑗!
𝑒
−𝜆(𝑡+𝑥)d𝐹𝑊 (𝑡) d𝐹𝑆 (𝑡)

= ∬

∞

0

𝜆 (𝑡 + 𝑥) d𝐹𝑊 (𝑡) d𝐹𝑆 (𝑡)

= 𝜆 (𝐸 [𝑊𝑛] + 𝐸 [𝑆𝑛]) = 𝜆𝐸 [𝑊𝑞] + 𝜌,

(13)

and 𝑁 = 𝐸[𝐿𝑛] = 𝜋
󸀠
(1); (13) was substituted in it; we have

𝑁 = 𝜋
󸀠
(1) = lim

𝑢→1
[
d
d𝑢

(1 − 𝑢) (1 − 𝜌)𝐴 (𝑢)

𝐴 (𝑢) − 𝑢
]

= 𝜌 +

𝜆
2
𝐸 (𝑆
2

𝑛
)

2 (1 − 𝜌)
.

(14)

Combine (13) and (14) to solve the average bus entering
delay at single-berth bays:

𝐸 [𝑊𝑞] =

𝜆𝐸 (𝑆
2

𝑛
)

2 (1 − 𝜌)
. (15)

3.3. Two-Berth Bus Stop. The bus entering delay of two-berth
bus bays is studied using the same approach as in Section 3.2.

3.3.1. Transition Probabilities. Let𝑀𝑛 be the number of buses
that get served in the 𝑛th cycle. Thus, Pr{𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘 |

𝐿̃𝑛 = 𝑖} for 1 ≤ 𝑘 ≤ 2 represent the probability that the num-
bers of buses queueing at the stop’s entrance at the beginning
of the 𝑛th and (𝑛+1)th cycles are 𝑖 and 𝑗, respectively, and the
number of buses served at the 𝑛th cycle is 𝑘.
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For an 𝑀/𝐺/2 queueing system, there are six kinds of
state transition occurring [14].We obtain the transition prob-
abilities by finding all the Pr{𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘 | 𝐿̃𝑛 = 𝑖}:

𝑃0,0 = 𝑃1,0 = Pr {𝐿̃𝑛+1 = 0,𝑀𝑛 = 1 | 𝐿̃𝑛 = 0}

+ Pr {𝐿̃𝑛+1 = 0,𝑀𝑛 = 2 | 𝐿̃𝑛 = 0}

= Pr {𝐿̃𝑛+1 = 0,𝑀𝑛 = 1 | 𝐿̃𝑛 = 1}

+ Pr {𝐿̃𝑛+1 = 0,𝑀𝑛 = 2 | 𝐿̃𝑛 = 1} ,

𝑃0,𝑗 = 𝑃1,𝑗 = Pr {𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 0}

+ Pr {𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 1} , 𝑗 > 0,

𝑃𝑖,𝑗 = Pr {𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 𝑖} , 𝑖 ≥ 2, 𝑗 ≥ 𝑖 − 2,

𝑃𝑖,𝑗 = 0, else.
(16)

Then we determine the expression of each probability in
(16) as follows.

(1) Pr{𝐿̃𝑛+1 = 0,𝑀𝑛 = 1 | 𝐿̃𝑛 = 1}: this probability
is equivalent to the probability that there is no bus arriving
when the first bus finishes its service; thus

Pr {𝐿̃𝑛+1 = 0,𝑀𝑛 = 1 | 𝐿̃𝑛 = 1}

= Pr {𝐻1 > 𝑆1} = ∫

∞

𝑡=0

𝑒
−𝑟𝑡d𝐹𝑆 (𝑡) ,

(17)

where 𝐻1 is the headway following the first bus arrival in the
cycle, s; 𝑆1 is the first bus’s service time in the cycle, s.

(2) Pr{𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 1}: through the analysis,
there would be at least 2 arrivals in the cycle; that is, 𝐻1 < 𝑆1.
Let 𝜏 be the time between the 2nd arrival and its departure.
Because the service time of buses is different, there are two
possible scenarios at two-berth bus bays: the first bus finishes
its service before the 2nd bus; the 2nd bus finishes its service
before the first bus; thus

𝜏 = max {𝑆1 − 𝐻1, 𝑆2 | 𝐻1 < 𝑆1} , (18)

where 𝑆2 is the second bus’s service time in the cycle, s.
We can derive the CDF of 𝜏 as

𝐹𝜏 (𝑡) = Pr {𝜏 < 𝑡}

= Pr {max {𝑆1 − 𝐻1, 𝑆2 | 𝐻1 < 𝑆1} < 𝑡}

=

∫
∞

ℎ=0
(𝐹𝑆 (ℎ + 𝑡) − 𝐹𝑆 (ℎ)) 𝑟𝑒

−𝑟ℎdℎ
Pr {𝐻1 < 𝑆1}

⋅ 𝐹𝑆 (𝑡) .

(19)

Thus, for 𝑗 ≥ 0, the probability is computed as follows:

Pr {𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 1}

= Pr {𝐻1 < 𝑆1} ⋅ ∫

∞

ℎ=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗

𝑗!
d𝐹𝜏 (𝑡)

= ∫

∞

ℎ=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗

𝑗!
d

⋅ [𝐹𝑆 (𝑡) ⋅ ∫

∞

ℎ=0

(𝐹𝑆 (ℎ + 𝑡) − 𝐹𝑆 (ℎ)) 𝑟𝑒
−𝑟ℎdℎ] .

(20)

(3) Pr{𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 𝑖}: according to [6],
the CDF of the platoon service time of two buses entering the
stop simultaneously is 𝐹

2

𝑆
(𝑡); then for 𝑖 ≥ 2 and 𝑗 ≥ 𝑖 − 2

Pr {𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 2 | 𝐿̃𝑛 = 𝑖}

= ∫

∞

ℎ=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗−𝑖+2

(𝑗 − 𝑖 + 2)!
d [𝐹
2

𝑆
(𝑡)] .

(21)

In summary, the mathematical expectation of transition
probabilities of two-berth bus bays is given by

𝑃0,0 = 𝑃1,0

= ∫

∞

𝑡=0

𝑒
−𝑟𝑡d [𝐹𝑆 (𝑡)

⋅ (1 + ∫

∞

ℎ=0

(𝐹𝑆 (ℎ + 𝑡) − 𝐹𝑆 (ℎ)) 𝑟𝑒
−𝑟ℎdℎ)] ,

𝑃0,𝑗 = 𝑃1,𝑗

= ∫

∞

ℎ=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗

𝑗!
d

⋅ [𝐹𝑆 (𝑡) ⋅ ∫

∞

ℎ=0

(𝐹𝑆 (ℎ + 𝑡) − 𝐹𝑆 (ℎ)) 𝑟𝑒
−𝑟ℎdℎ] ,

for 𝑗 > 0,

𝑃𝑖,𝑗 = ∫

∞

ℎ=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗−𝑖+2

(𝑗 − 𝑖 + 2)!
d [𝐹
2

𝑆
(𝑡)] , for 𝑖 ≥ 2, 𝑗 ≥ 𝑖 − 2,

𝑃𝑖,𝑗 = 0, else.
(22)

3.3.2. Balance Equation of Limiting Probabilities. Thesolution
method of balance equation uses the 𝑧-transform of 𝜋 to
consolidate the infinite-size balance equation into a single
functional equation. Then its solution can be converted back
to the original distribution:

𝜋̃ (𝑧) =

∞

∑

𝑖=0

𝜋𝑖𝑧
𝑖
. (23)
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From the transition probabilities above, the balance equa-
tion of limiting probabilities can be written as

𝜋0𝑃0,1 + 𝜋1𝑃1,0 = 0,

𝜋𝑛−1𝑃𝑛−1,𝑛 + 𝜋𝑛 (𝑃𝑛,𝑛+1 + 𝑃𝑛,𝑛−1) = 𝜋𝑛+1𝑃𝑛+1,𝑛.

(24)

Then, we have

𝜋𝑘 =

{{{{{

{{{{{

{

∞

∑

𝑗=0

𝑃0,𝑗, 0 ≤ 𝑘 ≤ 1,

∞

∑

𝑗=𝑘−2

𝑃𝑘,𝑗, 𝑘 > 1.

(25)

The 𝑧-transformmethod is used for this.We canwrite the
balance equation in the 𝑧-domain as

𝜋̃ (𝑧) = (𝜋0 + 𝜋1)

∞

∑

𝑗=0

𝑃0,𝑗𝑧
𝑖
+

∞

∑

𝑖=2

𝜋𝑖 ⋅

∞

∑

𝑗=𝑖−2

𝑃𝑖,𝑗𝑧
𝑗
. (26)

Let 𝐺(𝑡) = 𝐹𝑆(𝑡) ⋅ ∫
∞

ℎ=0
(𝐹𝑆(ℎ + 𝑡) − 𝐹𝑆(ℎ))𝑟𝑒

−𝑟ℎdℎ; then we
have
∞

∑

𝑗=0

𝑃0,𝑗𝑧
𝑖

= ∫

∞

𝑡=0

𝑒
−𝑟𝑡d𝐹𝑆 (𝑡) + ∫

∞

𝑡=0

𝑒
𝑟𝑡(𝑧−1)d𝐺 (𝑡) , (27)

∞

∑

𝑖=2

𝜋𝑖 ⋅

∞

∑

𝑗=𝑖−2

𝑃𝑖,𝑗𝑧
𝑗

=

∞

∑

𝑖=2

𝜋𝑖 ⋅

∞

∑

𝑗=𝑖−2

𝑧
𝑗
∫

∞

ℎ=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗−𝑖+2

(𝑗 − 𝑖 + 2)!
d𝐹2
𝑆
(𝑡) .

(28)

Let 𝑘 = 𝑗 − 𝑖 + 2; (28) can be converted to

∞

∑

𝑖=2

𝜋𝑖 ⋅

∞

∑

𝑗=𝑖−2

𝑃𝑖,𝑗𝑧
𝑗

= 𝑧
−2

(𝜋̃ (𝑧) − 𝜋0 − 𝜋1𝑧) ⋅ ∫

∞

𝑡=0

𝑒
𝑟𝑡(𝑧−1)d𝐹2

𝑆
(𝑡) .

(29)

Hence,

𝜋̃ (𝑧) = ((𝜋0 + 𝜋1) (∫

∞

𝑡=0

𝑒
−𝑟𝑡d𝐹𝑆 (𝑡) + ∫

∞

𝑡=0

𝑒
𝑟𝑡(𝑧−1)d𝐺 (𝑡))

− 𝑧
−2

(𝜋0 + 𝜋1𝑧) ∫

∞

𝑡=0

𝑒
𝑟𝑡(𝑧−1)d𝐹2

𝑆
(𝑡))

⋅ (1 − 𝑧
−2

⋅ ∫

∞

𝑡=0

𝑒
𝑟𝑡(𝑧−1)d𝐹2

𝑆
(𝑡))

−1

.

(30)

3.3.3. Average Bus Entering Delay. Determining the average
bus delay in queue requires the calculation of the average
number of buses in queue over time. The average number of
buses in queue is equal to the average of the queue length seen

by each Poisson bus arrival. So it can be calculated by the next
equation:

𝐿𝑞 = lim
𝑇→∞

∑
𝐴𝑇

𝑖=1
𝐿𝑞𝑖

𝐴𝑇

= lim
𝑇→∞

∑
𝐴𝑇

𝑖=1
𝐿𝑞𝑖/𝑁

𝐴𝑇/𝑁

=
lim𝑁→∞∑𝑇𝐿𝑛/𝑁

lim𝑁→∞∑𝐴𝑛/𝑁
=

𝑇𝐿

𝐴

,

(31)

where 𝐿𝑞 is the average number of buses in queue, buses; 𝐿𝑞𝑖
is the average of the queue length seen by the 𝑖th bus arrival
during𝑇, m;𝐴𝑇 is the number of bus arrivals during𝑇, buses;
𝑁 is the number of cycles during 𝑇; 𝐴𝑛 is the number of bus
arrivals during cycle 𝑛, buses; 𝑇𝐿𝑛 is the sum of the queue
lengths seen by each bus arrival during cycle 𝑛, m; 𝑇𝐿 is the
average of the sum of the queue lengths seen by each bus
arrival during cycle 𝑛,m;𝐴 is the average of the number of bus
arrivals during each cycle, buses.

To obtain 𝑇𝐿 and 𝐴, we consider the following four
scenarios which describe the possible states of the system at
the start and end of each 𝑛th cycle.

(1) No bus queues are present at the stop’s entry, both at
the start and at the end of the 𝑛th cycle; that is, 𝐿̃𝑛 =

𝐿̃𝑛+1 = 0. In this scenario, no bus arriving during cycle
𝑛 encounters a queue, and the number of buses that
arrive during cycle 𝑛 is the number served during that
cycle. So 𝑇𝐿𝑛 and 𝐴𝑛 can be denoted as

𝑇𝐿𝑛 = 0, 𝐴𝑛 = 𝑀𝑛. (32)

(2) A bus queue is present at the start of cycle 𝑛, but not at
the end of that cycle; that is, 𝐿̃𝑛 = 𝑖 > 0, and 𝐿̃𝑛+1 = 0,
and 𝑖 < 2. Then 𝑇𝐿𝑛 and 𝐴𝑛 can be denoted as

𝑇𝐿𝑛 = 0, 𝐴𝑛 = 𝑀𝑛 − 𝑖. (33)

(3) A bus queue is present both at the start and at the end
of cycle 𝑛, and the number of buses in queue is less
than or equal to the number of berths; that is, 𝐿̃𝑛 = 𝑖 ≤

2, and 𝐿̃𝑛+1 = 𝑗 > 0. In this scenario, the stop is filled
during the cycle; that is, 𝑀𝑛 = 2, and 𝑗 = 𝐴𝑛 + 𝑖 − 2.
The first (2 − 𝑖) arrivals fill unused berths, such that
the first (2 − 𝑖 + 1) arrivals see no entry queue. The
following arrivals will see successively longer queues
that range from 1 to (𝑗 − 1). Thus,

𝑇𝐿𝑛 =
𝑗 (𝑗 − 1)

2
, 𝐴𝑛 = 𝑗 − 𝑖 + 2. (34)

(4) A queue size greater than 2 is present at the start of
cycle, and a queue thus persists at the end of that cycle;
that is, 𝐿̃𝑛 = 𝑖 > 2, and 𝐿̃𝑛+1 = 𝑗 > 𝑖 − 2 > 0. In
this scenario, as in the previous one, 𝑀𝑛 = 2, and
𝑗 = 𝐴𝑛 + 𝑖 − 2. And since the earliest bus of cycle 𝑛 is
characterized by (𝑖 − 2) buses that remain in the entry
queue, arrivals thereafter will see queue lengths in the
sequence (𝑖 − 2 + 1), . . . , (𝑗 − 1). Thus

𝑇𝐿𝑛 =
(𝑗 − 2 + 𝑖) (𝑗 + 𝑖 − 3)

2
, 𝐴𝑛 = 𝑗 − 𝑖 + 2. (35)
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Note from the above that the 𝑇𝐿𝑛 and𝐴𝑛 only depend on
𝐿̃𝑛, 𝐿̃𝑛+1, and 𝑀𝑛. Thus, 𝑇𝐿 and 𝐴 can be obtained by taking
weighted averages:

𝑇𝐿 = ∑

𝑖,𝑗⋅𝑘

Pr {𝐿̃𝑛 = 𝑖, 𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘} ⋅ 𝑇𝐿𝑛,

𝐴 = ∑

𝑖,𝑗⋅𝑘

Pr {𝐿̃𝑛 = 𝑖, 𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘} ⋅ 𝐴𝑛,

(36)

where Pr{𝐿̃𝑛 = 𝑖, 𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘} are the long-run
probability of a cycle where 𝐿̃𝑛 = 𝐼, 𝐿̃𝑛+1 = 𝑗, and 𝑀𝑛 = 𝑘

are calculated by the next equation:

Pr {𝐿̃𝑛 = 𝑖, 𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘}

= 𝜋𝑖 ⋅ Pr {𝐿̃𝑛 = 𝑖,𝑀𝑛 = 𝑘 | 𝐿̃𝑛+1 = 𝑗} .

(37)

So,
𝑇𝐿 = ∑

𝑖,𝑗,𝑘

Pr {𝐿̃𝑛 = 𝑖, 𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘} ⋅ 𝑇𝐿𝑛

=

∞

∑

𝑗=0

(𝜋0 + 𝜋1) ∫

∞

𝑡=0

𝑒
−𝑟𝑡

(𝑟𝑡)
𝑗

𝑗!
d𝐺 (𝑡)

𝑗 (𝑗 − 1)

2

+

∞

∑

𝑖=2

𝜋𝑖

∞

∑

𝑗=𝑖−2

∫

∞

𝑡=0

𝑒
−𝑟𝑡

(𝑟𝑡)
(𝑗−𝑖+2)

(𝑗 − 𝑖 + 2)!
d𝐹2
𝑆
(𝑡)

⋅
(𝑖 + 𝑗 − 3) (𝑗 − 𝑖 + 2)

2
.

(38)

Let 𝑘 = 𝑗 − 𝑖 + 2; (38) is converted to

𝑇𝐿 = (𝜋0 + 𝜋1) ∫

∞

𝑡=0

(𝑟𝑡)
2

2
d𝐺 (𝑡)

+

∞

∑

𝑖=2

𝜋𝑖 ∫

∞

𝑡=0

𝑒
−𝑟𝑡

[
(𝑟𝑡)
2

2
+ (𝑖 − 2) 𝑟𝑡] d𝐹2

𝑆
(𝑡) ,

𝐴 = ∑

𝑖,𝑗⋅𝑘

Pr {𝐿̃𝑛 = 𝑖, 𝐿̃𝑛+1 = 𝑗,𝑀𝑛 = 𝑘} ⋅ 𝐴𝑛

= 𝜋0 ∫

∞

𝑡=0

𝑒
−𝑟𝑡d𝐹𝑆 (𝑡) + 𝜋0 ∫

∞

𝑡=0

(𝑟𝑡 + 2) d𝐺 (𝑡)

+ 𝜋1 ∫

∞

𝑡=0

(𝑟𝑡 + 1) d𝐺 (𝑡) +

∞

∑

𝑖=2

𝜋𝑖 ∫

∞

𝑡=0

𝑟𝑡d𝐹2
𝑆
(𝑡) .

(39)

Therefore, we have

𝐿𝑞 = ((𝜋0 + 𝜋1) ∫

∞

𝑡=0

(𝑟𝑡)
2

2
d𝐺 (𝑡)

+

∞

∑

𝑖=2

𝜋𝑖 ∫

∞

𝑡=0

𝑒
−𝑟𝑡

[
(𝑟𝑡)
2

2
+ (𝑖 − 2) 𝑟𝑡] d𝐹2

𝑆
(𝑡))

⋅ (𝜋0 ∫

∞

𝑡=0

𝑒
−𝑟𝑡d𝐹𝑆 (𝑡) + 𝜋0 ∫

∞

𝑡=0

(𝑟𝑡 + 2) d𝐺 (𝑡)

+ 𝜋1 ∫

∞

𝑡=0

(𝑟𝑡 + 1) d𝐺 (𝑡) +

∞

∑

𝑖=2

𝜋𝑖 ∫

∞

𝑡=0

𝑟𝑡d𝐹2
𝑆
(𝑡))

−1

.

(40)

From Little’s formula [15], the average bus delay in the
queue is then obtained:

𝑊𝑞 =

𝐿𝑞

𝜆

= ((𝜋0 + 𝜋1) ∫

∞

𝑡=0

(𝑟𝑡)
2

2
d𝐺 (𝑡)

+

∞

∑

𝑖=2

𝜋𝑖 ∫

∞

𝑡=0

𝑒
−𝑟𝑡

[
(𝑟𝑡)
2

2
+ (𝑖 − 2) 𝑟𝑡] d𝐹2

𝑆
(𝑡))

⋅ (𝜆(𝜋0 ∫

∞

𝑡=0

𝑒
−𝑟𝑡d𝐹𝑆 (𝑡) + 𝜋0 ∫

∞

𝑡=0

(𝑟𝑡 + 2) d𝐺 (𝑡)

+ 𝜋1 ∫

∞

𝑡=0

(𝑟𝑡 + 1) d𝐺 (𝑡)

+

∞

∑

𝑖=2

𝜋𝑖 ∫

∞

𝑡=0

𝑟𝑡d𝐹2
𝑆
(𝑡)))

−1

.

(41)

The operability of (41) is not strong in practice because it
is too complicated. And therefore, it needs to be simplified.
The approximate calculation model of bus entering delay of
two-berth bays is obtained using the approximation theory
of stochastic service system, as follows:

𝑊𝑞 = (0.6𝐶𝑆 + 3) (tan 𝜋

2
𝜌)

(0.046𝐶𝑆+1.1)

, (42)

where 𝐶𝑆 is the coefficient of variation in bus service time,
which is computed by the next equation:

𝐶𝑆 =
𝜎

𝑢
=

√(1/𝑁)∑
𝑁

𝑖=0
(𝑥𝑖 − 𝑢)

2

𝑢
.

(43)

4. Calculation Models of Bus Exiting Delay

According to the queueing theory and the gap acceptance the-
ory, the average exiting delay is equal to the average number
multiplied by the average length of nongaps that bus waits
for, as shown in (51). Oliver defined any time interval that
is greater than the critical headway as a gap and remaining
intervals as nongaps [16]:

𝐸 (𝑡) = 𝑛2 × 𝑇1, (44)

where 𝑛2 is the average number of nongaps that bus waits for;
𝑇1 is the average length of nongaps.

(1) Average Number of Nongaps That Bus Waits for. When
headways are assumed to have a negative exponential distri-
bution, the probability that bus will join without delay is

𝑝 (ℎ ≥ 𝜏𝑏) = 𝑒
−𝜆𝑐𝜏𝑏 , (45)

where 𝜆𝑐 is the flow at curb lane, pcu/h; 𝜏𝑏 is the critical gap,
s.
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The probability that bus will be delayed is

𝑝𝑑 = 1 − 𝑒
−𝜆𝑐𝜏𝑏 . (46)

The number of blocks is

𝑛 = 𝜆𝑐𝑇𝑒
−𝜆𝑐𝜏𝑏 . (47)

The average number of vehicles between the starts of gaps
is

𝑛1 =
1

𝑒−𝜆𝑐𝜏𝑏
. (48)

Therefore, the average number of nongaps that bus waits
for is

𝑛2 =
1

𝑒−𝜆𝑐𝜏𝑏
− 1. (49)

(2) Average Length of Nongaps. The total time spent in the
nongaps is

𝑇1 = 𝑇 − ∫

∞

𝜏𝑏

𝜆𝑐𝑇𝑒
−𝜆𝑐𝑡d𝑡 = 𝑇 − 𝜆𝑐𝑇[−

1

𝜆𝑐

𝑒
−𝜆𝑐𝑡]

∞

𝜏𝑏

= 𝑇 × (1 + 𝑒
−𝜆𝑐𝜏𝑏) .

(50)

The total number of nongaps is

𝑛3 = 𝜆𝑐𝑇 (1 − 𝑒
−𝜆𝑐𝜏𝑏) . (51)

The average length of nongaps is

𝑇1 =
𝑇1

𝜆𝑐𝑇 (1 − 𝑒−𝜆𝑐𝜏𝑏)
=

1 + 𝑒
−𝜆𝑐𝜏𝑏

𝜆𝑐 (1 − 𝑒−𝜆𝑐𝜏𝑏)
. (52)

From this, it is noted that the average exiting delay is
found by multiplying the average number by the average
length of nongaps that bus waits for; that is,

𝑊𝑏 = 𝐸 (𝑡) = (
1

𝑒−𝜆𝑐𝜏𝑏
− 1)(

1 + 𝑒
−𝜆𝑐𝜏𝑏

𝜆𝑐 (1 − 𝑒−𝜆𝑐𝜏𝑏)
)

=
1 + 𝑒
−𝜆𝑐𝜏𝑏

𝜆𝑐𝑒
−𝜆𝑐𝜏𝑏

.

(53)

5. Calculated Results

5.1. Single-Berth Bay. Based on the above analysis, the aver-
age bus delay at single-berth bays is calculated by (54):

𝑊 =

𝜆𝐸 (𝑆
2

𝑛
)

2 (1 − 𝜌)
+

𝜆 − 𝑞𝑠𝑒
−𝜆𝜏𝑏

𝜆𝑞𝑠𝑒
−𝜆𝜏𝑏

. (54)

The average bus delay is calculated with (54) under differ-
ent demands at single-berth bays, as shown in Figure 4. It can
be seen that the bus delay grows slowly when bus flow is less
than 60 buses/h and has a rapid growth once bus flow exceeds
60 buses/h.
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Figure 4: The average bus delay at single-berth bays.
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Figure 5: The average bus delay at two-berth bays.

5.2. Two-Berth Bay. The average bus delay at two-berth bays
is calculated by

𝑊 = (0.6𝐶𝑆 + 0.3) (tan 𝜋

2
𝜌)

(0.046𝐶𝑆+1.1)

+
𝜆𝑞𝑠 − 𝑒

−𝜆𝜏𝑏

𝜆𝑒−𝜆𝜏𝑏
.

(55)

The average bus delays are calculated with (55) under
different demand at two-berth bays, as shown in Figure 5. It
can be seen that the bus delay grows slowly when bus flow is
less than 100 buses/h and has a rapid growth once bus flow
exceeds 100 buses/h.
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Table 1: Comparison of the calculated and measured values of bus delay at bays.

Bus bay Number of
berths

Distribution of
dwell time (𝜇, 𝜎2)

Bus flow
(buses/h)

Car flow at curb
lane (veh/h)

Calculated
values (s)

Measured
values (s)

Relative error
(%)

Jingzhou North Intersection 2 (2.856, 0.325) 96 360 5.68 5.12 9.86
Gudun Intersection 2 (2.931, 0.414) 120 420 10.52 11.68 11.03
Average — — — — — — 10.44
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Figure 6: Impact of coefficient of variation in bus service time on
bus delay.

6. Model Validation

The proposed model is validated using measured data at two
bus bays of Tianmushan Road in Hangzhou city.The arriving
time, queueing length, and service time of buses at Jingzhou
North Intersection and Gudun Intersection bays during peak
hours are surveyed by video. Then the delay of every bus is
obtained by processing these data, as shown in Table 1. It can
be seen that the average relative error between the calculated
and the measured values of the bus delay is 10.44%. It shows
that the proposed model can effectively reflect the operating
characteristics of bus bays.

7. Influencing Factors Analysis

The calculated results above show that the bus delay depends
mainly on the average service time at given bus bays. The
longer the average service time, the smaller the capacity of
stop, which means the bus delay will increase. In addition, it
is also affected by the coefficient of variation in bus service
time at multiberth bus bays, and the impact characteristics
are shown in Figure 6. Visual inspection of this figure reveals
that the value of bus delay grows larger with growing𝐶𝑆 in the
same bus flow. This is mainly due to the increasing impact
between the servicing buses. Therefore, too many bus lines
should not be set on the same stretch of road. Because more
bus lines will surely increase the coefficient of variation in bus
service time, the interaction between buseswill be intensified.

According to previous experience, 4 or 5 bus lines at most are
set up on the major roads in the city [4, 5].

8. Conclusion

Formulas were developed to predict the average bus delay at
bays. The formulas use a Markov chain that is embedded in
the bus queueing process, the queueing theory, and the gap
acceptance theory at these bays. Exact solutions were derived
for two special cases: single-berth and two-berth bays. And
approximationsmatched up to the surveyed results.With this
methodology, the bus delays at bays are obtained easily if the
characteristics of the service time distribution and traffic flow
are known. And the results of this paper can provide basis for
the efficiency evaluation of bus bays.
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