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In reliability studies, the best fitting of lifetime models leads to accurate estimates and predictions, especially when these models have
nonmonotone hazard functions. For this purpose, the new Exponential-X Fréchet (NEXF) distribution that belongs to the new
exponential-X (NEX) family of distributions is proposed to be a superior fitting model for some reliability models with nonmonotone
hazard functions and beat the competitive distribution such as the exponential distribution and Frechet distribution with two and three
parameters. So, we concentrated our effort to introduce a new novel model.+roughout this research, we have studied the properties of
its statistical measures of the NEXF distribution. +e process of parameter estimation has been studied under a complete sample and
Type-I censoring scheme. +e numerical simulation is detailed to asses the proposed techniques of estimation. Finally, a Type-I
censoring real-life application on leukaemia patient’s survival with a new treatment has been studied to illustrate the estimationmethods,
which are well fitted by the NEXF distribution among all its competitors. We used for the fitting test the novel modified Kolmo-
gorov–Smirnov (KS) algorithm for fitting Type-I censored data.

1. Introduction

Modeling real-life events and natural processes using
probability distributions is one of the most important
processes in statistics and probability, where these processes
are characterised by complexity and risk. For these reasons,
statisticians have worked on the development of probability
distributions, as proven probability distributions continue to
fall short of accurately describing data obtained from natural
events. +ese help to expand and modify probability dis-
tributions in generalized ways. Generalized probability
distributions have emerged as a consequence of the wide-
spread availability of additional parameters. Adding a special
parameter to existing probability functions increases the

precision of adequacy of the data obtained from natural
phenomena as well as the accuracy of the distribution tail
form’s description.

In recent years, various research works were undertaken
to create new distributions through creating new families
and classes by modifying the baseline distribution by adding
additional shape parameter(s). +ere are a large number of
well-known classes of distribution that exist in the literature.
For examples, see references [1–10].

One of the most well-known lifetime distributions is the
exponential distribution, which has accordingly received
considerable attention from statisticians. A superior novel
family of distribution dubbed as a new exponential-X (NEX)
family was introduced by Huo et al. [11]. It can model data
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with different shapes to their hazard function, such as in-
creasing, decreasing, and bathtub. +e distribution function
(CDF) and density function (PDF) for the NEX family are
defined as

G(x;Θ) � 1 −
1 − F(x;Ω)

e
βF(x;Ω)

, x> 0, β> 0, (1)

g(x;Θ) � f(x;Ω)
1 + β[1 − F(x;Ω)]

e
βF(x;Ω)

, x> 0, β> 0, (2)

where the vector of the parameters is denoted by Θ of the
family. It consists of (Ω, β), which are the vectors of pa-
rameters for the baseline distribution and the additional
shape parameter for the family, respectively.

+e standard Fréchet distribution is a well-defined
limiting distribution. It is commonly used to characterise
variables associated with extreme phenomena like floods,
rains, and cash flow. It was first introduced by Fréchet [12].
We can say that X is a random variable that has the two-
parameter Fréchet distribution if its CDF and PDF are
written as follows:

F(x;Ω) � e
− (α/x)λ

, x> 0, β> 0,

f(x;Ω) �
λ
x

α
x

 
λ
e

− (α/x)λ
, x> 0, α, λ> 0,

(3)

where the vector of the parametersΩ � (α, λ) consists of the
shape and scale parameters, respectively, for the Fréchet
distribution.

+e Fréchet distribution has received attention of a large
number of authors such as Nadarajah and Kotz [13], where
the standard Fréchet distribution is generalised as an
exponentiated Fréchet distribution. Cordeiro et al. [14]
discussed a new class of exponentiated generalised distri-
butions, with regard to which functions such as the Expo-
nentiated Generalised Fréchet, Exponentiated Generalised
Normal, Exponentiated Generalised Gamma, and Expo-
nentiated Generalised Gumbel have been introduced. A new
lifetime distribution called the Weibull Fréchet distribution,
which has four parameters, has been defined and studied by
Afify et al. [15]. Teamah et al. [16] presented the
Fréchet–Weibull distribution with application to earthquake
datasets. Teamah et al. [17] introduced the Fréchet–Weibull
Mixture Distribution. Almetwally and Muhammed [18]
introduced a new novel bivariate distribution depending on
copulas. Furthermore, Teamah et al. [19] presented a right
truncated model of the Fréchet–Weibull Distribution. Mead
et al. [20] introduced the beta exponential Fréchet distri-
bution. +e properties of the Gompertz Fréchet distribution
have been studied by Oguntunde et al. [21]. An overview of
the various estimators and applications for the Fréchet
distribution has been discussed by Ramos et al. [22].

+e innovations and encouragements to write this article
are to introduce a new exponential-X Fréchet distribution as
a good fit for the lifetime models that have increasing,
decreasing, and bathtub failure rates. We have studied its
mathematical properties such as its linear representation,
quantile function, moments, generating function,

incomplete moments, mean residual life and mean inactivity
time, inequality curves, and order statistics. Furthermore,
approaches to parameter estimation such as maximum
likelihood, maximum product spacing, and Bayesian
methods have been discussed using Type-I censored data.
+e Markov Chain Monte Carlo (MCMC) algorithm has
been used as an approximation to Bayesian estimates. An
extensive simulation study has been done. A comparison of
the suggested estimate techniques has been conducted. Fi-
nally, the NEXF distribution has demonstrated its efficiency
at fitting real-life data to a greater extent than other com-
petitor distributions with regard to real-life applications.

+e following is the structure of the paper: in Section 2,
the proposed distribution is presented, and its behaviour is
studied using different graphs. Various mathematical
properties have been studied in Section 3. Section 4 discusses
the estimating techniques used to determine parameters.
Section 5 contains the interval estimation for the distribu-
tion’s parameters. +e simulation experiments have been
performed, and its results were tabulated in Section 6. We
worked on a real numerical example for the remission times
as a data application, and this application is analyzed and
fitted using the suitable fitting algorithm according to Type-I
censoring in Section 7. After this, Section 8 contains the
current study conclusions and other remarks.

1.1. Type-I Censoring Scheme. Assume that n identical
components are arranged in a life testing experiment. We
perform the experiment using a scheme of a Type-I censored
sample. +e test comes to an end at predetermined point in
time T, and only the failure times prior to this time are
recorded. +en, the number of units that fail by time T, say
m, is a random variable, where m< n. +e lifetimes of the
initial m failures are determined, as well as the lifetimes of
the subsequent m failures of the remaining n − m units are
censored, where all that is known is that they will be greater
than T. In this case, the model can be known as a Type-I
censoring model (see Balakrishnan and Aggarwala [23]). For
more examples of censored sampling based on different
schemes, see [24–33].

Assume that the Type-I censored sample arises from
CDF F(t) with PDFf(t).+e joint density function of Type-
I censored data, x1: n, x2: n, . . . , xm: n, is then given by

f x1, x2, . . . , xm(  �
n!

(n − m)!
[1 − F(T)]

n− m


m

i�1
f xi( ,

(4)

where x1 <x2 < · · · < xm <T<xm+1.

2. The NEXF Distribution

Based on the NEX family with the Fréchet baseline distri-
bution, we have obtained the NEXF distribution according
to three parameters. We can derive easily the CDF and PDF
of the NEXF distribution by the aid of the the Fréchet
distribution and both equations (1) and (2), which can be
given as follows:
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G(x;Θ) � 1 −
1 − e

− (α/x)λ

e
βe−(α/x)λ

, x> 0, α, λ, β> 0, (5)

g(x;Θ) �
λ
x

α
x

 
λ
e

− (α/x)λ
1 + β 1 − e

− (α/x)λ

 

e
βe−(α/x)λ

, x> 0, α, λ, β> 0.

(6)

We can say that a random variable X is distributed
according to the NEXF distribution with PDF as in equation
(6) by X ∼ NEXF(α, β, λ). +e two-parameter NEX inverse
Rayleigh model is a special case of the NEXFmodel obtained
by letting λ⟶ 2.

+e NEXF distribution’s hazard rate function (HR) is
provided by the following:

h(x;Θ) �
λ
x

α
x

 
λ
e

− (α/x)λ
1 + β 1 − e

− (α/x)λ

 

1 − e
− (α/x)λ

. (7)

While its revised hazard rate function (RHR) can be
written and defined by the following equation:

rh(x;Θ) �
(λ/x)(α/x)

λ
e

− (α/x)λ 1 + β 1 − e
− (α/x)λ

  

e
βe−(α/x)λ

+ e
− (α/x)λ

− 1
. (8)

In order to make a reasonable study on the distribution,
we chose different values for its parameters, and the graphs
of its PDF and HR function are plotted in Figures 1 and 2 .
From these figures, it may be noticed that the behaviour of
the NEXF PDF curve may have different shapes. It may be
skewed to right or even to left, or posses symmetric shape or
declining shape, while the NEXF HR curves may be con-
stant, decreasing, or upside down, which means that the
proposed model is an attractive lifetime model. +e NEXF
distribution shows great flexibility in terms of its ability to
model skewed data, as noted in the application section, so it
sees widespread use in various fields such as biology, bio-
medical experiments, reliability, and survival studies.

3. Mathematical Properties

3.1. Linear Representation. +e CDF of equation (1) is
represented in the following form:

G(x) � 1 − [1 − F(x)]e
− βF(x)

� 1 − 
∞

k�0

(− 1)
kβk

k!
[1 − F(x)]F

k
(x)

� 1 − 
∞

k�0


1

m�0

1

m

⎛⎝ ⎞⎠
(− 1)

m+kβk

k!
F

m+k
(x).

(9)

By applying the previous expansion to the Fréchet
distribution, we gain the CDF of the NEXF distribution in an
expanded form as per the following:

F(x) � 1 − 
∞

k�0


1

m�0

1

m

⎛⎝ ⎞⎠
(− 1)

m+kβk

k!
e

− (m+k)(α/x)λ
. (10)

By calculating the derivative of the above equation in
terms of x, we can determine and easily find the PDF of the
NEXF distribution in an expanded form as per the following:

f(x) � 

1

m�0


∞

k�0

1

m

⎛⎝ ⎞⎠
(− 1)

m+k+1βk

k!

λ(k + m)(α/x)
λ
e

− (k+m)(α/x)λ

x
� 

1

m�0


∞

k�0
Φm,khm+k(x). (11)

We can say that Φm,k �
1
m

 ((− 1)k+1βk/k!) and

hm+k(x) is the Fréchet density function having a α[m + k]1/λ

as a scale parameter and a shape parameter λ.

3.2. Quantile Function QF. We can express and define the
QF of the NEXF distribution as the inverse of the CDF of
equation (5), and it is as follows:

Q(p) � α log
β

β − W − eββ(p − 1) 
  

− (1/λ)

, 0<p< 1, (12)

where W[·] is the Lambert function.
+e NEXF distribution’s 3 quartiles are determined by

specifying special values for p, so when we set in equation
(12) p � 0.25 and 0.5, we get the first and second quartile,
respectively, while when we set and p � 0.75, we get the third
quartile in equation (12).

Let pi is distributed uniformly from 0 to 1, then the
QF of the NEXF distribution can be adopted to generate
a randomized sample that can be used in simulation
and other applications throughout the following
equation:
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xi � α log
β

β − W − eββ pi − 1(  
  

− (1/λ)

, i � 1, 2, . . . , n.

(13)

3.3. 6e Moments. +e most important thing for any dis-
tribution is to find its moments in an easy and simple ways.
So, we can find the rth moments of the proposed NEXF
distribution as shown in the following steps:

μr
′ � E X

r
(  � 

∞

0
x

r
f(x)dx � 

1

m�0


∞

k�0
Φm,k 

∞

0
x

r
hm+k(x)

� 
1

m�0


∞

k�0
Φm,kΓ 1 −

r

λ
  α[m + k]

1/λ
 

r
, r< λ.

(14)
By assigning r � 1, 2, 3, and 4 in the preceding equation,

we can drive the moments around the origin, from the first
moment to the fourth moment, respectively.
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Figure 1: PDF plots of NEXF distribution.
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Figure 2: HRF plots of NEXF distribution.
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We can derive the nth central moment of the random
variable X, say μn, which is obtained as

μn � E(x − μ)
n

� 
∞

k�0
(− 1)

k
n

k
 μ′k1 μn− k

′ . (15)

+e cumulants (kn) of X can be found as follows:

kn � μn
′ − 

n− 1

k�0

n − 1

k − 1
 krμn− r

′ . (16)

3.4. Moment Generating Function (MGF). We can write the
MGF of the Fréchet distribution using the following
equation:

M(t) � 
∞

0
e

tx
f(x)dx � λαλ 

∞

0
e

tx
x

− λ− 1
e

− (α/x)λdx,

(17)

where by setting y � x− 1 and by expanding the first ex-
ponential, we have

M(t) � 
∞

m�0

αm
t
m

m!
Γ

λ − m

λ
 . (18)

Assume that the right generalised hypergeometric
function is described as follows:

pΩq

α1, A1( , . . . , αp, Ap 

λ1, B1( , . . . , λq, Bq 

; x
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 
∞

n�0


p

j�1 Γ αj + Ajn x
n


q
j�1 Γ λj + Bjn n!.

(19)

As a result, we may write the MGF as

M(t) � 1Ω0
1, − λ− 1

 

−
; αt⎡⎣ ⎤⎦. (20)

+en, the MGF of the NEXF distribution can be written
and defined as follows:

M(t) � 
1

m�0


∞

k�0
Φm,k1Ω0

1, − λ− 1
 

−
; α[m + k]

1/λ
 t⎡⎣ ⎤⎦.

(21)

Wemay get and determine the formula for the proposed
distribution’s characteristic function simply by substituting t

for it in the preceding equation.

3.5. 6e Incomplete Moments. One of the fundamental
formulas is the incomplete moments, so this subsection is
devoted to derive the formula of the sth incomplete moment
of the NEXF distribution:

Ψs(t) � 
t

0
x

s
f(x)dx � 

1

m�0


∞

k�0
Φm,k 

t

0
x

s
hm+k(x)

� 
1

m�0


∞

k�0
Φm,k(m + k)

s/λ
c 1 −

s

λ
, (m + k)

α
t

 
λ

 ,

(22)

such that c(a, z) is the lower incomplete gamma function.

3.6. Mean Residual Life (MRL) and Mean Inactivity Time
(MIT). +e MRL of the NEXF distribution is defined as
follows:

MRL �
1 − Ψ1(t)

S(t) − t
�
1 − 

1
m�0
∞
k�0Φm,k(m + k)

s/λ
c 1 − (1/λ), (m + k)(α/t)λ 

1 − e
− (α/x)λ

 e
− βe−(α/x)λ

− t

, (23)

where Ψ1(t) is the first incomplete moment of the NEXF
distribution.

+e MIT of the NEXF distribution is defined as follows:

MIT � t −
Ψ1(t)

F(t)
� t −


1
m�0
∞
k�0Φm,k(m + k)

s/λ
c 1 − (1/λ), (m + k)(α/t)λ 

1 − e
− (α/x)λ

 e
− βe−(α/x)λ

. (24)

3.7. Inequality Curves. For the NEXF distribution, the fol-
lowing Lorenz curves are defined:

L(p) �
Ψ1 xp 

μ
�


1
m�0
∞
k�0Φm,k(m + k)

s/λ
c 1 − xp/λ , (m + k)(α/t)λ 


1
m�0
∞
k�0Φm,kΓ(1 − (1/λ)) α[m + k]

1/λ
 

, (25)
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where F(xp) � p, Ψ1(t) is the first incomplete moment, and
xp is the quantile function.

Additionally, we can determine the Bonferroni and
Zenga inequality curves based on the correlations to the
Lorenz curve as shown in the following equation (for further
details and further readings, see [34]):

B(p) �
L(p)

p
,

Z(p) �
L(p) − p

p[1 − L(p)]
.

(26)

3.8. Order Statistics. For the i th order statistic of the NEXF
distribution, the PDF and CDF are given as follows:

fi: n(x) �
n!

(i − 1)!(n − i)!
[F(x)]

i− 1
[1 − F(x)]

n− i
f(x)

�
λn!αλ(1/x)

λ+1
e

− βe−(α/x)λ − 2(α/x)λ
(β + 1)e

(α/x)λ
− β  e

− (α/x)λ
− 1 e

β − e−(α/x)λ( 
+ 1 

i− 1

Γ(i)Γ(− i + n + 1)

× e
− (α/x)λ

− 1  − e
β − e−(α/x)λ( 

  
n− i

,

Fi: n(x) � 
n

r�i

n

r

⎛⎝ ⎞⎠(F(x))
r
(1 − F(x))

n− r

�
n

i

⎛⎝ ⎞⎠ e
− (α/x)λ

− 1 e
β − e−(α/x)λ( 

+ 1 
i

e
− (α/x)λ

− 1  − e
β − e−(α/x)λ( 

  
n− i

× 2F1 1, i − n; i + 1; 1 −
e

(α/x)λ+e−(α/x)λ β

− 1 + e
(α/x)λ

⎛⎝ ⎞⎠,

(27)

where 2F1(1, i − n; i + 1; 1 − (e(α/x)λ+e− (α/x)λ β/ − 1 + e(α/x)λ)) is
a hypergeometric function.

4. Point Estimation Methods

+is section is devoted to explain the different estimation
methods that have been applied to to find the values of the
estimates of the NEXF parameters according to two cases:
firstly, a complete sample; secondly, Type-I censored sam-
ples. +e estimation methods used are the maximum like-
lihood method (MLE) which is the most famous estimation
technique to evaluate the parameters. Additionally, we used
an important method of classical estimation which is the

maximum product of spacing (MPS) method, and also we
used the Bayesian estimation method depending on the
squared error loss function.

4.1. Maximum LikelihoodMethod. Suppose that we have an
order sample as following such that x1, . . . , xn be a random
sample from the NEXF distribution. +is sample is based on
the Type-I censored sample with vector parameter
Θ � (α, β, λ), and the likelihood function of the NEXF
distribution under the Type-I censored sample takes the
form as follows:

L(Θ) � cλrαr
e

− 
r

i�1 α/xi: n( )
λ

e
− β

r

i�1e− α/xi: n( )λ



r

i�1

α
xi: n

 

λ− 1

1 + β 1 − e
− α/xi: n( )

λ

  
1 − e− (α/T)λ

eβe−(α/T)λ
⎛⎝ ⎞⎠

n− r

, (28)

6 Computational Intelligence and Neuroscience



where c does not depend on parameters. +e log-likelihood
function of NEXF based on the Type-I censored sample takes
the form as follows:

ℓ(Θ)∝ rλ ln(α) + r ln(λ) − (λ − 1) 
r

i�1
ln xi: n(  − 

r

i�1

α
xi: n

 

λ

+ 
r

i�1
ln 1 + β 1 − e

− α/xi: n( )
λ

  

− β
r

i�1
e

− α/xi: n( )
λ

+(n − r)ln 1 − e
− (α/T)λ

  − (n − r)βe
− (α/T)λ

.

(29)

Now, by differentiating the log-likelihood equation (29)
with respect to α, β, and λ separately, we get the following
equations:

zℓ(Θ)

zα
�

rλ
α

+ λαλ− 1


r

i�1

1
xi: n

 

λ

+ βλαλ− 1


r

i�1

e
− 1/xi: n( )

λ

1 + β 1 − e
− α/xi: n( )

λ

 

− βλαλ− 1


r

i�1
e

− 1/xi: n( )
λ

+(n − r)λαλ− 1 e
− (1/T)λ

1 − e
− (α/T)λ

− (n − r)βλαλ− 1
e

− (1/T)λ
� 0,

(30)

zℓ(Θ)

zβ
� 

r

i�1

1 − e
− α/xi: n( )

λ

 

1 + β 1 − e
− α/xi: n( )

λ

 

− 
r

i�1
e

− α/xi: n( )
λ

− (n − r)e
− (α/T)λ

� 0, (31)

zℓ(Θ)

zλ
�

r

λ
− 

r

i�1
ln xi: n(  + 

r

i�1

α
xi: n

 

λ

ln
α

xi: n

  βe
− α/xi: n( )

λ

− 1 

+ β

r

i�1

α/xi: n( 
λ ln α/xi: n( e

− α/xi: n( )
λ

1 + β 1 − e
− α/xi: n( )

λ

 

+(n − r)
ln(α/T)(α/T)

λ
e

− (α/T)λ

1 − e
− (α/T)λ

− (n − r)β ln
α
T

 
α
T

 
λ
e

− (α/T)λ
� 0.

(32)

Since the equations in (30)–(32) are not solved analyt-
ically, numerical approaches will be used to solve these
equations such as the Newton–Raphson method.

4.2. 6e Maximum Product Spacing Method. In this sub-
section, we devoted our efforts to study the most famous

classical method of estimation, namely, the MPS method
which is considered as the first competitive for the MLEs. By
referring to Ng et al. [35], Almetwally et al. [36], and
Alshenawy et al. [37], the log-MPSEs under type-I censored
samples for the NEXF distribution take the form as follows:

lS(Θ)∝ ln 1 −
1 − e

− α/x1: n( )
λ

e
βe− α/x1: n( )λ

⎛⎝ ⎞⎠ + ln
1 − e

− α/xr: n( )
λ

e
βe− α/xr: n( )λ

⎛⎝ ⎞⎠

+ 
r

i�2
ln

1 − e
− α/xi− 1: n( )

λ

e
βe− α/xi: n( )λ

−
1 − e

− α/xi: n( )
λ

e
βe− α/xi: n( )λ

⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦ +(n − r)ln
1 − e

− (α/T)λ

e
βe−(α/T)λ

⎛⎝ ⎞⎠.

(33)
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+e MPSEs of distribution parameters for the Type-I
censored samples can be derived through the following
steps:

(1) First derive the log-product equation (33)
(2) Find the partial derivative for equation (33), with

respect to each existing parameter, respectively
(3) We all know that these equations are extremely

tough to solve, so we will start here by using non-
linear optimisation algorithms such as the New-
ton–Raphson algorithm takes a role in solving these
kinds of problems

4.3. Bayesian Estimation. +is subsection presents Bayesian
parameter estimations for the parameters based on the
squared error (SE) loss function of the NEXF distribution
parameters α, β, and λ based on the Type-I censored sample.

+e prior distributions of the parameters are chosen to be
gamma distributions. +us,

π1(α)∝ αb1− 1
e

− αd1 , α> 0, b1, d1 > 0,

π2(β)∝ βb2− 1
e

− βd2 , β> 0, b2, d2 > 0,

π3(λ)∝ λb3− 1
3 e

− λd3 , λ> 0, b3, d3 > 0.

(34)

By presuming the independency of the proposed model
parameters, we can get and formulate the joint PDF of the
priors as follows:

π(α, β, λ)∝ αb1− 1βb2− 1λb3− 1
e

− αd1+βd2+λd3( ). (35)

Now, the posterior function of the proposed distribu-
tion’s parameters may be calculated using equation (28) and
also equation (35) as follows:

π∗(Θ|x)∝ L(α, β, λ)π(α, β, λ)

∝ αr+b1− 1βb2− 1λr+b3− 1
e

− αd1+λd3( )e
− 

r

i�1
α/xi: n( )

λ

e
− β 

r

i�1
e− α/xi: n( )λ+d2 



r

i�1

α
xi: n

 

λ− 1

1 + β 1 − e
− α/xi: n( )

λ

  
1 − e− (α/T)λ

eβe−(α/T)λ
⎛⎝ ⎞⎠

n− r

.

(36)

Bayesian parameter estimation for the NEXF distribu-
tion using the SE loss function is given by

αSE � 
∞

0
α
∞

0

∞

0
π∗(Θ|x)dβdλdα, (37)

βSE � 
∞

0
β
∞

0

∞

0
π∗(Θ|x)dλdαdβ, (38)

λSE � 
∞

0
λ
∞

0

∞

0
π∗(Θ|x)dαdβdλ. (39)

It is very clear that the integrals in equations (37), (38)
and (39) are complicated. Consequently, the Markov Chain
Monte Carlo (MCMC) and Metropolis-Hastings (MH) al-
gorithm are applied to obtain approximations for these
integrals.

4.3.1. Markov Chain Monte Carlo Technique. Multiple in-
tegrals, as we all know, are incredibly difficult to solve an-
alytically or even mathematically by hand. To find an
estimate for these integrals, we must use the MCMC
technique. +e MH algorithm, also known as the random
walk algorithm, is an integral part of the MCMC technique.
It is very similar to the process of acceptance and rejection
sampling (Algorithm 1).

We can find the BEs of the distribution parameters
u(α, β, λ) by the aid of the MH algorithm under the SE loss
function, as follows:

uSE �
1

N − M


N

i�M+1
u α(i)

, β(i)
, λ(i)

 . (40)

5. Interval Estimation for the
Distribution’s Parameters

+is part of the paper was devoted for interval estimation as
we performed interval estimation for the distribution pa-
rameters according to two methods: the asymptotic and
Credible CIs methods.

5.1. Asymptotic Confidence Intervals. Asymptotic CI is the
most popular approach to establishing approximate confi-
dence limits for parameters, in which MLEs are used to get
the Fisher information matrix I( Ω), which consists of the
second derivative with negative signs for the log-likelihood
function, where we substitute with the estimates of the MLEs
Ω � (α, β, λ), where

I( Ω) �

Iαα

Iβα
Iββ

Iβλ
I
αλ

Iλλ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (41)

In order to find the asymptotic variance-covariance
matrix, we get the inverse matrix for the Fisher infor-
mation matrix. We have the vector parameter Ω as
V( Ω) � I− 1( Ω).
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So, the 100(1 − c)% asymptotic CI for the parameters α,
β, and λ can be established as follows:

ϑl,
ϑu  � ϑ ± Z1− c/2

�����

V(ϑ)



, (42)

where ϑ is α, λ, and β are the parameters of the distribution
and Zq is the 100q − th which is the the standard normal
distribution’s percentile.

5.2. Highest Posterior Density (HPD) Interval Algorithm.
According to Bayesian estimation, we find point and interval
estimations so we must find interval estimation for the
distribution’s parameter. +is interval is called the HPD
interval or sometimes the credible intervals. We explained
the technique for discovering the (1 − c) HPD interval for
α, β, and λ. +is method has been suggested by [38]
(Algorithm 2).

6. Simulation Study

As of now, for any distribution, we must evaluate its per-
formance by using different values for its parameters so we
must perform a simulation study under both a complete and
a Type-I censored sample. +e Monte Carlo simulation is
conducted in this section to compare the performance of the
methods used in the paper and determine the behaviours of
the parameters using the MLEs, MPS, and Bayesian esti-
mates of the NEXF parameters under Type-I censored
samples, as depending on the R programming. Ten thousand

random samples were generated from the NEXF distribution
according to the following combinations of parameters.

We used different values for the parameters with dif-
ferent combination as shown in Tables 1–4 , with varying
sample sizes as shown in the following tables and different
time point T to end the experiment. In the results of the CI, c
is chosen to be 0.05. We may define the optimal approach as
one that minimises bias, mean squared error (MSE), and
length of the confidence interval (L.CI) of the estimator.
Comparing the results of the point estimation depends on
the bias, MSE, and L.CI values. Tables 1–4 show the different
results of simulating the point estimation methods suggested
throughout this paper.

6.1. Concluding Remarks Conducted from the Simulation
Study. +e following observations can be easily conducted
from the results conducted from the simulation. We used
Algorithms 1 and 2 to get the simulation results.

(1) As the sample size increases, the MSE, Bias, and CI
length of each of the parameters decrease, which is
the consistence property

(2) As the censoring time of Type-I (T) increases, the
value of the Bias is decreased

(3) As the censoring time of Type-I (T) increases, the
value of the MSE is also decreased

(4) As the censoring time of Type-I (T) increases, the
value of the Length of CI is also decreased

(1) Initiate using these values α(0) � α, λ(0) � λ, and β(0) � β where these values are the values evaluate form the MLEs
(2) Start the loop with value i � 1
(3) Simulate α, ∼ β, and λ from normal proposal distribution N(α(i− 1), var(α(i− 1))), N(β(i− 1), var(β(i− 1))), and N(λ(i− 1), var(λ(i− 1))),

repressively
(4) Now, we must know the acceptance probability to determine which value will be stored and considered as the estimate of the

parameter, so we will use the following ratio to calculate the acceptance probability:
A1(α(i− 1)|α) � min[1, (π∗(α|β(i− 1)λ(i− 1))/π∗(α(i− 1)|β(i− 1)λ(i− 1)))],
A2(β(i− 1)|β) � min[1, (π∗(β|α(i− 1)λ(i− 1))/π∗(β(i− 1)|α(i− 1)λ(i− 1)))], and
A3(λ(i− 1)|λ) � min[1, (π∗(λ|α(i− 1), β(i− 1))/π∗(λ(i− 1)|α(i− 1)β(i− 1)))]

(5) We will randomize and generate a random sample from the uniform distribution having a range from 0 to 1
(6) If the generated value U≤A(α(i− 1)|α∗), we will consider α(i) � α∗, if not we will consider α(i) � α(i− 1)

(7) In order to find the estimates for the other two parameters, we must make a repetition for Step (6) but for, α and β
(8) Increase the loop counter by one such that i � i + 1
(9) In order to find accurate approximation for the estimates, we must make a repetition for the steps from ((3)–(8)), N � 10000

repetitions for obtaining values for the parameters of the proposed distribution, and this sample can be written as the following:
(α(1), β(1), λ(1)), . . . , (α(N), β(N), λ(N))

ALGORITHM 1: +e MH algorithm can be known as an approximation method for evaluating integrals that cannot be evaluated explicitly.

(1) Do steps ((1) − (9)) in Algorithm 1
(2) After obtaining the estimates for the N parameters, arrange each estimate in ascending order as θi

[1]

SE , θi

[2]

SE , . . . , θi

[N]

SE , where
i � 1, 2, 3 and θ1SE ≡ αSE, θ2SE ≡ βSE, and θ3SE ≡ λSE

(3) +en, the 100(1 − c)% credible CIs for θi are given by ( θi

[cN/2]

SE , θi

[(1− c/2)N]

SE ), i � 1, 2, 3

ALGORITHM 2: Credible interval algorithm.
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Table 1: MLE, MPS, and Bayesian estimations of the NEXF distribution parameters under the complete sample when α � 0.5.

α � 0.5 MLE MPS Bayesian
β λ n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CCI

0.5

0.5

50
α 0.0991 0.1998 1.7102 0.0967 0.0721 0.9826 0.0914 0.0662 0.8906
β 0.0226 0.5260 2.8444 0.1115 0.1582 1.4981 0.0473 0.1335 1.2607
λ 0.0442 0.0108 0.3687 − 0.0142 0.0050 0.2705 0.0055 0.0043 0.2571

100
α − 0.0055 0.1149 1.3300 0.0189 0.0245 0.6099 0.0688 0.0413 0.6820
β − 0.1086 0.3453 2.2661 0.0048 0.0522 0.8961 0.0377 0.1191 1.1571
λ 0.0177 0.0070 0.3219 − 0.0229 0.0031 0.1994 0.0004 0.0022 0.1875

200
α − 0.0185 0.0423 0.8041 0.0350 0.0196 0.5316 0.0551 0.0369 0.6119
β − 0.1067 0.1989 1.6989 0.0407 0.0553 0.9092 0.0245 0.0920 1.0364
λ 0.0248 0.0045 0.2446 − 0.0088 0.0017 0.1595 0.0027 0.0016 0.1572

3

50
α − 0.0036 0.0021 0.1802 0.0031 0.0009 0.1195 0.1072 0.0021 0.1451
β − 0.1102 1.4597 4.7187 0.0288 0.0870 1.1515 0.2854 0.9675 2.5970
λ 0.1221 0.3848 2.3852 − 0.1361 0.0942 1.0785 − 0.3356 0.3570 2.0606

100
α − 0.0026 0.0019 0.1724 0.0016 0.0004 0.0800 0.0722 0.0017 0.1683
β − 0.0498 0.9000 3.7156 0.0227 0.0492 0.8656 0.1960 0.4585 1.8786
λ 0.0559 0.1295 1.3945 − 0.0960 0.0479 0.7716 − 0.0833 0.1247 1.3434

200
α 0.0010 0.0004 0.0747 0.0019 0.0002 0.0556 0.0167 0.0004 0.0685
β 0.0064 0.2402 0.9786 0.0159 0.0283 0.6568 0.1409 0.0305 0.6539
λ 0.0147 0.0277 0.6501 − 0.0565 0.0224 0.5438 0.0076 0.0116 0.6025

3

0.5

50
α 0.0382 0.0895 1.1661 0.0788 0.0583 0.8965 0.0361 0.0714 1.1289
β − 0.0373 0.3105 2.9476 − 0.0009 0.1392 1.4664 0.0147 0.9626 2.5120
λ 0.0271 0.0067 0.3034 − 0.0120 0.0028 0.2012 0.0314 0.0060 0.2931

100
α 0.0327 0.0416 0.7909 0.0593 0.0287 0.6241 0.0295 0.0389 0.7091
β − 0.1022 0.2209 2.5176 0.0148 0.1025 1.2571 0.0038 0.1903 2.0657
λ 0.0124 0.0028 0.2005 − 0.0107 0.0012 0.1278 0.0116 0.0024 0.1985

200
α 0.0067 0.0354 0.7384 0.0471 0.0181 0.4957 0.0689 0.0342 0.6779
β 0.0103 0.1538 1.5405 0.0502 0.0721 1.0364 0.0162 0.1469 1.3696
λ 0.0057 0.0014 0.1450 − 0.0087 0.0007 0.0999 0.0048 0.0010 0.1170

3

50
α − 0.0040 0.0015 0.1517 0.0000 0.0003 0.0644 − 0.0027 0.0015 0.1469
β − 0.0405 0.4085 4.6612 − 0.0147 0.0045 0.2571 0.0374 0.4069 4.1761
λ 0.1818 0.5542 2.8369 − 0.0434 0.0312 0.6726 0.2568 0.3927 2.0036

100
α 0.0022 0.0003 0.0619 0.0015 0.0001 0.0442 0.0015 0.0002 0.0513
β 0.0131 0.0274 0.6489 − 0.0140 0.0016 0.1488 0.0297 0.0100 3.6953
λ − 0.0007 0.0413 0.7989 − 0.0455 0.0115 0.3812 0.0100 0.0416 0.7496

200
α − 0.0015 0.0007 0.0320 0.0007 0.0001 0.0298 0.0006 0.0005 0.0881
β − 0.0097 0.0061 0.1925 − 0.0075 0.0007 0.0992 0.0036 0.0059 0.1676
λ 0.0251 0.0145 0.3670 − 0.0293 0.0056 0.2703 0.0142 0.0125 0.2863

Table 2: MLE, MPS, and Bayesian estimations of the NEXF distribution parameters under the complete sample when α � 3.

α � 3 MLE MPS Bayesian
β λ n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CCI

0.5

0.5

50
α − 0.1484 0.7181 3.2721 0.1119 0.1103 1.2266 0.1361 0.6878 3.0497
β − 0.0873 0.1978 1.7102 0.0457 0.0864 1.1388 0.0507 0.1419 1.2495
λ 0.0296 0.0071 0.3099 − 0.0217 0.0031 0.2008 − 0.0007 0.0068 0.2811

100
α − 0.1831 1.0738 4.0001 0.0895 0.0475 0.7798 0.1401 1.0118 3.9270
β − 0.1116 0.2084 1.7363 0.0419 0.0447 0.8132 0.0284 0.1004 1.0719
λ 0.0223 0.0041 0.2351 − 0.0163 0.0015 0.1391 0.0018 0.0021 0.1765

200
α − 0.2206 0.5232 2.7015 0.0521 0.0210 0.5307 0.1933 0.4953 2.6839
β − 0.1149 0.1169 1.2633 0.0144 0.0218 0.5764 0.0227 0.0856 1.0496
λ 0.0169 0.0026 0.1872 − 0.0103 0.0007 0.0985 0.0000 0.0013 0.1413

3

50
α 0.0040 0.2771 2.0646 0.1089 0.1555 1.4862 0.0041 0.0268 0.6570
β − 0.0424 1.5094 3.8931 0.2460 0.6146 2.9194 0.0106 0.1025 1.0786
λ 0.1368 0.4123 2.4606 − 0.2261 0.2708 1.8382 0.0324 0.0894 1.1261

100
α 0.0207 0.2564 1.9845 0.1156 0.1027 1.1726 0.0010 0.0205 0.5611
β − 0.1123 0.9161 3.2645 0.2385 0.4124 2.3384 − 0.0089 0.0813 1.0053
λ 0.0865 0.3400 2.2615 − 0.1828 0.1735 1.4678 0.0346 0.0510 0.9074

200
α − 0.0411 0.1779 1.6511 0.0700 0.0532 0.8643 0.0055 0.0175 0.4788
β − 0.1049 0.8313 2.8274 0.1424 0.2198 1.7567 0.0079 0.0782 0.9221
λ 0.0544 0.2230 1.8451 − 0.1381 0.1144 1.2140 − 0.0039 0.0353 0.6828
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Table 2: Continued.

α � 3 MLE MPS Bayesian
β λ n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CCI

3

0.5

50
α 0.0147 1.5829 4.9339 0.0218 0.0916 1.1837 0.0434 0.9236 4.0988
β 0.0019 1.2477 4.3809 − 0.1030 0.1326 1.3697 0.0021 0.9746 4.0213
λ 0.0276 0.0073 0.3176 − 0.0135 0.0022 0.1740 0.0142 0.0070 0.3084

100
α − 0.1704 0.6306 3.0420 0.0177 0.0344 0.7241 0.1383 0.6084 2.8996
β − 0.1406 0.5735 2.9184 − 0.0397 0.0513 0.8742 0.0919 0.4851 2.7985
λ 0.0268 0.0053 0.2656 − 0.0084 0.0009 0.1156 0.0188 0.0050 0.2718

200
α 0.1542 0.4663 2.6091 0.0111 0.0168 0.5063 0.1250 0.2167 2.2144
β 0.1239 0.2653 1.9607 − 0.0234 0.0266 0.6333 0.0286 0.2166 1.6485
λ − 0.0005 0.0011 0.1287 − 0.0059 0.0005 0.0829 0.0016 0.0010 0.1245

3

50
α − 0.0487 0.5327 2.8650 0.0127 0.0338 0.7212 0.0043 0.0745 0.8985
β − 0.3755 1.3831 4.5835 − 0.0129 0.3712 2.3967 0.1552 0.9005 3.9774
λ 0.2343 0.3604 4.0067 − 0.0564 0.1218 1.3550 0.1824 0.2720 2.0924

100
α 0.0393 0.1632 1.5768 0.0217 0.0181 0.5210 0.0224 0.1549 0.8250
β 0.0262 0.7696 3.3472 0.0208 0.2204 1.8395 0.0225 0.2213 1.8356
λ 0.0957 0.1750 2.3723 − 0.0716 0.0725 1.0179 0.0939 0.1644 1.5120

200
α 0.0186 0.1486 1.4688 0.0228 0.0177 0.5135 0.0142 0.0861 0.8066
β − 0.0606 0.2954 1.9300 0.0174 0.2112 1.8011 0.0595 0.1898 4.1254
λ 0.1084 0.3983 2.4384 − 0.0748 0.0696 0.9923 0.0865 0.1560 1.5026

Table 3: MLE, MPS, and Bayesian estimations of the NEXF distribution parameters under the Type-I censored sample when
α � 0.5 and β � 0.5.

MLE MPS Bayesian
λ T n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CCI

0.5

1.5

50
α 0.0331 0.1879 1.6951 0.1233 0.0857 1.0413 0.0811 0.0494 0.7536
β − 0.1455 0.5428 2.8325 0.1338 0.2140 1.7367 0.0432 0.1130 1.1443
λ 0.0420 0.0114 0.3859 − 0.0276 0.0058 0.2791 0.0052 0.0031 0.2030

100
α 0.0559 0.1506 1.5060 0.1154 0.0593 0.8410 0.0551 0.0334 0.6300
β − 0.0864 0.5040 2.7637 0.1350 0.1428 1.3842 0.0084 0.0752 0.9128
λ 0.0187 0.0067 0.3136 − 0.0283 0.0034 0.2008 0.0011 0.0021 0.1478

200
α − 0.0275 0.0401 0.7777 0.0876 0.0338 0.6338 0.0558 0.0387 0.6305
β − 0.1353 0.2322 1.8141 0.1360 0.0924 1.0659 0.0380 0.0858 1.0452
λ 0.0202 0.0038 0.2294 − 0.0215 0.0019 0.1474 − 0.0014 0.0012 0.1374

2.5

50
α 0.0615 0.1755 1.6262 0.0502 0.0316 0.6693 0.1074 0.0779 0.9053
β − 0.0443 0.3909 2.4472 0.0288 0.0429 0.8045 0.0295 0.1092 1.0853
λ 0.0313 0.0096 0.3641 − 0.0206 0.0043 0.2443 0.0042 0.0036 0.2263

100
α 0.0924 0.1985 1.7104 0.0590 0.0577 0.9137 0.0750 0.0453 0.7297
β 0.0113 0.5141 2.8130 0.0578 0.1404 1.4527 0.0502 0.1041 1.0816
λ 0.0195 0.0080 0.3423 − 0.0145 0.0037 0.2314 − 0.0009 0.0020 0.1705

200
α − 0.0124 0.0435 0.8166 0.0303 0.0130 0.4318 0.0562 0.0372 0.6233
β − 0.0978 0.2144 1.7761 0.0367 0.0431 0.8016 0.0324 0.0942 1.0172
λ 0.0209 0.0040 0.2332 − 0.0103 0.0013 0.1372 0.0007 0.0014 0.1456

3

0.5

50
α − 0.0027 0.0023 0.1875 − 0.0018 0.0005 0.0866 0.0134 0.0022 0.1780
β − 0.0646 0.9606 3.8375 − 0.0508 0.0375 0.7334 0.0167 0.1399 1.2548
λ 0.1420 0.3803 2.3547 − 0.1000 0.0805 1.0418 − 0.0045 0.2804 2.0021

100
α − 0.0054 0.0032 0.2214 0.0015 0.0007 0.1005 0.0048 0.0012 0.1260
β − 0.1203 1.5305 4.8315 − 0.0167 0.0664 1.0089 0.0003 0.1199 1.1584
λ 0.0772 0.2004 1.7301 − 0.1052 0.0685 0.9404 0.0082 0.1411 1.4911

200
α 0.0006 0.0003 0.0666 − 0.0014 0.0001 0.0415 − 0.0004 0.0003 0.0649
β 0.0184 0.0316 0.6943 − 0.0283 0.0071 0.3126 − 0.0139 0.0251 0.6514
λ 0.0095 0.0313 0.6937 − 0.0537 0.0173 0.4717 0.0084 0.0280 0.6708

1

50
α − 0.0007 0.0013 0.1426 − 0.0022 0.0004 0.0804 0.0062 0.0012 0.1325
β − 0.0371 0.6561 3.1750 − 0.0304 0.0228 0.5805 0.0146 0.1244 1.1268
λ 0.0951 0.1672 1.5605 − 0.0732 0.0506 0.8348 0.0282 0.1281 1.3599

100
α − 0.0002 0.0014 0.1488 0.0021 0.0007 0.1040 0.0016 0.0008 0.1097
β − 0.0261 0.9689 3.8611 0.0323 0.0596 0.9496 0.0026 0.1134 1.1460
λ 0.0707 0.1745 1.6155 − 0.0635 0.0541 0.8784 0.0363 0.0813 1.0865

200
α 0.0012 0.0004 0.0812 − 0.0009 0.0002 0.0508 − 0.0005 0.0004 0.0594
β 0.0172 0.0316 0.6738 − 0.0086 0.0063 0.3096 − 0.0101 0.0286 0.6018
λ 0.0116 0.0272 0.6450 − 0.0366 0.0143 0.4465 0.0063 0.0255 0.6591
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(5) In most cases, the MPS performs in a better case than
MLE under Type-I censored samples

(6) We concluded that the credible interval provides the
smallest length among all CIs, when the sample is
generated under Type-I censored sample

(7) We can analyze that by increasing λ, the MSE and
Bias and CI length for the parameter α decrease while
for β increases, in most cases

(8) We can analyze that by increasing β, the MSE and
Bias and CI length for the parameter α decrease while
for λ decreases, in most cases

(9) We can analyze that by increasing α, the MSE and
Bias and CI length for the parameter λ decrease while
for β decreases, in most cases

7. Data Analysis Using Type-I Censored Data

In this part of the paper, we perform a real-world data
analysis for type progressive censoring data. We used the

new novel modified KS algorithm to fit the Type-I censored
data. Algorithm 3 discusses the steps for fitting Type-I
censored data (see [39]).

7.1. Model Selection Criteria. +e selection of models for
specific data is one of the basic tasks of the scientific study in
choosing a predictive model from a group of candidate
models. Several statistical methods are available to deter-
mine the fitness of competing distributions, where the most
widely used are the Akaike information criteria (AIC) and
the Bayesian knowledge criteria (BIC). +e optimal distri-
bution for the real data set may be the one with the lowest
values. +ese methods are determined according to the
following formulas:

+e AIC is given by

AIC � 2k − 2ℓ. (43)

+e CAIC is

Table 4: MLE, MPS, and Bayesian estimations of the NEXF distribution parameters under Type-I censored sample when α � 0.5 and β � 3.

MLE MPS Bayesian
λ T n Bias MSE L.CI Bias MSE L.CI Bias MSE L.CCI

0.5

0.5

50
α − 0.0373 0.0931 1.1880 0.0361 0.0446 0.8166 0.0894 0.0763 0.8930
β − 0.3584 2.4411 5.9673 − 0.1088 0.5360 2.8409 0.2132 1.7603 4.9731
λ 0.0662 0.0178 0.4543 − 0.0036 0.0060 0.3035 0.0230 0.0059 0.2633

100
α − 0.0520 0.0270 0.6120 0.0143 0.0125 0.4356 0.0573 0.0691 0.9451
β − 0.2964 0.7370 3.1616 − 0.0302 0.0747 1.0661 0.0501 1.3972 4.5919
λ 0.0390 0.0072 0.2967 − 0.0050 0.0023 0.1859 0.0289 0.0059 0.2676

200
α 0.0439 0.0344 0.7074 0.0569 0.0263 0.5965 0.0665 0.0539 0.8346
β 0.1434 0.6359 3.0780 0.1502 0.2877 2.0204 0.0952 1.0236 3.8831
λ 0.0029 0.0024 0.1922 − 0.0116 0.0016 0.1481 0.0157 0.0039 0.2316

1

50
α − 0.0209 0.0882 1.1621 0.0344 0.0415 0.8069 0.0860 0.0739 0.8201
β − 0.2746 1.8209 5.1842 − 0.0587 0.5109 2.7951 0.2130 1.4807 4.6516
λ 0.0615 0.0187 0.4788 − 0.0047 0.0060 0.3016 0.0209 0.0057 0.2730

100
α − 0.0233 0.0266 0.6337 0.0308 0.0124 0.4246 0.0654 0.0249 0.7580
β − 0.2472 0.6578 3.0310 − 0.0227 0.0594 0.9524 0.0404 0.6588 3.0679
λ 0.0281 0.0063 0.2920 − 0.0125 0.0023 0.1822 0.0165 0.0037 0.2206

200
α 0.0404 0.0339 0.6959 0.0526 0.0257 0.5860 0.0363 0.0304 0.6702
β 0.1201 0.6270 3.0253 0.1458 0.2834 2.0211 0.1203 0.5713 3.0310
λ 0.0026 0.0022 0.1902 − 0.0110 0.0016 0.1358 0.0096 0.0021 0.1815

3

0.4

50
α − 0.0057 0.0037 0.2390 0.0153 0.0012 0.1238 0.0123 0.0056 0.2450
β − 0.5002 1.9739 6.9792 − 0.0474 0.0167 0.4716 0.1460 1.1515 4.2750
λ 0.1775 0.9834 3.8284 − 0.1972 0.1494 1.3047 0.1637 0.5406 2.7781

100
α 0.0024 0.0004 0.0789 0.0056 0.0004 0.0755 0.0016 0.0033 0.1893
β − 0.0091 0.0351 0.7342 − 0.0177 0.0031 0.2061 0.0675 0.0349 0.7809
λ − 0.0040 0.0697 1.0355 − 0.0959 0.0477 0.7701 0.1398 0.2364 1.7967

200
α − 0.0148 0.0059 0.2952 0.0040 0.0003 0.0636 − 0.0007 0.0021 0.1744
β − 0.2604 0.9021 4.5265 0.0350 0.1257 1.3843 0.1488 0.4470 2.5690
λ 0.1566 0.4446 2.5432 − 0.0556 0.0477 0.8289 0.1425 0.2274 1.8035

0.8

50
α − 0.0012 0.0016 0.1576 0.0038 0.0005 0.0823 − 0.0012 0.0018 0.1739
β 0.0212 1.3022 4.4770 − 0.0216 0.0398 0.7777 0.0741 1.8630 4.9506
λ 0.1070 0.1981 1.6952 − 0.0869 0.0756 1.0239 0.2244 0.3381 1.9961

100
α − 0.0002 0.0005 0.0866 0.0005 0.0002 0.0485 0.0000 0.0009 0.1189
β 0.0190 0.2223 1.8484 − 0.0124 0.0063 0.3086 0.0837 0.8882 3.6324
λ 0.0238 0.0658 1.0023 − 0.0493 0.0198 0.5164 0.0984 0.1263 1.3225

200
α − 0.0070 0.0043 0.2547 0.0033 0.0003 0.0691 0.0006 0.0004 0.0784
β − 0.2034 0.8296 3.5845 0.0184 0.1815 1.6701 0.0339 0.3728 2.3717
λ 0.1154 0.5351 2.8344 − 0.0515 0.0418 0.7767 0.0475 0.0484 0.8331
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CAIC �
2nk

n − k − 1
− 2ℓ. (44)

+e BIC is evaluated as follows:

BIC � k log(n) − 2ℓ. (45)

+e HQIC is

HQIC � 2k log(log(n)) − 2ℓ, (46)

such that ℓ is the MLE log-likelihood function value, and k is
parameters count in the distribution in the proposed model,
and n is considered as the size of the sample used in cal-
culations.We take the AIC and BIC tests to demonstrate that
the distribution presented is the most appropriate fit for the
data. In order to compare between a large number of dis-
tributions, we must base such a comparison on certain
criteria: one of these information criteria is called the Akaike
information criterion (AIC) (see Akaike [40]) though there
are other criteria which are called the Bayesian information
criterion (BIC) (see Schwarz [41] for more information), and
we can also refer to the Hannan–Quinn criterion (for more
information on the criterion (HQIC), see Hannan and
Quinn [42]), and for more information and last criteria
called the consistent Akaike information criterion (CAIC),
refer to the study by Bozdogan [43]; all these criteria were
used to determine which model among all competing ones is
the best for statistical modeling of the data.

7.2. Real Data Set Application for Remission Times. +is
subsection includes a data analysis to demonstrate the
distribution’s performance. We can find these data in Bain
and Engelhardt [44].+is data represent how long leukaemia
patients survive with a new treatment for each patient. We
recorded the remission times of leukaemia patients after

using a new drug for treatment. +e new medication that
leads to remission in leukaemia was given to a group of 40
patients; after seven months (210 days), the trial was then
terminated. It is obvious that we have a Type-I censored
sample with n � 40 and m � 22, where m donates the
number of recorder times before the experiments reach an
end and T � 205, where T is the time at which the exper-
iments ended.

To verify that the likelihood function exists and has
unique values for its estimates, the existence and uniqueness
property is studied as it is very important property that
proves that the likelihood function has unique and global
maximum roots, and the likelihood function is plotted in
Figures 3 and 4 , respectively. Figure 3 confirms the existence
of MLEs as the derivative of the log-likelihood function with
respect to a certain parameter that intersects the x-axis at a
single point. In addition, Figure 4 provides the truth that
estimates for the parameters are global maximum roots.
Obviously, the log-likelihood function is a decreasing
function that crosses the x-axis only once. As a result, we can
assert that the log-likelihood function has only one unique
root, which is the global maximum.

+e results in the tables show the values of the parameters
and the goodness of fit criteria values for the proposed dis-
tribution in the competition that were used in the comparison;
in this section, we introduce the competitive distributions used
in comparison with our proposed model. Table 5 is concerned
with the parameter estimation of the distribution’s parameters.
Table 6 is concerned with the values of AIC, BIC, HQIC, and
and CAIC of the distributions. We compare the proposed
distribution with the Exponential distribution (E),
CDF � e− (x/λ)− α

, Fréchet two-parameter distribution (F),
CDF � 1 − (1 − exp(− (α/x)λ)/exp(β exp(− (α/x)λ))), and
the Fréchet three parameters distribution (FTP),
CDF � e− (x− μ/β)− α

.

(1) Assume that the random sample has size N with predetermined time T at which to end the experiment
(2) +is sample is a right censored sample at time T

(3) Assume that U(x) is the PDF of the uniform distribution U(0,1)
(4) Assume that F(x) is the CDF of the distribution, i.e., F(xi) � i/N, where xi donates the ith order statistics
(5) +e modified KS statistic for the type-I censored data can be defined as follows: DN: f � supreme|FN(x) − x| � max[|i/N −

x(i)|, |x(i) − (i − 1)/N|] where f is a nonnegative integer that is less than or equal to N and where x satisfies 0<x<X(f), and hence
1≤ i≤f

ALGORITHM 3: Fitting Type-I censored data using a modified KS algorithm.
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Figure 3: +e uniqueness of the roots of the log-likelihood.
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8. Conclusions and Remarks

A new novel model has been studied and introduced in this
paper, and this model called the NEXF distribution. Its
statistical properties have been studied and a linear repre-
sentation is obtained which helps to find the moments and
generating functions. +e three unknown parameters of the
NEXF distribution have been estimated using the classical
and Bayesian approaches of estimation under complete and
Type-I censoring schemes. Simulations were performed to
test the efficiency of the estimation methods. +e MH al-
gorithm has a great role for obtaining an approximation for
the Bayesian estimates. We can easily conduct from the
results tabulated in the simulation section that the Bayesian
method performs better than the other methods according
to the values of the MSE. From the real data example, we can
see that the NEXF distribution is the best fit of data than the
E, F, and FTP distributions. We used the modified KS test to
determine the goodness of fit for each distribution to the
data. Also, we discussed the existence and uniqueness of the
log-likelihood function graphically. We proved that the
roots maximize the log-likelihood function and also proved
that these roots are unique, and at last we proved the su-
periority of the proposed distribution in modeling and
fitting healthcare and medical data.
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H. I. Okagbue, “+e Gompertz fréchet distribution: properties
and applications,” Cogent Mathematics Statistics, vol. 6, no. 1,
Article ID 1568662, 2019.

[22] P. L. Ramos, F. Louzada, E. Ramos, and S. Dey, “+e Fréchet
distribution: estimation and application-an overview,” Jour-
nal of Statistics & Management Systems, vol. 23, no. 3,
pp. 549–578, 2020.

[23] N. Balakrishnan and R. Aggarwala, Progressive Censoring:
6eory, Methods, and Applications, Birkhäuser, Basel, Swit-
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