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Classification of motor imagery (MI) electroencephalogram (EEG) plays a vital role in brain-computer interface (BCI) systems.
Recent research has shown that nonlinear classification algorithms perform better than their linear counterparts, but most of them
cannot extract sufficient significant information which leads to a less efficient classification. In this paper, we propose a novel
approach called FDDL-ELM, which combines the discriminative power of extreme learning machine (ELM) with the re-
construction capability of sparse representation. Firstly, the common spatial pattern (CSP) algorithm is adopted to perform spatial
filtering on raw EEG data to enhance the task-related neural activity. Secondly, the Fisher discrimination criterion is employed to
learn a structured dictionary and obtain sparse coding coefficients from the filtered data, and these discriminative coefficients are
then used to acquire the reconstructed feature representations. Finally, a nonlinear classifier ELM is used to identify these features
in different MI tasks. .e proposed method is evaluated on 2-class Datasets IVa and IIIa of BCI Competition III and 4-class
Dataset IIa of BCI Competition IV. Experimental results show that our method achieved superior performance than the other
existing algorithms and yielded the accuracies of 80.68%, 87.54%, and 63.76% across all subjects in the above-mentioned three
datasets, respectively.

1. Introduction

.e brain-computer interface (BCI) is a system that allows
its users to use their brain activity to control external devices
which are independent of peripheral nerves and muscles
[1, 2]. Motor imagery- (MI-) based sensorimotor rhythm
(SMR) analysis, including mu (8–14Hz) and/or beta (15–
30Hz) rhythms, recorded from the scalp over the sensori-
motor cortex, is one of the widely used methods in the BCI
field [3, 4]. However, these MI signals are highly non-
stationary and inevitably contaminated with noise, and
meanwhile, they strongly depend on subjects [5].

Sparse representation (SR), originally proposed by
Olshausen et al. [6], attempts to simulate the working
mechanism of primary visual cortex in the human visual
system. .e basic idea is to represent the data as a linear
combination of atoms in a dictionary, whose requirement is
that the coefficients are sparse, i.e., they contain only a small

number of nonzero elements. In the last two decades, SR has
been widely studied for reconstruction, representation, and
compression of high-dimensional noisy data, such as
computer vision, pattern recognition, and bioinformatics
[7–9]. Recently, the SR techniques have also yielded
promising results in the BCI systems [10–15]. Although SR is
a powerful tool to reconstruct the originals from noisy and
imperfect data, using the original training samples as the
dictionary may not fully exploit the discriminative in-
formation hidden in the training samples. To address the
problem, Yang et al. [16] proposed a Fisher discrimination
dictionary learning (FDDL) framework to learn a structured
dictionary and had good reconstruction capability for the
training samples, yielding a 3.2% improvement over the
sparse representation-based classification (SRC) algorithm
on AR datasets in face recognition.

Recently, Huang et al. developed a new efficient learning
algorithm called extreme learning machine (ELM) [17, 18]
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for training single-layer feedforward neural networks
(SLFNs), featuring faster learning speed and better gener-
alization capability in comparison with the well-known back
propagation (BP) neural networks and support vector
machines (SVMs). ELM has been applied to pattern rec-
ognition tasks in the BCI systems and has shown superior
performance over traditional classification approaches
[19–22]. In light of this advancement, efforts have beenmade
in developing algorithms to integrate ELM and SR, thus
exploiting the speed advantage and discriminative power of
ELM and the antinoise performance and reconstruction
ability of SR. A recent approach called extreme sparse
learning (ESL) has been proposed in [23], which simulta-
neously learns sparse representation of the input signal and
trains the ELM classifier. In the study by Yu et al. [24], the
sparse coding technique is adopted to map the inputs to the
hidden layer, instead of the random mapping used in classic
ELM. Other ELM-SR hybrid models were also extensively
studied, in which the ELM classifier is firstly employed to
estimate noisy signals, and then a further identification for
the estimated signals is carried out using the SRC algorithm
[25–27].

Most of the existing ELM methods employ a single
hidden layer network structure. While benefitting from
a relatively fast training speed, it is well known that for
a single hidden layer network, the training sample is always
the original training sample set, which could limit the
robustness of the network. Furthermore, due to its shallow
architecture, feature learning using SLFNs may not be
effective for natural signals (e.g., EEG). To incorporate
a deeper network structure, a hierarchical-extreme learning
machine (H-ELM) method has recently been developed,
which allows for a layer-wise architecture design, and have
shown to yield great classification performance [28]. In
addition, multilayer structure has been extended into ELM
in [29, 30] as well. Inspired by these works, we propose
a new layer-wise structure framework called FDDL-ELM,
which combines the idea of SR with ELM to learn a pow-
erful nonlinear classifier. .e proposed method first em-
ploys the Fisher discrimination criterion to learn
a structured dictionary. With the learned dictionary, more
discriminative sparse coding coefficients can be obtained,
and more robust feature information can be extracted.
Subsequently, the ELM classifier is utilized to discriminate
the extracted features. .e classification accuracy of the
proposed method has been manifested by several bench-
mark datasets, as well as 2-class and 4-class real world EEG
data from BCI Competition III Datasets IVa and IIIa and
BCI Competition IV Dataset IIa.

.e rest of the paper is organized as follows: Section 2
presents a brief introduction to basic ELM and FDDL and
provides detailed description of the proposed FDDL-ELM
algorithm. Section 3 evaluates the performance of the
FDDL-ELM method through a series of experiments on
several benchmark datasets, as well as motor imagery EEG
datasets. Finally, we will conclude the paper and present
some future work in Section 4.

2. Methodology

2.1. Classic ELM. ELM was originally implemented for
single-hidden layer feedforward neural networks and then
extended to generalize feedforward networks. By using
random hidden node parameters and tuning-free strategy,
ELM has some notable advantages, such as easy imple-
mentation, fast learning speed, and superior generalization
performance [17], thus making it a suitable choice for the
recognition problem of EEG signals in different motor
imagery tasks.

Consider a dataset containing N training samples,
X,Y{ } � xi, yi􏼈 􏼉, i � 1, 2, · · · , N, with the input
xi � [xi1, xi2, . . . , xip]T ∈ Rp and its corresponding desired
output yi � [yi1, yi2, . . . , yiq]T ∈ Rq, where T denotes
a transpose operation. Assuming that m is the number of
hidden neurons, and g(·) is the activation function, the
output function of ELM is mathematically modeled as

yj � 􏽘
m

i�1
βig aTi xj + bi􏼐 􏼑, j � 1, 2, · · · , N, (1)

where βi � [βi1, βi2, · · · , βiq]T is the weight vector that
connects the i-th hidden neuron and the output neurons,
ai � [ai1, ai2, · · · , aip]T is the randomly chosen input weight
vector connecting the i-th hidden neuron and the input
neurons, bi is the randomly chosen bias of the i-th hidden
node, and yj is the actual output corresponding to input xj.

For convenience of expression, the Equation (1) is
written in matrix notation as

Y � Hβ, (2)

where Y � [y1, y2, · · · , yN]TN×q is the expected network output,
β � [β1, β2, · · · , βm]Tm×q denotes the weight of output layer,
and H is the hidden layer output matrix which is defined
as

H �

g aT1x1 + b1( 􏼁 . . . g aTmx1 + bm( 􏼁

. . . . . . . . .

g aT1 xN + b1( 􏼁 . . . g aTmxN + bm( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

. (3)

To have better generalization performance, the regula-
rization parameter C is introduced in [19], and its corre-
sponding objective function is given by

argmin
β

‖β‖
2
2 + C‖Hβ−Y‖

2
2􏼐 􏼑, (4)

where ‖ · ‖2 denotes the l2-norm of a matrix or a vector.
We can obtain the output weight vector β using the
Moore–Penrose principle. .e solution of Equation (4) is
β � (I/C + HTH)−1HTY if N>m and β � HT(I/C+

HHT)−1Y if N<m.

2.2. Fisher Discrimination Dictionary Learning. Sparse
representation-based classification (SRC) was proposed for
face recognition, which directly used the training samples of
all classes as the dictionary to code the query face image and
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classified it by evaluating which class leads to the minimal
reconstruction error [7]. However, the dictionary in use may
not be effective enough to represent the query images due to
the uncertain and noisy information in the original training
images, and the discriminative information hidden in the
training samples is not sufficiently exploited by such a naı̈ve-
supervised dictionary learning approach [16]. To address
these problems, the FDDL method is proposed, utilizing
both the discriminative information in the reconstruction
error and sparse coding coefficients.

DenoteA � [A1,A2, · · · ,Ac] as the training set, whereAi

is the subset of the training samples from class i, and c is the
total number of classes, and an overcomplete dictionary
D � [D1,D2, · · · ,Dc], where Di is the class-specified sub-
dictionary associated with class i. Let X be the coding co-
efficient matrix of A over D, we can write X as
X � [X1,X2, · · · ,Xc], where Xi is the submatrix containing
the coding coefficients ofAi overD..e objective function is
written as follows:

J(D,X) � argmin
D,X

r(A,D,X) + λ1‖X‖1 + λ2f(X)􏼈 􏼉, (5)

where r(A,D,X) is the discriminative fidelity term, ‖X‖1is
the sparse constraint in which the notation ‖ · ‖1 denotes the
l1-norm, f(X) is a discrimination constraint, and λ1 and λ2
are the scalar parameters.

r Ai,D,Xi( 􏼁 � Ai −DXi

����
����
2
F

+ Ai −DiX
i
i

����
����
2
F

+ 􏽘
c

j�1,j≠ i

DjX
j
i

�����

�����
2

F
,

(6)

where ‖ · ‖F means the F-norm,Xi
i is the coding coefficient of

Ai over the subdictionaryDi, andX
j

i is the coding coefficient
of Ai over the subdictionary Dj. .e minimization of
r(A,D,X) means that the reconstruction error of the i-th
class of samples is minimized, and the reconstruction error
through the i-th subdictionary is also minimized while the
reconstruction by other subclass dictionaries should be
minimized. Its purpose is to ensure that the reconstruction
error constraint is minimized, and the sparse coefficient can
be more discriminative.

f(X) is a discriminative coefficient term which is given
in the following:

f(X) � tr SW(X)( 􏼁− tr SB(X)( 􏼁 + η‖X‖
2
F, (7)

where tr(·) indicates the trace of subspace, SW(X) is the
within-class scatter of X, SB(X) is the between-class scatter
of X, and η is a parameter.

SW(X) � 􏽘
c

i�1
􏽘
xk∈Xi

xk −mi( 􏼁 xk −mi( 􏼁
T
,

SB(X) � 􏽘
c

i�1
ni mi −m( 􏼁 mi −m( 􏼁

T
,

(8)

where mi and m are the mean vectors of Xi and X re-
spectively, and ni is the number of samples in class Ai.

2.3. 3e Proposed FDDL-ELM Method. In this section, we
propose a novel nonlinear classification model that rests on
a new ELM framework for multilayer perceptron (MLP),
named FDDL-ELM. .e framework consists of two stages:
an encoding stage and a classification stage..e former stage
uses the FDDL approach to map the input features into
a midlevel feature space, and then the ELM algorithm is
performed for final decision making in the latter stage. .e
framework of FDDL-ELM is shown in Figure 1.

Let A be an input containing N training samples A,Y{ }

with A � [A1,A2, · · · ,Ac], and Y is the corresponding de-
sired output, where Ai is the subset of the input from class i,
and c is the total number of classes.

Step (1): utilize the FDDL algorithm to learn a structured
dictionary D.

By incorporating Equations (6) and (7) into Equation
(5), the objective function is rewritten as

J(D,X) � argmin
(D,X)

􏼨 􏽘

c

i�1
r Ai,D,Xi( 􏼁 + λ1‖X‖1

+ λ2 tr SW(X) − SB(X)( 􏼁 + η‖X‖
2
F􏼐 􏼑􏼩.

(9)

.e optimization of the objective function consists of
two steps: First, update X by fixing D, and then update D
while fixing X. .e procedures are iteratively implemented
for the desired discriminative dictionary D and the dis-
criminative coefficients X as done in [16].

Step (2): reconstruct the signals for the high-level sparse
feature information.

With the desired dictionary D and the coefficients X in
the Step (1), we can get the reconstructed signalsBwhich can
uncover important information hidden in the original sig-
nals and is simplified as follows:

B � DX. (10)

Step (3): discriminate the reconstructed signals B using
the ELM classification method.

(1) Randomly generate the hidden node parameters
(ai, bi) for i � 1, 2, · · · , m.

(2) .e new hidden-layer output matrix G can be
written as

G �

g aT1DX1 + b1( 􏼁 . . . g aTmDX1 + bm( 􏼁

. . . . . . . . .

g aT1DXN + b1( 􏼁 . . . g aTmDXN + bm( 􏼁

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

N×m

. (11)

(3) .e regularization parameter C is introduced, and
the output weight β is calculated as follows:

β �
I
C

+ GTG􏼒 􏼓
−1
GTY, forN>m,

β � GT I
C

+ GGT
􏼒 􏼓

−1
Y, forN<m.

(12)
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Extensive efforts have been paid to the optimal selection
of C and the leave-one-out (LOO) cross-validation strategy
combining with the predicted residual sum of squares
(PRESS) statistic is one of the most effective methods [26].

Step (4): For test data Atest,Ytest􏼈 􏼉 and the learned dic-
tionary D, we can reconstruct the Atest in the encoding stage
and then calculate the labels Ypredict using the ELM classifier.

3. Experimental Results and Discussion

In this section, several experiments on benchmark datasets
and EEG datasets were performed to evaluate the perfor-
mance of the proposed FDDL-ELM method, as compared
with the other state-of-the-art approaches. All methods were
implemented using MATLAB 2014b environment on
a computer with a 2.6GHz processor and 8.0GB RAM.

3.1. Experiment on Benchmark Datasets

3.1.1. Description. In order to evaluate its performance, the
proposed FDDL-ELM method was first applied to four
popular benchmark datasets in the UCI repository [31]. .e
details of these datasets are shown in Table 1.

.e Liver Disorders dataset is a medical application,
which consists of 345 samples belonging to 2 categories, and
each sample extracts 6 features for representation. .e
Diabetes dataset contains 768 samples belonging to two
categories. For each sample, 8 features are extracted. .e
Waveform dataset consists of 5000 samples from 3 classes of
noisy waveforms, and each sample contains 21 attributes.
.e Columbia Object Image Library (COIL-20) is a multi-
class image classification dataset and consists of 1440
grayscale image sample of 20 different objects, in which each

sample is a 32 × 32 grayscale image of one object taken from
a specific view.

3.1.2. Experimental Setup. In Table 1, the column “Random
perm” denotes whether the training and test data are ran-
domly assigned. In each data partition, the ratio between
training and test sample is 1 :1..e classification process was
repeated ten times, and the average of these outcomes was
the final classification rate.

.is proposed FDDL-ELM algorithm has 5 tuning pa-
rameters: λ1, λ2, and η in the encoding stage, as well as the
number of hidden nodesm, and the regularization parameterC

in the classification stage. In all the experiments, the optimal
parameters λ1 and λ2 are searched using five-fold cross-
validation from a small set 0.001, 0.005, 0.01, 0.05, 0.1{ }, and
η is set to 1, as done in [16]. .e optimal parameters m

and C were determined from m ∈ 100, 200, · · · , 1500{ } and
C ∈ e−5, e−4, · · · , e5􏼈 􏼉 using the LOO cross-validation strategy
based on the minimum MSEPRES [27]. It is noted that C is
automatically chosen and not fixed during the process of
repeating ten times in the classification stage. .e settings of
these tuning parameters for four benchmark datasets are
summarized in Table 2.

1
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β
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Y

Figure 1: A schematic for the overall framework of the FDDL-ELM-learning algorithm.

Table 1: Description of the benchmark datasets.

Datasets Training Testing Features Classes Random
perm

Liver
Disorders 172 172 6 2 Yes

Diabetes 384 384 8 2 Yes
Waveform 2500 2500 21 3 Yes
COIL-20 720 720 1024 20 Yes
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3.1.3. Comparisons with Other State-of-the-Art Algorithms.
In this experiment, we compare the proposed FDDL-ELM
with three baseline algorithms, including ELM, FDDL, and
H-ELM..e classification performance is evaluated in terms
of average accuracy and standard deviation (acc± sd).
Table 3 summarizes the performance results using four
methods on the benchmark datasets.

From the results shown in Table 3, it is evidenced that the
FDDL-ELM algorithm achieved comparable performance
with other state-of-the-art methods, such as single-layer
ELM, FDDL, and H-ELM with deep architecture. For the
Diabetes dataset, the FDDL-ELM approach achieved more
than 9% improvement over FDDL. For the Liver Disorders
dataset, although the average classification accuracy of
H-ELM (74.01%) was better than that of FDDL-ELM
(72.38%), the accuracy of FDDL-ELM was higher than
ELM by 0.23% and FDDL by 6.61%. For the Waveform
dataset, the FDDL-ELM approach yielded a mean accuracy
of 85.02%, a 0.57% improvement over ELM, and a 0.30%
improvement over H-ELM. .e average classification ac-
curacy of COIL-20 dataset obtained by FDDL-ELM was
98.33%, higher than those of ELM (96.14%) and H-ELM
(97.13%). Based on these observations, the proposed FDDL-
ELM approach outperformed the original ELM and FDDL
methods on all four datasets and had comparable perfor-
mance on most of the four datasets compared with H-ELM.

3.1.4. 3e Impact of the Parameters. .ere are five
parameters in our algorithm: λ1, λ2, η, m, and C. Since η is
set to 1 [16], and C is automatically chosen [27], we will
investigate the impact of the other three parameters (λ1,
λ2, and m) on the performance of our algorithm in this
section. λ1 and λ2 are respectively changed among
0.001, 0.005, 0.01, 0.05, 0.1{ }. .e parameter m decides the
number of hidden neurons, and its value is selected
among 100, 200, · · · , 1500{ }.

Figures 2(a)–5(a) show the testing results of our algo-
rithm as the parameter m changes on four datasets: Diabetes,
Liver Disorders, Waveform, COIL-20 datasets, respectively.
As can be seen, the performance of our algorithm is rela-
tively stable with respect to m. Figures 2(b)–5(b) give the
plots of testing accuracies as λ1 and λ2 vary on four datasets,
respectively. From these results, it can be observed that the
performance is more pronouncedly affected by the pa-
rameters λ1 and λ2, relative to m. For a tradeoff between the
classification performance and computation complexity, we
can use a comparatively small number of nodes m when
selecting λ1 and λ2 in real EEG applications.

3.2. Experiment on BCI Datasets

3.2.1. Description. .is section evaluates the performance of
the proposed FDDL-ELM method on MI EEG datasets.
.ere are three datasets for analysis, including two datasets
for binary classification and one dataset for multi-
classification, as described below:

(1) Dataset IVa, BCI competition III [32]: this dataset
contains EEG signals from 5 subjects, who per-
formed 2-class MI tasks: right hand and foot. EEG
signals were recorded using 118 electrodes. A
training set and a testing set were available for each
subject. .eir size was different for each subject.
More precisely, 280 trials were available for each
subject, among which 168, 224, 84, 56, and 28
composed the training set for subjects A1, A2, A3,
A4, and A5, respectively, and the remaining trials
composed the testing set.

(2) Dataset IIIa, BCI competition III [33]: this dataset
comprised EEG signals from 3 subjects who per-
formed left hand, right hand, foot, and tongue MI.
EEG signals were recorded using 60 electrodes. For
the purpose of binary classification, only 2-class EEG
signals (left and right hand MI) were used as done in
[34]. Both the training and testing sets were available
for each subject. Both sets contain 45 trials per class
for subject B1, and 30 trials per class for subjects B2
and B3.

(3) Dataset IIa, BCI competition IV [35]: this dataset
consists of EEG signals from 9 subjects who per-
formed 4-class MI tasks: left hand, right hand, foot,
and tongue MI. EEG signals were recorded using 22
electrodes. .e training and testing sets contain 288
trials for each class, respectively.

3.2.2. Experimental Setup. Data preprocessing was first
performed on the raw EEG data. In particular, for each trial,
we extracted features from the time-segment spanning from
0.5 s to 2.5 s after the cue instructing the subject to perform
MI. Each trial was band-pass filtered in 8–30Hz, using
a fifth-order Butterworth filter. Next, the dimension of the
EEG signal was reduced using the common spatial pattern
(CSP) algorithm, a widely used feature selection method for
MI-based BCIs [12, 34]. Finally, the filtered EEG signals by
CSP were discriminated by different classification methods
in our experiment.

Table 3: Comparisons of classification results on each dataset using
different methods.

Method
Liver

Disorders Diabetes Waveform COIL-20

Acc± sd Acc± sd Acc± sd Acc± sd
ELM 72.15± 1.54 74.22± 1.10 84.45± 0.69 96.14± 1.03
FDDL 65.77± 4.45 65.43± 2.49 79.18± 1.19 96.48± 0.85
H-ELM 74.01 ± 0.87 71.67± 1.26 84.72± 0.30 97.13± 0.71
FDDL-
ELM 72.38± 1.49 75.33 ± 0.68 85.02 ± 0.32 98.33 ± 0.62

Table 2: Parameter settings of FDDL-ELM on the benchmark
datasets.

Datasets λ1 λ2 m

Liver Disorders 0.01 0.001 400
Diabetes 0.005 0.05 500
Waveform 0.001 0.01 100
COIL-20 0.05 0.001 900

Computational Intelligence and Neuroscience 5
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Figure 2: Testing accuracy with different parameters on Diabetes. (a) Accuracy in terms of m; (b) accuracy curve in terms of (λ1, λ2).
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Figure 3: Testing accuracy with different parameters on liver disorders. (a) Accuracy in terms of m; (b) accuracy curve in terms of (λ1, λ2).
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Figure 4: Testing accuracy with different parameters on waveform. (a) Accuracy in terms of m; (b) accuracy curve in terms of (λ1, λ2).
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In this work, the classification process was repeated ten
times, and the average accuracy was recorded for further
analysis. .e selection process of the parameters λ1, λ2, η,
and C were the same as those described in Section 3.1.2, and
the setting of the hidden node m was 10, 20, · · · , 100{ }.

3.2.3. Comparisons with Related Algorithms. We compared
the proposed method FDDL-ELM with ELM, FDDL, and
H-ELM on BCI Competition III Datasets IVa and IIIa and
BCI Competition IV Dataset IIa. .e average classification
accuracies of all four algorithms are shown in Table 4.

From Table 4, it can be seen that the proposed method
outperformed the ELM and FDDL algorithms on almost all
subjects (except subject B2) in binary-classification appli-
cations. For subject B2, the ELM method obtained the av-
erage accuracy of 68.33%, a 0.33% improvement over FDDL-
ELM. Compared with H-ELM which adopts a deep archi-
tecture, FDDL-ELM yielded comparable performance on all
the 8 subjects and especially performed better in 4 subjects
(A2, A3, A4, and B2). Furthermore, the proposed algorithm
yielded the highest average accuracy on Datasets IVa and
IIIa. For the Dataset IVa, the FDDL-ELM approach achieved
amean accuracy of 80.68%, a 0.73% improvement over ELM,
and a 1.35% improvement over H-ELM. Moreover, a paired
t-test revealed no significant difference between the FDDL-
ELM and H-ELM approaches (p � 0.626) and a significant
difference between the FDDL-ELM and ELM approaches
(p � 0.04). For the Dataset IIIa, the average classification
accuracy obtained by FDDL-ELM was 87.54%, higher than
that of ELM (87.35%), FDDL (83.26%), and H-ELM
(85.63%). Furthermore, a paired t-test revealed no signifi-
cant difference between the FDDL-ELM and H-ELM ap-
proaches (p � 0.596). .ese results have shown that the
FDDL-ELM method has achieved a great classification ca-
pacity in binary-classification applications.

In the 4-class-classification application for BCI Com-
petition IV Dataset IIa, the average classification accuracies
for the 9 subjects using four algorithms are also shown in
Table 4. Note that our method also outperformed ELM and
FDDL in 8 of the 9 subjects (except subject C8). For subject
C8, ELM gained the best result (81.87%) compared with

FDDL (63.72%), FDDL-ELM (80.60%), and H-ELM
(76.46%)..e FDDL-ELM approach performed the best in 4
subjects (C1, C3, C6, and C7), whereas H-ELM achieved the
best result in 4 subjects (C2, C4, C5, and C9). .e average
classification accuracy of 9 subjects using FDDL-ELM was
63.76%, slightly lower than H-ELM (64.46%). A paired t-test
revealed no significant difference between the FDDL-ELM
and H-ELM approaches (p � 0.519) and a significant
difference between the FDDL-ELM and FDDL approaches
(p is less than 0.01). .ese results showed that when
compared to the H-ELM algorithm, our method can achieve
similar results without the deep architecture.

In these experiments, the proposed FDDL-ELM method
exhibited an excellent performance in both binary-
classification and multiclassification cases. .e nonlinear
property of FDDL-ELM allowed for its superior perfor-
mance over the FDDL approach when processing the
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Figure 5: Testing accuracy with different parameters on COIL-20. (a) Accuracy in terms of m; (b) accuracy curve in terms of (λ1, λ2).

Table 4: Comparisons of classification results on 2-class and 4-class
BCI datasets using different methods.

Datasets Methods
ELM FDDL FDDL-ELM H-ELM

Dataset IVa

A1 60.71 57.50 61.70 63.39
A2 100 84.29 100 98.39
A3 73.37 70.51 73.88 64.08
A4 86.61 65.00 88.17 85.67
A5 79.05 77.14 79.64 85.16

Mean 79.95 70.89 80.68 79.33

Dataset IIIa

B1 96.89 93.11 97.78 98.56
B2 68.33 60.33 68.00 60.00
B3 96.83 96.33 96.83 98.33

Mean 87.35 83.26 87.54 85.63

Dataset IIa

C1 76.43 62.77 76.74 75.69
C2 45.38 32.92 45.70 47.74
C3 76.32 70.76 77.13 76.98
C4 59.24 45.59 60.50 61.84
C5 37.12 31.42 36.24 37.85
C6 45.90 35.28 47.57 47.08
C7 78.99 66.91 80.30 80.07
C8 81.87 63.72 80.60 76.46
C9 67.36 65.48 69.10 76.42

Mean 63.18 52.76 63.76 64.46
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nonstationary EEG signals. Furthermore, FDDL-ELM is
more suitable in analyzing noisy EEG data than basic ELM
because its encoding stage can acquire a higher represen-
tation of the raw signals and extract more effective feature
information. Compared with the H-ELM, an algorithm with
a deep architecture design, our method also yielded com-
parable results. In particular, on the binary-classification
datasets (BCI Competition III Datasets IVa and IIIa), our
method gained higher average accuracies (80.68% and
87.54%) than that of H-ELM (79.33% and 85.63%),
respectively.

4. Conclusion

In this paper, we have proposed a new ELM framework
called FDDL-ELM, which achieves a sparse representation of
input raw data with layer-wise encoding, while still
benefiting from the universal approximation capability of
the original ELM. We verified the generalizability and ca-
pability of FDDL-ELM using publicly available benchmark
databases and MI-BCI datasets. In these applications,
FDDL-ELM demonstrated superior classification perfor-
mance than the other relevant state-of-the-art methods.
However, there are still several questions to be further in-
vestigated in future work. .e nonstationary nature of EEG
signals means that a classification model built earlier using
the previous data is not able to well reflect the changes that
have already taken place to the signals. Consequently, the
online updates to the classification model are needed. Re-
cently, the ensemble of subset online sequential extreme
learning machine (ESOS-ELM) method is proposed for class
imbalance learning [36]. In addition, an online sequential
extreme learning machine with kernels (OS-ELMK) has
been proposed for prediction of nonstationary time series
[37]. In the study by Mirza et al.[38], a multilayer online
sequential extreme learning machine has been proposed for
image classification. In the future work, we will investigate
the online learning algorithm of FDDL-ELM for analyzing
MI EEG signals.

Data Availability

.ree datasets were employed in this study, including two
datasets for binary classification and one dataset for mul-
ticlassification, which are publicly available: (1) dataset IVa,
BCI competition III [31]: this dataset contains EEG signals
from 5 subjects, who performed 2-class MI tasks: right hand
and foot. (2) Dataset IIIa, BCI competition III [34]: this
dataset comprised EEG signals from 3 subjects who per-
formed left hand, right hand, foot, and tongue MI. (3)
Dataset IIa, BCI competition IV [32]: this dataset consists of
EEG signals from 9 subjects who performed 4-class MI tasks:
left hand, right hand, foot, and tongue MI.
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